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Abstract. When tackling imbalanced constrained multi-objective opti-
mization problems (CMOPs) with simultaneous convergence-hard and
diversity-hard constraints, a critical issue is to balance the diver-
sity and convergence of populations. To address this issue, this paper
proposes a hybrid algorithm which combines an improved epsilon
constraint-handling method (IEpsilon) with a multi-objective to multi-
objective (M2M) decomposition approach, namely M2M-IEpsilon. The
M2M decomposition mechanism in M2M-IEpislon has the capability
to deal with imbalanced objectives. The IEpsilon constraint-handling
method can prevent populations falling into large infeasible regions, thus
improves the convergence performance of the proposed algorithm. To
verify the performance of the proposed M2M-IEpsilon, a series of imbal-
anced CMOPs with simultaneous convergence-hard and diversity-hard
constraints, namely ICD-CMOPs, is designed by using the DAS-CMOPs
framework. Six state-of-the-art constrained multi-objective evolution-
ary algorithms (CMOEAs), including CM2M, CM2M2, NSGA-II-CDP,
MOEA/D-CDP, MOEA/D-IEpsilon and PPS-MOEA/D, are employed
to compare with M2M-IEpsilon on the ICD-CMOPs. Through the anal-
ysis of experimental results, the proposed M2M-IEpsilon is superior to
the other six algorithms in solving ICD-CMOPs, which illustrates the
superiority of the proposed M2M-IEpsilon in dealing with ICD-CMOPs
with simultaneous convergence-hard and diversity-hard constraints.
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1 Introduction

Many optimization problems usually have conflicting objectives with a set of con-
straints [6,13,14]. Generally, a constrained multi-objective optimization problem
(CMOP) is described as follows [8]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

minimize F(x) = (f1(x), . . . , fm(x))T

subject to gi(x) ≥ 0, i = 1, . . . , q
hj(x) = 0, j = 1, . . . , p
x ∈ Rn

(1)

where F(x) = (f1(x), . . . , fm(x))T represents an m-dimensional objective func-
tion. x ∈ Rn denotes an n-dimensional decision variable. gi(x) ≥ 0 and hj(x) = 0
represent inequality and equality constraints, respectively. q and p are the num-
ber of inequality and equality constraints, respectively.

For any two feasible solutions xp and xq, we say that xp dominates xq (xp �
xq) when the following two conditions are met:

1. ∀ i ∈ {1,. . . ,m}, fi(xp) ≤ fi(xq)
2. ∃ j ∈ {1,. . . ,m}, fj(xp) < fj(xq)

Some real-world optimization problems may have imbalanced objectives and
a series of constraints. Therefore, CMOPs with imbalanced objective func-
tions deserve to be solved. To handle with the imbalanced CMOPs, we pro-
pose a hybrid CMOEAs, named M2M-IEpsilon, which has adopted two mech-
anisms. Firstly, to enhance the diversity of the population, an M2M decom-
position method [10] is used to handle with imbalanced objectives. Secondly,
an improved epsilon constraint-handling method (IEpsilon) [3] is employed to
improve the convergence performance of the method. In M2M-IEpsilon, these
two mechanisms are combined to solve imbalanced CMOPs [9] with simultane-
ous diversity-hard and convergence-hard constraints. To verify the effectiveness
of the M2M-IEpsilon, a series of imbalanced CMOPs with diversity-hard and
convergence-hard constraints is designed by using DAS-CMOPs framework [5],
which is named as ICD-CMOPs. The contributions of this paper are listed below:

1. The proposed M2M-IEpsilon decomposes a population into many sub-
populations, with each sub-population corresponding to a CMOP, which can
assist to solve imbalanced CMOPs.

2. M2M-IEpsilon can dynamically adjust the relaxation of constraint violation
according to the proportion of feasible solutions in the current population,
which maintains a good balance of searching between the feasible and infea-
sible regions, and has the ability to get across large infeasible regions.

3. A set of CMOPs, namely ICD-CMOPs, is constructed to assess the diversity
and convergence performance of CMOEAs.

The remainder of this paper is organized as follows. Section 2 mainly intro-
duce the M2M decomposition approach and the IEpsilon method. Section 3
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describes the proposed M2M-IEpsilon. Section 4 shows the experimental results
of M2M-IEpsilon and six other CMOEAs, including CM2M [11], CM2M2
[12], NSGA-II-CDP [2], MOEA/D-CDP [7], MOEA/D-IEpsilon [3] and PPS-
MOEA/D [4], on ICD-CMOPs. Section 5 make a summary of this paper.

2 Background

2.1 The Framework of M2M

In M2M [10], the decomposition is carried out in the objective space. Specifically,
J unit vectors v1, . . . , vj in Rm

+ are selected. The Rm
+ is split into J sub-regions

P1, . . . , PJ . A sub-region Pj is defined as follows:

Pj = {u ∈ Rm
+ |〈u, vj〉 ≤ 〈u, vi〉 for any i = 1, ..., J} (2)

where 〈u, vi〉 is the acute angle between the objective vector u and the ith direc-
tion vector vi. To search for optimal solutions in each sub-region, the population
of M2M is separated into J sub-populations. The Eq. (3) shows the definition of a
subproblem j. In addition, each sub-population adopts two rules in the Ref. [10]
to select solutions.

⎧
⎪⎨

⎪⎩

minimize F(x) = (f1(x), ..., fm(x))
subject to x ∈ ∏n

i=1[ai, bi]
F (x) ∈ Pj

(3)

Figure 1 shows a decomposition example by using M2M. The objective space
Rm

+ is separated into five sub-regions P1, . . . , P5. Each sub-region has S individ-
uals, and v1,. . . , v5 are five evenly distributed direction vectors.

Fig. 1. The population decomposition approach by using M2M.
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2.2 The Improved Epsilon Constraint-Handling Method

In paper [3], an improved ε constraint-handling method is proposed, namely
IEpsilon, which can dynamically adjust the relaxation of constraint violations
based on the ratio of feasible solutions in each generation of the population. The
detail description of the setting of ε(k) can be found in Ref. [3].

ε(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rule 1: φ(xθ), if k = 0
rule 2: (1 − τ)ε(k − 1), if rk < α and k < Tc

rule 3: (1 + τ)φmax, if rk ≥ α and k < Tc

rule 4: 0, if k ≥ 0

(4)

3 Embedding IEpsilon in M2M

In the M2M framework, the IEpsilon is embedded to solve constraints. The
description of M2M-IEpsilon is presented in Algorithm 1. In line 2, the work-
ing population is decomposed into J sub-populations which are associated with
evenly distributed direction vectors v1, . . . , vj , and each sub-population contains
S individuals. Line 3 introduces several parameters in M2M-IEpsilon, including
ε(0), rk, and φmax. Lines 5–14 show the process of generate new offspring by
using genetic operators. In lines 15–17, ε(k) is set according to Eq. (4). Lines 18–
31 describe the updating process of each sup-population. Specially, if the number
of solutions in sup-population Pj is fewer than S, then randomly select |S − Pj |
solutions add to Pj . In lines 24–30, if the number of solutions in sup-population
Pj is more than S, we apply two strategies to select S solutions. If the number
of solutions whose constraint violations are smaller than ε(k), denoted as Pjfea ,
is equal to or greater than S, we select S solutions from Pjfea by using NSGA-II
[2]. Otherwise, we first select all the solutions in Pjfea to the next generation.
Then, we sort all solutions in Pjinf according to their constraint violations in an
ascending way, and select the first S − |Pjfea | solutions to the next generation.

4 The Analysis of Experimental Study

4.1 Parameter Settings of Seven CMOEAs

The six state-of-the-art CMOEAs, including CM2M [11], CM2M2 [12], NSGA-
II-CDP [2], MOEA/D-CDP [7], MOEA/D-IEpsilon [3], PPS-MOEA/D [4], and
the proposed M2M-IEpsilon, are carried out on ICD-CMOP1-7. The detailed
parameter settings are presented as follows:

1. Population size: N = 300.
2. Mutation and crossover probability: Pm = 1/n, CR = 1.0.
3. Termination condition: all algorithm independently runs for 30 times on ICD-

CMOP1-7, then stop when reach 300,000 function evaluations.
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Algorithm 1: The Framework of the Proposed Algorithm (M2M-IEpsilon)
Input:

J : the number of the subproblems;
J unit direction vectors: v1,...,vJ ;
S: the number of sub-population;
Q: a group of individual solutions;
Tmax: the maximum generation;
Tc: the control generation for ε(k);
α: the maximum overall constraint violation;
parameters τ and θ in Eq.(4)

Output: a set of feasible non-dominated solutions.
1 Initialization:
2 Decompose the working population into J sub-populations (P1, ..., PJ), each of

them consists of S individuals by using Eq.(3)
3 Initialize ε(0), rk and φmax according to Eq.(4)
4 while gen ≤ Tmax do
5 for j ← 1 to J do
6 foreach x ∈ Pj do
7 y be selected from Pj ;
8 A new solutions z be generated by applying genetic operators on x

and y;
9 Compute F (z);

10 R := R ∪ {z};

11 end

12 Q := R ∪ (∪J
j=1Pj);

13 Use Q to set P1, ..., PJ according to Eq. (2);

14 end
15 if k > 0 then
16 ε(k) =UpdateEpsilon(τ ,rk,α,φmax,Tc,k)
17 end
18 for j ← 1 to J do
19 Pjfea = {y ∈ Pj |φ(y) < ε(k)};
20 Pjinf = {y ∈ Pj |φ(y) ≥ ε(k)};
21 if |Pj | ≤ S then
22 randomly select |S − Pj | solutions add to Pj ;
23 end
24 if |Pj | > S then
25 if |Pjfea | ≥ S then
26 select S solutions from Pjfea by using NSGA-II [2].
27 else if |Pjfea | < S then
28 sort each solution in Pjinf according to their constraint

violations in a ascend way, and select the first S − |Pjfea |
solutions and all the solutions in Pjfea to the next generation.

29 end

30 end

31 end
32 gen = gen + 1;

33 end
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4. Parameter setting in CM2M2: the number of infeasible weights N1 = 90, the
number of feasible weights N2 = 210.

5. For the bi-objective CMOPs, J is set as 10 in M2M-IEpsilon, CM2M, and
CM2M2. For the tri-objective CMOPs, J is set as 15 in M2M-IEpsilon,
CM2M, and CM2M2. Where J is the number of sub-problems.

6. Parameter settings of IEpsilon method in M2M-IEpsilon and MOEA/D-
IEpsilon: θ = 0.05N , α = 0.95, Tc = 800, and τ = 0.1.

7. Parameter settings of PPS-MOEA/D could be found in Ref. [4].
8. Parameter settings of MOEA/D-CDP: T is set to 30, nr is set to 2.

Two commonly performance metrics, including the inverted generation dis-
tance metric (IGD) [1] and the hypervolume metric (HV) [15], are employed. A
set of imbalanced CMOPs with both diversity-hard and convergence-hard con-
straints are designed by using the DAS-CMOPs framework [5], which are named
as ICD-CMOPs. The constraint functions are designed with convergence-hard
and diversity-hard properties, which are generated from DAS-CMOPs [5]. The
detail definition of the ICD-CMOPs can be found in the following link: https://
github.com/lwjhhxx/Imbalanced-CMOPs.

Table 1. The IGD results of the seven CMOEAs on ICD-CMOP1−7.

Test instance M2M-

IEpsilon

CM2M CM2M2 NSGA-II MOEA/D PPS IEpsilon

ICD-CMOP1mean 1.86E−02 8.50E−02† 1.49E−01† 3.23E−01† 3.12E−01† 2.97E−01† 2.62E−01†
std 3.43E−03 3.06E−02 3.27E−02 1.29E−02 4.87E−02 6.52E−02 7.20E−02

ICD-CMOP2mean 1.21E−01 2.26E−01† 1.47E−01 3.09E−01† 2.73E−01† 2.65E−01† 2.66E−01 †
std 8.59E−02 6.09E−02 6.21E−02 2.56E−02 7.50E−03 5.66E−03 1.60E−02

ICD-CMOP3mean 2.04E−01 3.22E−01† 3.98E−01† 8.54E−01† 4.85E−01† 6.37E−01† 4.44E−01†
std 8.40E−02 8.05E−02 6.47E−02 8.12E−02 9.17E−02 1.85E−01 9.82E−02

ICD-CMOP4mean 2.16E−02 2.14E−01† 8.50E−02† 3.33E−01† 2.86E−01† 2.86E−01† 2.86E−01†
std 5.18E−02 7.35E−02 6.05E−02 2.39E−02 1.50E−02 1.22E−02 4.31E−02

ICD-CMOP5mean 4.99E−02 1.27E−01† 1.71E−01† 2.93E−01† 3.24E−01† 3.09E−01† 2.84E−01 †
std 2.05E−02 2.97E−02 2.31E−02 4.75E−02 4.25E−03 1.44E−02 4.16E−02

ICD-CMOP6mean 3.92E−01 4.11E−01 3.15E−01† 8.05E−01† 7.18E−01† 3.52E−01 7.26E−01†
std 1.19E−01 1.18E−01 1.02E−02 9.64E−03 1.55E−02 4.74E−02 2.65E−02

ICD-CMOP7mean 4.92E−01 5.44E−01† 5.35E−01† 7.47E−01† 7.19E−01† 4.00E−01† 7.24E−01 †
std 2.78E−02 4.89E−02 2.52E−02 6.90E−03 9.53E−02 5.56E−02 6.62E−03

Wilcoxon-Test(S-D-I)− 6−1−0 6−1−0 7−0−0 7−0−0 6−1−0 7−0−0

The IGD results of ICD-CMOP1-7 obtained by M2M-IEpsilon, CM2M,
CM2M2, NSGA-II-CDP, MOEA/D-CDP, MOEA/D-IEpsilon and PPS-
MOEA/D are presented in Table 1. The Wilcoxon-Test indicates that the
proposed M2M-IEsiplon is significantly better than NSGA-II-CDP, MOEA/D-
IEpsilon, and MOEA/D-CDP on ICD-CMOP1-7 test instances. For ICD-
CMOP6, M2M-IEpsilon has similar performance with CM2M and PPS-
MOEA/D. However, for ICD-CMOP1-5 and ICD-CMOP7, M2M-IEpsilon out-
performs CM2M and PPS-MOEA/D significantly. M2M-IEpsilon is significantly
better than CM2M2 on ICD-CMOPs except ICD-CMOP2.

https://github.com/lwjhhxx/Imbalanced-CMOPs
https://github.com/lwjhhxx/Imbalanced-CMOPs


254 Z. Fan et al.

Table 2. The HV results of the seven CMOEAs on ICD-CMOP1-7.

Test instance M2M-IEpsilon CM2M CM2M2 NSGA-II MOEA/D PPS IEpsilon

ICD-CMOP1 mean 9.92E−01 9.14E−01† 8.56E−01† 5.21E−01† 5.51E−01† 5.64E−01† 6.21E−01†
std 4.34E−03 3.88E−02 1.97E−02 2.46E−02 8.77E−02 1.15E−01 1.33E−01

ICD-CMOP2 mean 4.98E−01 4.37E−01† 4.31E−01† 2.60E−01† 3.77E−01† 3.84E−01† 3.66E−01†
std 5.06E−02 3.03E−02 3.35E−02 5.46E−02 1.93E−02 1.24E−02 4.24E−02

ICD-CMOP3 mean 3.66E−01 2.84E−01† 2.55E−01† 2.39E−01† 2.46E−01† 2.54E−01† 2.39E−01†
std 7.72E−02 6.31E−02 2.83E−02 8.47E−17 2.59E−02 4.05E−02 8.47E−17

ICD-CMOP4 mean 8.15E−01 5.84E−01† 7.24E−01† 4.13E−01† 5.11E−01† 5.04E−01† 4.78E−01†
std 7.00E−02 6.77E−02 8.05E−02 3.13E−02 1.68E−02 1.04E−02 5.83E-02

ICD-CMOP5 mean 9.47E−01 8.22E−01† 8.06E−01† 6.14E−01† 5.80E−01† 5.88E−01† 6.06E−01†
std 2.35E−02 4.12E−02 1.97E−02 5.99E−02 0.00E+00 7.50E−03 5.75E−02

ICD-CMOP6 mean 1.90E−01 1.73E−01† 2.06E−01 7.09E−03† 8.99E−03† 4.55E−01 1.12E-02†
std 6.17E−02 5.81E−02 9.26E−03 7.50E−04 3.96E−03 3.63E−02 1.12E−02

ICD-CMOP7 mean 3.22E−01 2.59E−01† 2.39E−01† 1.41E−01† 1.84E−01† 5.61E−01 1.75E−01†
std 3.33E−02 3.57E−02 2.84E−02 7.00E−03 8.91E−03 3.24E−02 7.55E−03

Wilcoxon-Test(S-D-I) − 7−0−0 6−1−0 7−0−0 7−0−0 5−2−0 7−0−0

Table 2 shows the HV results of ICD-CMOP1-7 obtained by the seven
CMOEAs. For ICD-CMOP1-5, M2M-IEpsilon is significantly better than the rest
of CMOEAs. For ICD-CMOP6, M2M-IEsiplon significantly outperforms CM2M,
NSGA-II-CDP, MOEA/D-IEpsilon and MOEA/D-CDP, and has no significant
difference with CM2M2 and PPS-MOEA/D. For ICD-CMOP7, M2M-IEsiplon
significantly outperforms CM2M, CM2M2, NSGA-II-CDP, MOEA/D-IEpsilon
and MOEA/D-CDP. The above analysis and observations reveal that the pro-
posed algorithm M2M-IEpsilon significantly better than the rest of CMOEAs on
most of the ICD-CMOPs.

To further discuss the advantages of the proposed M2M-IEsiplon in solving
ICD-CMOPs, non-dominated solutions with the median HV values achieved by
seven algorithms on ICD-CMOP2 plotted in Fig. 2, the proposed M2M-IEpsilon
is able to find the whole true PFs while other six CMOEAs can only converge
to a part of the true PFs. There are two possible reasons for this. The first one
is that the objective functions of ICD-CMOP2 are imbalanced, and only the
M2M decomposition method can effectively deal with CMOPs with the imbal-
anced objective functions. Another reason is that ICD-CMOP2 has diversity-
hard and convergence-hard constraints, which makes CM2M and CM2M2 diffi-
cult to converge to the whole true PFs, because CM2M and CM2M2 have no
specific mechanisms for dealing with constraints to solve CMOPs with simulta-
neous diversity-hard and convergence-hard constraints. However, the proposed
M2M-IEpsilon converge to disconnected PFs, which enables it to have the best
performance on the ICD-CMOPs.
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Fig. 2. The non-dominated solutions got by seven CMOEAs on ICD-CMOP2.

5 Conclusion

A hybrid CMOEA is proposed in the paper, namely M2M-IEpsilon, which com-
bines the improved epsilon constraint-handling approach and M2M decomposi-
tion method to solve imbalanced CMOPs with simultaneous convergence-hard
and diversity-hard constraints. A series of problems, namely ICD-CMOPs, is sug-
gested to evaluate the performance of M2M-IEpsilon by using the DAS-CMOPs
framework. The ICD-CMOPs consist of imbalanced CMOPs with diversity-hard
and convergence-hard constraints. Since M2M-IEpsilon adopts the M2M decom-
position method, it is able to solve CMOPs with imbalanced objective func-
tions. The IEpsilon constraint-handling mechanism embedded in M2M-IEpsilon
can help the population of M2M-IEpsilon to get across infeasible regions and to
improve the diversity performance. To verify this, seven CMOEAs are tested on
the ICD-CMOPs. Through the analysis of experimental results, the superiority
of the proposed M2M-IEpsilon in dealing with ICD-CMOPs with simultaneous
convergence-hard and diversity-hard constraints. In the future, a scheduled work
is to combine machine learning techniques with M2M-IEpsilon to solve CMOPs
with expensive objective and constraint functions.
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