汕头大学主页|汕头大学工学院|English Vision
  联系信息

邮件:zfan@stu.edu.cn

地址:广东省汕头市大学路243号汕头大学科学楼

邮编:515063

 
学术团队
韦才敏
教授,硕士生导师
韦才敏,博士,教授,硕士生导师,邮箱:cmwei@stu.edu.cn 办公地点:工北414-2
 

研究方向:调度、排队论、随机金融分析及供应链优化

 

学习经历

2003.03至2005.11,大连理工大学 应用数学系,运筹学与控制论专业,理学博士,导师:夏尊铨教授

2000.09至2002.10,燕山大学 理学院,运筹学与控制论专业,理学硕士,导师:田乃硕教授;

1996.09至2000.07,广西民族学院(2001年改为广西民族大学),数学与计算机系,数学与应用数学专业,理学学士

 

工作经历

2012.12至今,汕头大学,数学系,教授;

2007.09-2012.11,汕头大学,数学系,副教授;

2006.03-2007.08,汕头大学数学系,讲师.

 

韦才敏,博士,硕士生导师,于2005年11月获大连理工大学理学博士学位,2006.03至今在汕头大学数学系从事数学教学与研究工作。在国内外核心期刊上发表及录用论文40余篇,其中25篇被SCI检索,24篇被EI检索。

 

论文著作:

[1] Fan Z., Lu J.W., Wei C.M., Huang H., Cai X.Y., Chen X.J. A hierarchical image matting model for blood vessel segmentation in fundus images, IEEE Transactions on Image Processing, 2019, 28(5):2367-2377

[2] Fan Z., Fang Y., Li W.J., Cai X.Y., Wei C.M., Goodman E. MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems, Applied Soft Computing Journal, 2019, 74: 621–633

[3] Fan Z., Li W.J., Cai X.Y., Li H., Wei C.M., Zhang Q.F., Deb K., Goodman E. Push and pull search for solving constrained multi-objective optimization problems. Swarm and Evolutionary Computation, 2019, 44: 665-679

[4]刘文倩,韦才敏,卜祥智.混合分数布朗运动下欧氏障碍期权定价.经济数学,2018, 35(4): 16-20.

[5]韦才敏,林先伟,范衠.分数布朗运动下带交易费用和红利的两值期权定价.数学杂志, 2018,38(5):912-920.

[6]韦才敏, 李忠萍, 范衠.不同博弈框架下多竞争零售商的双渠道供应链定价策略研究. 运筹与管理, 2018,27(6): 63-74.

[7]韦才敏,李忠萍,林小苹.延期支付与订购量相关的易腐产品库存决策模型.数学杂志, 2018, 38(2): 325-336.

[8]Wang Z.Y., Wei C.M. *, Sun L.H. Solution algorithms for the number of tardy jobs minimization scheduling with a time-dependent learning effect. International Journal of Production Research,2017, 55(11): 3141-3148.

[9]Chen Y., Lin X.W., Wei C.M., Fan Z. An M/G/1 Queue with second optional service and general randomized vacation policy. Fuzzy Information and Engineering and Decision, 2017, 646: 297-307

[10] Wei C.M.*, Li Z.P. and Zou Z.B. Ordering policies and coordination in a two-echelon supply chain with Nash bargaining fairness concerns. Journal of Management Analytics, 2017, 4(5): 55-79.

[11] Wang Z.Y., Wei C.M.*and Wu Y.B., Single machine two-agent scheduling with deteriorating jobs. Asia-Pacific Journal of Operational Research, 2016, 33(5): 1650034, 17pages.

[12]Wang Z.Y., Wei C.M.* and Lu Y.Y., Permutation flow shop problem with shortening job processing times. Asia-Pacific Journal of Operational Research, 2016, 33(4): 1650032, 14pages. 

[13]韦才敏,李忠萍,范衠,基于广告、技术、奖励的二级供应链效益最大化研究.经济数学,2016, 33(2):68-74.

[14] Wei C.M.*, Cai L., Wang J.J., A discrete-time Geom/G/1 retrial queue with balking customers and second optional service. OPSEARCH,2016, 53(2):344-357. 

[15] Chen Y., Cai L. and Wei C.M.*, A discrete-time Geo/G/1 retrial queue with balking customer, second optional service, bernoulli vacation and general retrial time. Fuzzy Systems & Operations Research and Management, Advances in Intelligent Systems and Computing 2016,367:255-266. 

[16] Fang X.M., Wei C.M.*, The general modulus-based Jacobi iteration method for linear complementarity problems. Filomat, 29(8): 1821–1830. 

[17] Qin Y.Y., Wang J.J. and Wei C.M., Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously. International Journal of Production Economics,2014,152:42-48. 

[18] Wei C.M.*, He L.X. Qin Y.Y. A discrete-time Geo/G/1 retrial queue with preemptive resume, Bernoulli feedback and general retrial times. Fuzzy Engineering and Operations Research: Advance in Intelligent and Soft Computing, 2014,211,539-550.

[19] Shen P.,Wei C.M., Huang X.,Single-machine scheduling problems with an actual time dependent deterioration. Applied Mathematical Modelling, 2013,37(7):5555-5562.

[20] Wei C.M.*, Wang J.B. and Ji P., Single-machine scheduling with time and resource dependent processing times. Applied Mathematical Modelling, 2012, 36: 792-798.

[21] Shen P., Wei C.M., and Wu Y.B., A note on deteriorating jobs and learning effects on a single-machine scheduling with past-sequence-dependent setup times. International Journal of Advanced Manufacturing Technology, 2012, 58:723–725.

[22] Lu Y.Y., Wei C.M.*, and Wang J.B., Several scheduling problems with general learning effects. Applied Mathematical Modelling, 2012, 36:5650-5656.

[23] Wei C.M.*, Zou Z.B., and Qin Y.Y., Discrete time Geom/G/1 queue with second optional service and server breakdowns. Advances in Intelligent and Soft Computing, 2012, 147:557-568.

[29] Wang J.B., Wei C.M., Parallel machines scheduling with a deteriorating maintenance activity and total absolute differences penalties. Applied Mathematics and Computation, 2011, 217: 8093–8099.

[30] Wei C.M.*, Zou Z.B. and Wang J.J., A general decrementing service policy in the Geom/G/1 queueing model with multiple adaptive vacations. ICIC Express Letters, 2011, 5(3): 719-726.

[31]韦才敏*,邹宗保,带有广义随机工作休假的Geom/Geom/1排队系统.山东大学学报(理学版),2011,46(6):1-8.

[32]Wei C.M.*, Wang J.B., Single machine quadratic penalty function scheduling with deteriorating jobs and group technology. Applied Mathematical Modelling, 2010, 34:3642–3647. (SCI, EI)

[33] Zhang Z.J., Wei C.M., White noise solutions to the stochastic MKdV equation. Chaos, Solitons and Fractals. 2009, 40(4):1794-1800. 

[34]Wei C.M.*, Wang J.J., Travelling wave solutions to the generalized stochastic KdV equation. Chaos, Solitons and Fractals, 2008, 37:733–740. 

[35]Wei C.M.*, and Wang J.J., Discrete time queueing modeling Geom[X]/G/1 with multiple adaptive vacations and set-up time. International Journal of Pure and Applied Mathematics, 2007,37(1):1-12.

[36] Wei C.M.*, Xia Z.Q., and Tian N.S., Exact solutions to generalized Wick-type stochastic Kadomtsev-Petviashvili equation. Chaos, Solitons and Fractals, 2006, 29(5):1178-1187.

[37]Wei C.M.*, and Xia Z.Q., Exact solutions for (3+1)-dimensional Wick-type stochastic KP equation. Journal of Applied Mathematics and Computing, 2006,21(1-2):369-377.

[38]Wei C.M.*, Ren Y.H., and Xia Z.Q., Symmetry reductions and soliton-like solutions for stochastic MKdV equation. Chaos, Solitons and Fractals, 2005,26(5):329-336. 

[39]Wei C.M.*, Xia Z.Q., Exact Soliton-like Solutions for Stochastic Combined Burgers-KdV Equation. Chaos, Solitons and Fractals, 2005,26(1):329-336.

[40]Wei C.M.*, Xia Z.Q., and Yu L.Y., Stochastic exact solutions to (2+1)-dimensional stochastic Borer-Kaup equation. Chaos, Solitons and Fractals,2005,26(5):1475-1483.

[41] Wei C.M.*, Xia Z.Q., and Tian N.S., Jacobian Elliptic function expansion solutions of nonlinear stochastic equations. Chaos, Solitons and Fractals, 2005, 26(1): 551-558.

[42] 韦才敏*,夏尊铨,田乃硕,广义随机KdV方程的精确类孤子解.物理学报,2005, 54(6): 2463-2467.

[43] Wei C.M.*, Xia Z.Q. and Tian N.S., The analysis of a continuous time queueing model with single vacation and set-up time. Pure Mathematics and Applications, 2004,14(3): 249-261.

[44] Wei C.M.*, Tian N.S., Xia Z.Q., and Wang X.W., The queue Geom/G/1 with multiple adaptive vacation and setup time. OR Transaction, 2003,7(4):22-30.

[45] 韦才敏*, 田乃硕, 金军, 带有启动时间的多级适应性休假的M/G/1排队.运筹与管理, 2003, 12(1):1-5.

[46] 韦才敏*,田乃硕,王艳,带有启动时间单重休假的Geom/G/1 排队.运筹与管理,2002, 11(5): 5-9.

[47] 田乃硕,徐秀丽,马振友,韦才敏,部分服务台同步多重休假的M/M/c排队.运筹学学报,2001, 5(3):85-94.

 

科研项目

 

1)国防科技创新特区项目:基于生物体演化机理的群体智能聚合与涌现研究---群体聚合形态动态转换机理研究,2018.11 - 2020.12,经费60万, 2/11,参与。

2)广东省自然科学基金项目:粗糙轨道随机微分方程解的长时间动力行为,起讫时间:2017.1 - 2019.12,经费10万,2/3,参与。

3)国家社会科学基金重点项目:,互联网情景下顾客参与价值共创的C2B供应链管理模式研究(16AGL010),2016/07-2020/06,35万元,参与.

4)汕头大学国家基金培育项目(NFC12002):加工时间可控排序问题研究, 2012/09-2014/09, 3万,主持.

5)国家自然科学基金项目: 超市主导的南方新鲜水果供应链协调优化模型及应用研究(71062008);2011/01-2013/12,参与.

6)广东省博士启动基金项目:Wick型随机偏微分方程数值解的研究与应用(7301276),2007/10-2009/09,3万,主持.

 

主要荣誉

1) 2007、2009、2010、2011、2014、2015、2016、2017年度分别获得汕头大学大学生课外学术科技活动优秀指导教师奖,授奖部门:汕头大学.

2) 2008、2016年度分别获得汕头大学优秀党员,授奖部门:中共汕头大学委员会。

3) 2010年获得广东省高校“千百十工程”第六批校级培养对象,授奖单位:广东省教育厅

4) 2011、2017、2018年分别获得广东省大学生数学建模竞赛活动优秀指导教师奖,授奖单位:广东省教育厅与广东省工业与应用数学学会.

版权所有:广东省数字信号与图像处理技术重点实验室 | 学院地址:广东省汕头市大学路243号汕头大学科学楼4楼
copyright © 2023 imagelab.stu.edu.cn all rights reserved.