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8 Abstract—A novel cyber-physical-social system (CPSS) with parallel learning is presented for distributed energy 

9 management (DEM) of a microgrid. CPSS is developed by extending the conventional cyber-physical system to the social 

10 space with human participation and interaction. Each energy supplier or each energy demander is regarded as a human 

11 in the social space, who is able to learn the knowledge, co-operate with others, and make a decision with various 

12 preference behaviors. The correlated equilibrium (CE) based general-sum game is employed for realizing the human 

13 interaction on the complex optimization subtask, while the novel adaptive consensus algorithm is used for achieving that 

14 on the simple optimization subtask with multi-energy balance constraints. A real-world system and multiple virtual 

15 artificial systems are introduced for parallel and interactive execution based on the small world network, thus a higher 

16 quality optimum of DEM can be rapidly emerged with a high probability. Case studies of a microgrid with 11 energy 

17 suppliers and 7 energy demanders demonstrate that the proposed technique can effectively achieve the human-computer 

18 collaboration and rapidly obtain a higher quality optimum of DEM compared with other centralized heuristic 

19 algorithms.
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Nomenclature
alin, blin coefficients of linear demand versus price 

Variables expression
Pdg electricity energy output of conventional DER Ndg number of DG
Hh heat energy output of heat-only unit Nh number of heat-only units
Pchp electricity energy output of CHP unit Nchp number of CHP units
Hchp heat energy output of CHP unit Ndr number of energy demanders
Ptie tie-line power Nwt number of WT
ΔD responding power Npv number of PV units
aj action of the jth agent ƞ maximum allowable power curtailment
Qj

k the knowledge matrix of the jth agent portion
πj probability distributions of state-action pairs α knowledge learning factor
Rj feedback reward of the jth agent γ discount factor
λp incremental cost of the pth agent ε exploitation rate
xj

k solution of the jth agent at the kth iteation μ adjustment factor of energy mismatch
xp

c energy consensus value of the pth agent C1, C2 feedback reward coefficients
xik current solution of the ith VAS kmax maximal iteration number
xb

rk current best solution of the real-world system

piw interaction probability between the ith VAS and Abbreviation
s  

the wth VAR CE correlated equilibrium

hi current best VAS in the ith VAR’s interactive 
network CPS cyber-physical system

fcost total operating cost CPSS cyber-physical-social system
v current wind speed DERs distributed energy resources
S current irradiance EMS energy management system
T ambient temperature DEM distributed energy management

RL reinforcement learning
Parameters DG diesel generator
vr rated wind speed VASs virtual artificial systems
vin, vout cut-in and cut-out wind speeds WT wind turbine

  αpv temperature coefficient PV photovoltaic
αdg, βdg, γdg fuel cost coefficients of conventional DER CHP combined heat and power
αh, βh, γh operating cost coefficients of heat-only unit GA genetic algorithm
αchp, βchp, γchpoperating cost coefficients of CHP unit PSO particle swarm optimization
δchp, θchp, ξchpoperating cost coefficients of CHP unit ABC artificial bee colony
Cbuy, Csell electricity buying price and selling price GSO group search optimizer

25 1. Introduction

26 With the fast increasing renewable energy, the energy internet [1] which aims to realize the coordination among various 

27 generations, storage devices, and loads in a wide area by the internet technology, has gained extensive studies in recent years 

28 [2]. At present, energy internet is essentially a tight integration between cyber and physical resources, i.e., an application of 

29 cyber-physical system (CPS) on integrated energy systems [3]. Although CPS [4] can offer many potential benefits to the energy 

30 internet, including faster response, higher control precision, larger scale distributed coordination, and so on, but it almost ignores 

31 the human participation and interaction. In fact, the energy internet is highly coupled with the human and social characteristics 

32 [5], thus CPS may not satisfy different optimal operations of integrated energy systems in some cases, e.g., the demand response 

33 management without considering the social characteristics of different consumers. As a result, the cyber-physical-social system 

34 (CPSS) [6] was developed by logically extending CPS to the social space with human participation and interaction. As a 

35 promising system architecture of industry, CPSS is well available as a core part of future intelligent energy systems [7], 
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36 rightfully including the multi-energy microgrid.

37 Microgrid is usually a small-scale multi-energy system with a low-voltage distribution network [8], which can effectively 

38 integrate various distributed energy resources (DERs), storage devices, and controllable loads in the grid-connected or islanded 

39 mode. In general, energy management of a microgrid seeks to minimize the total operating cost via an optimal dispatch strategy 

40 of energy balance among DERs, storage devices, tie-line power from the main grid, and controllable loads under various 

41 constraints [9]. In order to address this problem, the centralized optimization is the most commonly used type of methods, e.g., 

42 mixed integer linear programming [10] and gravitational search algorithm [11], which often produce a satisfactory result with a 

43 low total operating cost. However, it easily leads to a communication bottleneck in a microgrid with a larger number of 

44 controllable devices since the centralized energy management systems (EMS) needs to collect and process all the corresponding 

45 information from each one, which also cannot ensure the security and privacy of each owner [12]. In terms of the optimization 

46 performance, the centralized optimizer is apt to trap in a relatively high computation burden or a low-quality optimum with the 

47 great increasing controllable devices. Furthermore, it cannot satisfy the requirement of high operation reliability because the 

48 operation of an entire microgrid completely depends on the only centralized optimizer. 

49 For the sake of handling these issues, the distributed control architecture is more suitable for the practical energy 

50 management [13], thus various distributed optimization algorithms have been proposed for distributed energy management 

51 (DEM) of a microgrid. The consensus algorithms have been deeply researched for DEM due to its remarkable self-organizing 

52 ability, significant robustness, and easy scalability [14]-[16], in which the performance influence by the time delays in 

53 communication network is strictly investigated in [17]. Besides, the sub-gradient based distributed optimization was also 

54 successfully designed for minimizing the total operating cost of a microgrid [18],[19]. In order to effectively realize the complex 

55 interaction among independent agents [20], the game theory, e.g., Stackelberg game [21] and bargaining game [22], were 

56 introduced to combine different optimization techniques for DEM. Unfortunately, all of these algorithms mainly suffer from the 

57 following four problems:

58 High dependence on the mathematical model: The core optimizers are essentially the gradient-based algorithms, the 

59 performance of which are fully determined by the initial solution of DEM. Therefore, it easily leads to a low quality local-

60 optimum if nonlinearities, nonconvexity, discontinuous and nondifferentiable objective functions (e.g., purchase energy cost or 

61 sell energy benefit according to direction of tie-line power), and complex constraints (e.g., the heat-power feasible operation 

62 region of combined heat and power (CHP) units [23]) exist.

63 Incapability of knowledge learning and single decision strategy: Each game agent is constructed with only a single 

64 decision strategy and is incapable of knowledge learning, which is not consistent with the intelligent human in real-world 

65 system.
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66 Invalid multi-energy interactions with consensus algorithm: The consensus based human interaction is only suitable for 

67 only single energy interaction among the local energy supplier and demander, which cannot satisfy the multi-energy interaction 

68 with multiple energy balance constraints.

69 Inefficient optimization with a single execution system: The traditional game theory based human interaction usually seeks 

70 an optimal equilibrium with a single execution system, which easily results in a long computation time as the iterations may 

71 involve repeated games.

72 In order to simultaneously address these problems, this paper proposes a CPSS with parallel learning for DEM of a 

73 microgrid, which has the following features and novelties:

74  CPSS is firstly introduced to DEM of a microgrid, which fully considers the human (energy supplier or energy demander) 

75 participation and interaction, thus the obtained dispatch strategy is more practical for an optimal operation.

76  The model-free Q-learning can effectively enable each agent to flexibly handle the nonconvex nonlinear DEM with 

77 complex constraints and nondifferentiable objective functions, while each agent can learn the knowledge from the 

78 continuous interactions with the environment. Instead of a single decision strategy, the correlated equilibrium (CE) based 

79 general-sum game [24] with multiple decision strategies is used for increasing the decision diversity of each human.

80  By improving the original consensus algorithm, the adaptive consensus algorithm is proposed for effectively achieving the 

81 multi-energy interactions with multiple energy balance constraints, thus they can reach a consensus (optimum) on the 

82 incremental cost.

83  Multiple virtual artificial systems (VASs) are built to guide the real-world system for DEM with a single execution system, 

84 thus the game interaction efficiency of the real-world system can be dramatically improved without any adverse trials 

85 according to the guidance by all the VASs. Besides, the small world network is adopted for constructing the interaction 

86 network among different VASs, which can properly balance the exploitation and exploration of VASs.

87 The remaining of this paper is organized as follows. Section 2 presents the mathematical model of DEM of a microgrid. 

88 Section 3 gives the design of CPSS with parallel learning for DEM. Case studies are carried out in Section 4. Finally, Section 5 

89 concludes the paper.

90 2. Mathematical model of DEM of a microgrid

91 Traditionally, a microgrid adopts the centralized energy management for an optimal operation under different scenarios. It 

92 aims to determine the optimal dispatch scheme for all the energy suppliers or demanders via a centralized optimizer. In contrast, 

93 The proposed DEM allows each energy supplier or demander to calculate its own optimal energy output or demand via a 

94 coordination with interactive agents. Moreover, the primary task of DEM is to achieve the energy balance between the supply 
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95 and demand, as shown in Fig. 1. In general, the supply side can consist of various energy suppliers, including wind turbine 

96 (WT), photovoltaic (PV) unit, CHP unit, diesel generator (DG), and so on. On the other hand, the demand side usually contains 

97 three types of energy demanders, i.e., residential building, factory, and commercial building. 

98 2.1. Energy suppliers

99 (i) Renewable energy resources: for improving the generation power outputs of renewable energy resources, both WT and 

100 PV unit are operated at the maximum power points under different weather conditions, which can be expressed as follows 

101 [25],[26]:

102                               (1)

in out

r in
wt wt in r

r in
r

wt r out

0,                 for  and 
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,              for 
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103                                     (2)  r
pv pv pv ref

ref

1 SP P T T
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104 where Pwt and Ppv are the current maximum power points of WT and PV unit, respectively;  and  are the rated power of r
wtP r

pvP

105 WT and PV unit, respectively; vr is the rated wind speed; v is the current wind speed; vin and vout are the cut-in and cut-out wind 

106 speeds, respectively; S is the current irradiance; Sref is the reference irradiance; T is the ambient temperature; Tref is the reference 

107 temperature; and αpv is the temperature coefficient.

108 (ii) Conventional DER: this type of suppliers is essentially a dispatchable synchronous generator, e.g., diesel or natural gas 

109 generators, which can easily regulate its electricity energy output. In general, the fuel cost of the conventional DER can be 

110 expressed via a typical quadratic function, as follows [27]:

111                                     (3)  2
dg dg dg dg dg dg dgf P P P    

112 where Pdg is the electricity energy output of conventional DER; αdg, βdg, and γdg are the fuel cost coefficients of conventional 

113 DER.

114 (iii) Heat-only unit: such as gas furnace or heater exchanger, it can only provide the heat energy for local demanders in a 

115 microgrid. Similarly, its operating cost can be constructed as a quadratic function, as follows [27]:

116                                     (4)  2
h h h h h h hf H H H    

117 where Hh is the heat energy output of heat-only unit; αh, βh, and γh are the operating cost coefficients of heat-only unit.

118 (iv) CHP unit: as a co-generation unit, it can significantly increase the thermal efficiency and reduce the environment 

119 emissions [28] by reusing the heat, thus both the electricity and heat energy can be simultaneously generated, where the total 

120 operating cost can be calculated as follows [29]:
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121                  (5)  2 2
chp chp chp chp chp chp chp chp chp chp chp chp chp chp chp,f P H P P H H H P          

122 where Pchp is the electricity energy output of CHP unit; Hchp is the heat energy output of CHP unit; αchp, βchp, γchp, δchp, θchp, and 

123 ξchp are the operating cost coefficients of CHP unit.

124 (v) Main grid: when the microgrid is operated in the grid-connected mode, the main grid can be regarded as an electricity 

125 energy supplier if the total electricity energy output of all the DERs is insufficient to balance the total electricity energy demand 

126 of all the loads in the microgrid, otherwise it will become an electricity energy demander. Hence, the operating cost from the 

127 main grid can be determine by the direction of tie-line power and the current electricity price, as follows:

128                                         (6)  buy tie tie
mg tie

sell tie

,  if 0
,  otherwise

C P P
f P

C P
 



129 where Cbuy and Csell are the electricity buying price and selling price, respectively; and Ptie is the tie-line power, while a negative 

130 Ptie will result in a negative operating cost, i.e., the electricity selling profit from the microgrid to the main grid.

131 2.2. Energy demanders

132 In order to reduce the peak-valley difference of total power load for an electric power system, the electricity company 

133 generally employs a time-of-use pricing strategy to allow the demanders to automatically adjust their electric power 

134 consumptions. In general, this process is well known as demand response (DR). Based on the linear demand versus price 

135 expression [30], the cost function of each energy demander can be calculated according to the responding power (power 

136 curtailment) and his or her sensitiveness of power loads, as follows:

137                                      (7) 
lin

2 0
dr lin lin

1 D a
f D D D

b b


    

138 where ΔD is the responding power; D0 is the current initial electric power; alin and blin are the coefficients of linear demand 

139 versus price expression.

140 2.3. Social welfare and constraints

141 In this paper, DEM aims to maximize the social welfare (i.e., minimize the total operating cost) of the microgrid while 

142 satisfying all the constraints, including energy balance constraint, capacity limits of all energy sources, feasible operating region 

143 constraints of CHP units, and minimum demand constraint of each energy demander for the must-run loads. Hence, the 

144 mathematical model of DEM of a microgrid can be described as follows [19]:

145                 (8)         
dg chp drh

cost dg dg h h chp chp chp dr mg tie
1 1 1 1

min ,
N N NN

i i j j k k k m m

i j k m
f f P f H f P H f D f P
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147                               (9)
dg chp pvwt dr

dg chp wt pv tie
1 1 1 1 1

0
N N NN N

i k l d m

i k l d m
P P P P P D

    

          

148                                         (10)
chph

h chp demand
1 1

0
NN

j k

j k
H H H

 

   

149                                      (11),min ,max
dg dg dg dg,   1, 2,...,i i iP P P i N  

150                                      (12),min ,max
h h h h,   1, 2,...,j j jH H H j N  

151                                (13)   ,min ,max
chp chp chp chp chp chp,   1, 2,...,k k k k kP H P P H k N  

152                                (14)   ,min ,max
chp chp chp chp chp chp,   1, 2,...,k k k k kH P H H P k N  

153                                                 (15)min max
tie tie tieP P P 

154                                         (16)0 dr0 ,   1, 2,...,m mD D m N   

155 where the superscripts i, j, k, m, l, and d represent the ith DG, the jth heat-only unit, the kth CHP unit, the mth energy demander, 

156 the lth WT, and the dth PV unit, respectively; the superscripts min and max represent the lower and upper limits, respectively; 

157 Ndg is the number of DG; Nh is the number of heat-only units; Nchp is the number of CHP units; Ndr is the number of energy 

158 demanders; Nwt is the number of WT; Npv is the number of PV units; and ƞ denotes the maximum allowable power curtailment 

159 portion of the current initial electric power, which can ensure the normal operation of must-run loads for the energy demanders.

160 Since both WT and PV units are operated at the maximum power points under different weather conditions [31], their 

161 maintenance costs are fixed for each optimization task. Hence, the operating costs of WT and PV unit are not considered in the 

162 total operating cost fcost due to their inherent zero fuel consumption. Moreover, the feasible operating region constraints of CHP 

163 units (13) and (14) indicate that the electricity energy output and heat energy output are tightly coupled. In general, the shape of 

164 the feasible operating region is mainly determined by the struct of CHP units, e.g., the primary mover. It usually consists of two 

165 types, including one segment shape and two segment shape [32], as illustrated in Fig. 2. In fact, both of them belong to convex 

166 and nonconvex feasible operating regions, respectively. For example, the back-pressure CHP unit with condensing and auxiliary 

167 cooling options, gas turbines, and combined gas and steam cycles can result in the nonconvex feasible operating region [33]. It 

168 can be observed from Fig. 2 that the energy outputs of CHP units should be enclosed by the boundary curves ABCD or 

169 ABCDEF [23], where both the lower and upper limits of electricity energy output are determined by different heat energy 

170 outputs and vice versa. In order to reduce the optimization difficulty, DEM of a microgrid is decomposed into two optimization 

171 subtasks. The first one is responsible for optimizing the tie-line power and the heat energy outputs of CHP units, which is 

172 relatively complex with a nondifferentiable operating cost from the main grid (6) and the feasible operating region constraints. 

173 Based on the decision results of the first optimization subtasks, the second one with the rest of operating cost and constraints is 
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174 essentially a convex optimization and relatively easy to be addressed.

175 3. CPSS with parallel learning for DEM

176 3.1. CPSS framework for DEM of a microgrid 

177 As illustrated in Fig. 3, CPSS is a complex system with three dimensions, including physical space, cyberspace, and social 

178 space, and all of them are tightly connected via the cyberspace [6]. For DEM of a microgrid, the main task of CPSS is to 

179 maximize the social welfare and to react to the physical space. Compared with CPS, the major improvement part of CPSS is the 

180 social space with human beings, such as human behaviors and human interactions. For each optimization task, each energy 

181 supplier or energy demander firstly acquires current operating parameters of the corresponding distributed device from the 

182 physical space, then each of them will autonomously make a dispatch decision through the interaction with others in social space 

183 based on the communication and computation in cyberspace with parallel learning, finally the optimal dispatch strategy will be 

184 issued to each distributed device for optimal control in the physical space. 

185 For effectively searching a high quality dispatch strategy, a CE based general-sum game with model-free Q-learning [24] is 

186 used for achieving the human interaction on the complex optimization subtask, while the novel adaptive consensus algorithm is 

187 implemented for human interaction on the simple optimization subtask.

188 3.2. Parallel learning with multiple parallel systems

189 According to the real-world system, multiple parallel VASs [34] are constructed for different evolutions of DEM in a 

190 microgrid. In this paper, the real-world system mainly provides the optimization model (8)-(16), the current best solution, and 

191 the energy management knowledge of each agent to multiple VASs, then each VAS can generate an optimal dispatch strategy 

192 via the human interactions and risk-free trial-and-error, while the energy management knowledge of each agent will be updated. 

193 Consequently, the parallel n-VASs will vote for n optimal dispatch strategies and provide their energy management knowledge 

194 to the real-world system, while each VAS will improve its dispatch strategy and energy management knowledge through 

195 learning from its interactive VASs based on small world network, as shown in Fig. 4.

196 3.2.1 CE based human interaction on complex optimization subtask 

197 (i) CE based general-sum game

198 For a general-sum game, a CE is more general than a Nash equilibrium as the set of Nash equilibria is wholly included in the 

199 set of correlated equilibria [24]. Generally speaking, a CE is a probability distribution of joint actions from which no agent is 

200 motivated to deviate unilaterally, which can be combined with Q-learning, as follows:
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201                (17)
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202 where πj is the probability distributions of state-action pairs of the jth agent, which can be called a CE when it satisfies the 

203 inequality constraint (17); Qj
k is the knowledge matrix of the jth agent at the kth iteration, which represent the knowledge values 

204 of station action pairs; sk is the state of the multi-agent system at the kth iteration; =[a1, …, aj, …, aJ] is the joint action of all a

205 the agents; aj is the action of the jth agent; J is the number of agents;  is the joint action of all the agents except the jth agent; 


ja

206 A(sk) is the agents’ set of available joint actions in state sk; Aj is the ith agent’s set of pure actions; and aj
o is the jth agent’s any 

207 other action except aj.

208 (ii) Knowledge learning 

209 According to the state-action-reward-state data via continuous interactions with the environment, each agent can update its 

210 own knowledge of different state-action pairs with the feedback rewards by reinforcement learning. In this paper, Q-learning is 

211 used for achieving this learning process, thus the knowledge can be stored by the Q-value matrix, as follows [35]:

212                               (18)      
1

1 1 1, ,


  
  

 
k

k
j k j k j ka s

V s s a s a
A

Q

213                     (19)           1
1, , 1 , ,  

      
   k k k

j k j k j k j k j ks a s a R s a V s s aQ Q Q

214 where Vj(sk+1) denotes the state value-function of the jth agent for state sk+1; α is the knowledge learning factor; γ is the discount 

215 factor; and  is the feedback reward after implementing a joint action  at the state sk. , 
j kR s a a

216 (iii) Decision strategies 

217 In the complex optimization subtask, the strategy decision of each agent is divided into two processes. Firstly, each agent 

218 choose a pure action strategy (i.e., interval of optimization) according to its preference behavior, then an accurate solution can be 

219 determined by the non-uniform mutation operator based on the local optimum of the corresponding interval. In this paper, four 

220 human decision strategies are introduced to each agent for selecting a pure action, as [24]

221  Utilitarian behavior: maximize the sum of all agents’ benefits, as follows:

222                              (20)      b
1,2,...,

max , ,




   
 

k

k
j j k j ka s

j J
f s a s a 

A
Q

223  Egalitarian behavior: maximize the minimum of all agents’ benefits, as follows:

224                              (21)      b 1,2,...,
max min , ,


  

 
k

k
j j k j ka sj J

f s a s a 
A

Q

225  Plutocratic behavior: maximize the maximum of all agents’ benefits, as follows:

226                              (22)      b 1,2,...,
max max , ,


  

 
k

k
j j k j ka sj J

f s a s a 
A

Q
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227  Dictatorial behavior: maximize the maximum of any individual agent’s benefits, as follows:

228                                   (23)      bmax , ,


  
 

k

k
j j k j ka s

f s a s a 
A

Q

229 where fb is the behavior function, in which the maximum and the corresponding optimal CE can be calculated by linear 

230 programming with the inequality constraints (17) and the following constraints, as

231                                    (24)    , 1,  0 , 1


   
 

k
j k j ka s

s a s a 
A

232 After acquiring the optimal CE πj
*, a pure action of each agent and an accurate dispatch strategy can be determined. Aiming 

233 at a proper trade-off between exploration and exploitation, the ε-Greedy rule [36] is used for interval selection, as

234                               (25)
   0

rand

arg max , , ,   if     

,                            otherwise


  


j j
j k j ja

j

s a a q
a

a
A



235                       (26)
     
     

best ub best

best best lb

, ,  if rand(0,1)<0.5

, ,  otherwise

       
     

j j j j j jk
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j j j j j j

x a k x a x a
x

x a k x a x a

236                                (27)
   
     

ub min max min

lb min max min1

    


    

j j j j j j j

j j j j j j j

x a x a x x

x a x a x x

A

A

237                                            (28)   max(1 ), 1    
bk kk y y r

238 where q0 is a uniform random value from [0, 1]; ε is the exploitation rate which represents the probability of exploitation; arand 

239 denotes a random action (exploration) chosen from the action space Aj; xj
best(aj) is the previous best optimal solution at the action 

240 (aj) interval of the jth controllable variable; xj
ub(aj) and xj

lb(aj) are the upper and lower bounds of the action (aj) interval, 

241 respectively ; xj
min and xj

max are the minimum and maximum values of the jth controllable variable, respectively; Δ[k,y] is a 

242 decay function as the iteration k increases; r is a uniform random value from [0,1]; b is the system parameter which determines 

243 the degree of non-uniformity; and kmax is the maximal iteration number.

244 3.2.2 Adaptive consensus algorithm based human interaction on simple optimization subtask 

245 (i) Graph theory of interaction network

246 The interaction network among humans can be typically built with a directed graph G=(V, E, A), where V={v1, v2, …, vN} is 

247 the set of nodes (agents); E V×V denotes the edges (interactions); and A=[apq]RN×N is a weighted adjacency matrix [37]. 

248 Based on these most basic elements, the Laplacian matrix L=[lpq]RN×N and row stochastic matrix D=[dpq]RN×N of the graph G 

249 can be calculated as follows:

250                                     (29)
1,

, ,
 

    
N

pp pq pq pq
p q p

l a l a p q
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251                                    (30)
1

[ ] ,    1, 2,...,


 
N

pq pq pq
q

d k l l p N

252 (ii) Adaptive consensus algorithm on incremental cost 

253 The adaptive consensus algorithm inherently represents a herd behavior of human interactions, i.e., each agent will regulate 

254 its own state to reach a consensus with the adjacent agents after acquiring their current states. In this paper, the first-order 

255 adaptive consensus algorithm is adopted for this consensus process, as follows [38]:

256                                         (31)
1

[ 1] [ ] [ ]


  
N

p pq q
q

s k d k s k

257 where sp is the state of the pth agent.

258 Note that the simple optimization subtask only has a unique minimum point as it is a strictly convex optimization, thus its 

259 global optimum can be obtained when all the agents can reach a consensus on the incremental cost while satisfying various 

260 constraints. Hence, the incremental cost is taken as the consensus state for human interactions, which can be written as [14]

261                                     (32)
 

  


  

p p

p p p p
p

f x
x

x

262 where λp is the incremental cost of the pth agent; xp is the controllable variable (energy output or demand) of the pth agent; κp 

263 and φp are the incremental cost coefficients of the pth agent, respectively, which can be determined by the corresponding cost 

264 coefficients; and fp is the operating cost of the pth agent.

265 In order to satisfy the energy balance constraints (9)-(10), the electricity energy mismatch ΔE and heat energy mismatch ΔH 

266 between the energy suppliers and energy demanders are introduced in adaptive consensus algorithm, as follows:

267                               (33)
dg chp pvwt dr

dg chp wt pv tie
1 1 1 1 1    

           
N N NN N

i k l d m

i k l d m
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268                                         (34)
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269 It can be found from (32) that an increasing incremental cost will lead to an increasing energy output and an decreasing 

270 energy demand, thus the consensus interaction should be carefully designed to satisfy the energy balance constraints following 

271 this changing rule, as follows:

272  Unified consensus: if the signs of ΔE and ΔH are consistent, i.e., ΔE·ΔH≥0, then all the agents can update their incremental 

273 cost state in an unified interaction network, as

274                                 (35)
E

1

H
1

[ ] [ ] ,   
[ 1]

[ ] [ ] ,   

 


 





    
  
    






N

pq q
q

p N

pq q
q

d k k E p
k

d k k H p



ACCEPTED MANUSCRIPT
12 

275  Independent consensus: if the signs of ΔE and ΔH are inconsistent, i.e., ΔE·ΔH<0, then the electricity agents and heat agents 

276 need to be separated to update their incremental cost state in two independent interaction network, as

277                                 (36)E

H

E
E
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278 where ΩE and ΩH represent the sets of electricity agents and heat agents, respectively; dpq
E is the (p,q) entry of the row stochastic 

279 matrix of the interaction network among the electricity agents; dpq
H is the (p,q) entry of the row stochastic matrix of the 

280 interaction network among the heat agents; and μ denotes the adjustment factor of energy mismatch, μ>0.

281 Therefore, each agent will regulate its incremental cost between these two consensus mode according to the sign of (ΔE·ΔH), 

282 as illustrated in Fig. 5. 

283 By fully considering the lower and upper limits of each controllable variable (11)-(16), the energy output or demand of each 

284 agent can be determined based on (32), as follows [14]:

285                                           (37)c [ ] 
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286                                     (38)
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287 where xp
c denotes the energy consensus value of the pth agent; xp

min and xp
max are the minimum and maximum values of the pth 

288 controllable variable, respectively.

289 3.2.3 Interaction between different parallel systems 

290 (i) Interaction between VASs and the real-world system

291 In the initial phase, the real-world system will provide the prior energy management knowledge Qj
p*(j=1,2,…, J) and the 

292 optimal incremental cost λ* of a similar optimization task to each VAS, which can be regarded as the initial knowledge matrices 

293 Q j
i0 and the initial incremental cost λ of each agent. On the other hand, the agent of real-world system will update its current best 

294 solution and the knowledge matrix according to the current solutions of VASs, as follows:

295                                         (39) cost1,2,...,
arg min
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298 where xik represent the current solution of the ith VAS, which consists of all the controllable variables; h denotes the current best 

299 VAS with the smallest total operating cost; xb
rk is the current best solution of the real-world system; rQ is the random matrix 

300 from [0,1] with the same scale of knowledge matrix; and Qj
rk is the current knowledge matrix of the jth agent in the real-world 

301 system.

302 (ii) Interaction among VASs

303 Generally speaking, the larger otherness between different VASs will lead to more diverse dispatch strategies, which can 

304 effectively avoid the low-quality local optimum, but it will consume more computation time to search the potential global 

305 optimum. To properly balance them, the small world network is used for constructing the interaction network among VASs, in 

306 which each VAS can stochastically interact with any other VASs with a decreasing probability, as follows [39]:

307                               (42)p
max

1 ,    1,2,...,
 

    
 

iw
k C w n

k

308 where piw is the interaction probability between the ith VAS and the wth VAR; kmax is the maximal iteration number; and Cp is 

309 the probability coefficient, with 0<Cp<1.

310 Similarly, each VAS will update its current best solution and the knowledge matrix according to the current solutions of its 

311 interactive VASs, as follows:

312                                         (43) costarg min
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315 where hi denotes the current best VAS in the ith VAR’s interactive network; Ωi is the VAR set in the ith VAS’s interactive 

316 network, which can be determined by (42); xb
ik is the current best solution of the ith VAS; and Qj

ik is the current knowledge 

317 matrix of the jth agent in the ith VAS.

318 3.3 Application design for DEM 

319 3.3.1 Communication information in each learning system 

320 As shown in Fig. 4, all the agents will communicate with the microgrid EMS, in which each agent will transmit its current 

321 optimal energy output or demand to the microgrid EMS. For the complex optimization subtask, the microgrid EMS is regarded 

322 as an external environment for each learning agent, thus each agent can acquire the state and feedback reward after 

323 implementing an optimal CE action. Besides, each learning agent can access the current actions and knowledge matrices of other 

324 agents at any time. For the simple optimization subtask, the microgrid EMS will continuously issue the energy mismatches to 
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325 each agent, thus the consensus collaboration among the agents can be achieved.

326 3.3.2 Design of feedback reward 

327 To maximize the social welfare, the feedback reward should be designed to match the total operating cost fcost in (8), i.e., a 

328 smaller fcost encourages a larger feedback reward, which can be calculated as follows:

329                          (46)     1 2
1,

1,     1, 2,...,
 

 
    

 
 N

k k
j k j j p p

p p j
R s a C f x f x C j J

J

330 where fj is the operating cost of the jth learning agent; C1 and C2 are the feedback reward coefficients.

331 3.3.3 Execution procedure

332 In summary, the CPSS with parallel learning for DEM of a microgrid is given in Fig. 6. Note that the convergence criteria of 

333 adaptive consensus algorithm is that both the electricity and heat energy mismatches (ΔE and ΔH) can simultaneously satisfy the 

334 energy mismatch tolerance τ, i.e., i.e., |ΔE|<τ & |ΔH|<τ, where τ is set to be 0.0001 in this paper. Beside, each agent will prefer to 

335 produce a decision behavior from (20)-(23) based on a probability distribution, which is set to be [0.7, 0.1, 0.1, 0.1] for 

336 utilitarian, egalitarian, plutocratic, and dictatorial, respectively.

337 4. Case studies

338 4.1 Simulation model

339 For the microgrids, the best available energy system should be selected, capable of satisfying the demand requirements for a 

340 particular area. During this process, the design engineers need to determine the optimal generation units selection, sizing, and 

341 siting for the microgrid. It is usually built with a minimization of planning cost under various constraints [40], such as technical, 

342 environmental, geographical, social and regulatory constraints. In order to obtain the optimal planning scheme, various 

343 optimization technique can be used for handling this problem. Since this paper mainly focuses on the microgrid operation rather 

344 than the microgrid planning, the testing system simply consults from the built microgrid in [19] and [41]. 

345 The testing microgrid is operated in grid-connected mode, which contains 11 energy suppliers, 7 energy demanders, where 

346 the suppliers consists of 3 PV units, 2 WTs, 2 DGs, 2 CHPs, 1 heat-only unit, and the main grid, as shown in Fig. 7. Besides, the 

347 complex optimization subtask is composed of tie-line power and the heat energy outputs of CHP units, while the simple 

348 optimization subtask consists of the rest controllable variables. The main parameters of testing microgrid are given in Tables 1 

349 to 6 and Figs. 7-8. In particular, CHP1 is enclosed by the two segment shape in Fig. 2, where the boundary nodes ABCDEF are 

350 (0, 1), (0.15, 1), (0.6, 0.85), (0.3, 0.05), (0.08, 0.2), and (0, 0.2), respectively. Besides, CHP2 is enclosed by the one segment 

351 shape with the boundary nodes ABCD, which are (0, 0.6), (0.6, 0.5), (0.35, 0.05), and (0, 0.1), respectively. Furthermore, the 

352 switching cyber connection is designed around the heat unit (Heat1), i.e., if ΔE·ΔH≥0, then Heat1 will simultaneously connect 

353 with L1, L2, and DG1, otherwise, Heat1 will disconnect with them, while L1 and L2 will connect with each other. To construct the 
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354 human participations in real-world system, thirteen experimenters are employed as the controllers for each energy supplier or 

355 demander, respectively. Through trial-and-error, the main parameters of parallel learning are given in Table 7.

356 In order to verify the performance of the proposed technique, four commonly used heuristic algorithms are introduced for 

357 comparisons, including genetic algorithm (GA) [42], particle swarm optimization (PSO) [43], artificial bee colony (ABC) [44] , 

358 group search optimizer (GSO) [45], where population size and maximum iteration number are set to be 50 and 250, respectively. 

359 Moreover, all the simulations are undertaken in Matlab R2016a by a small server with Intel(R) Xeon (R) E5-2670 v3 CPU at 2.3 

360 GHz with 64 GB of RAM.

361 4.2 Study of convergence

362 Figs. 9-11 provide the convergence of parallel learning under scenario 3 (at 14:00) with peak price, where the number of 

363 VASs is set to be 5. It can be found from Fig. 10 that each system can converge to a high-quality optimal solution with a lower 

364 total operating cost via an effective interaction with other systems, especially for the real-world system. At the same time, three 

365 energy suppliers (tie-line power, CHP1, and CHP2) can achieve an optimal CE among them after around 200 CE based game 

366 iterations, while the feedback reward of each one will increase as its energy output decrease and vice versa, as illustrated in Fig. 

367 10. After each game iteration, twelve energy agents (suppliers and demanders) will interact their incremental costs for reaching a 

368 consensus by adaptive consensus algorithm. As shown in Fig. 11(a), the interactive incremental cost will update between unified 

369 consensus mode and independent consensus mode according to the dynamic energy mismatches, in which the heat-only unit 

370 Heat1 cannot reach a consensus with other electricity energy agents due to the heat energy balance constraint (10). Besides, the 

371 actual incremental costs of some energy agents have reached their limits after a fewer interactions, thus their energy outputs or 

372 responding power can strictly satisfy their capacity lower and upper limits, as shown in Fig. 11(b)-(e). Finally, both the 

373 electricity and heat energy mismatches (ΔE and ΔH) simultaneously satisfy the energy mismatch tolerance after a series of 

374 corrections (See Fig. 11(f)), i.e., |ΔE|<τ and |ΔH|<τ.

375 4.3 Comparative results and discussions

376 Fig. 12 shows the convergence of total operating costs obtained by different algorithms under scenario 3. It is clear that both 

377 parallel learning and PSO outperform other three algorithms because each of them can obtain a lower total operating cost in a 

378 fewer iterations. Moreover, the detailed optimal dispatch strategies of all the energy suppliers and demanders obtained by 

379 different algorithms are listed in Table 8. It verifies that the proposed parallel learning can not only realize the distributed 

380 optimization of DEM with human participation and interaction, but also can guarantee the quality of the obtained optimal 

381 solution compared with the commonly used centralized heuristic algorithms, which results from the deep exploitations and 

382 explorations with various decision strategies (20)-(23) in multiple VASs.
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383 In order to further test the performance of parallel learning, all the algorithms are implemented for three different scenarios 

384 (See Table 6) with 50 independent runs. Fig. 13 shows the statistical results obtained by them, where parallel learning I, parallel 

385 learning II, and parallel learning III represent the parallel learning with different numbers of VASs, i.e., 5, 10, and 15 

386 respectively. It also proves that parallel learning can search the highest quality optimal solution with a lowest total operating cost 

387 under each scenario, especially parallel learning with more VASs. This obviously demonstrates that the increasing VASs can 

388 generate a potential higher quality optimal solution via a deeper exploitation and exploration with various decision strategies. 

389 However, it requires more computation capability and consumes more execution time, as shown in Fig. 13(d). Furthermore, the 

390 execution time of parallel learning is slightly larger than that of GA, PSO, and GSO since each game agent requires a linear 

391 programming computation to search an optimal CE policy at each iteration.

392 4.4 Study of influence by renewables uncertainty

393 For the DEM of a microgrid, the uncertainty of the input parameters is ubiquitous due to the unavoidable forecast error, 

394 especially for the intermittent energy out of renewables. In order to figure out the influence by the renewables uncertainty, Fig. 

395 14 provides the statistical results obtained by proposed system under different uncertainty degrees in 50 runs, where the 

396 uncertainty degree represent the forecast error of the total energy output of renewables; both the total operating cost and the 

397 execution time are the average of 50 runs. It is clearly that the obtained total operating cost decreases as the forecast error 

398 increases under each scenario, which results from that a larger energy output of renewables is beneficial to reduce the fuel cost 

399 of the microgrid. On the other hand, the execution time of parallel learning is almost not affected by the renewable uncertainty 

400 (See Fig. 14(d)), which also verifies the high convergence stability of the proposed method. Moreover, there is only little 

401 difference on the total operating costs obtained among all the parallel learning with different numbers of VASs. This reveals that 

402 the testing microgrid only requires a small number of VASs for parallel learning based DEM.

403 6. CONCLUSION

404 In this paper, a novel CPSS with parallel learning has been proposed for DEM of a microgrid. The main contributions can be 

405 summarized as follows

406 (i) The proposed CPSS is constructed by considering the human participation and interaction in social space, which can 

407 widely yield potential optimal distributed strategies for DEM in a real-world microgrid.

408 (ii) The CE based human interaction with various decision strategies can efficiently search an optimal dispatch strategy of a 

409 complex optimization subtask of DEM, including the tie-line power with a nondifferentiable objective function, and the CHP 

410 units with complex feasible operating regions constraints.

411 (iii) The adaptive consensus algorithm based human interaction can effectively achieve the self-organization of each human 
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412 with local communications, while the switch between unified consensus and independent consensus can simultaneously satisfy 

413 the consensus requirement and the multi-energy balance constraints.

414 (iv) The real-world system can continuously learn the knowledge from multiple virtual VASs, in which a deep exploitation 

415 and exploration can be implemented in each VAS. Hence, the quality of the obtained optimal solution of DEM can be 

416 guaranteed for the real-world system without any adverse trials, i.e., a lower total operating cost (higher social welfare) of a 

417 microgrid can be obtained.

418 (v) The proposed CPSS with parallel learning is not only highly independent on the mathematical model for a specific 

419 optimization, but also can achieve a high-quality optimum in a distributed manner. Hence, it can also be applied to other 

420 optimizations of the complex energy system.
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509 Table 1

510 Parameters of renewable energy resources.

WT PV
vin 4 m/s Sref 1000 W/m2

vout 25 m/s Tref 25℃
vr 15 m/s αpv -0.47%/℃

Rated power 0.5 MW Rated power 0.5 MW

511 Table 2

512 Parameters of DGs and heat-only units.

Operating cost coefficients Capacity (MW)
Units

αi βi γi Minimum Maximum
DG1 10.193 210.36 250.2 0 0.5
DG2 2.305 301.4 1100 0.04 0.2
Heat1 33 12.3 6.9 0 2

513 Table 3

514 Operating cost coefficients of CHP units.

Units αi βi γi δi θi ζi

CHP1 339.5 185.7 44.2 53.8 38.4 40
CHP2 100 288 34.5 21.6 21.6 8.8

515 Table 4

516 Electricity buying and selling prices from the main grid.

Tariff type Time Buying price ($/MWh) Selling price ($/MWh)
Tariff 1 (low 

price)
00:00—06:59 192 180

Tariff 2
(shoulder price)

07:00—10:59
16:00—18:59
22:00—23:59

238 200

Tariff 3
(peak price)

11:00—15:59
19:00—21:59

317 260

517 Table 5

518 Operating cost coefficients of linear demand versus price expression at different tariffs.

Tariff 1 Tariff 2 Tariff 3
Demanders alin blin alin blin alin blin

L1 0.9 ﹣0.0028 0.95 ﹣0.0025 1 ﹣0.002

L2 0.9 ﹣0.0028 0.95 ﹣0.0025 1 ﹣0.002

L3 0.9 ﹣0.0025 0.95 ﹣0.002 1 ﹣0.001

L4 0.9 ﹣0.0025 0.95 ﹣0.002 1 ﹣0.001

L5 0.9 ﹣0.0025 0.95 ﹣0.002 1 ﹣0.001

L6 0.9 ﹣0.0042 0.95 ﹣0.004 1 ﹣0.0035

L7 0.9 ﹣0.0042 0.95 ﹣0.004 1 ﹣0.0035

519 Table 6

520 Forecasting results of energy demand and renewable energy outputs under three scenarios.

Forecasting results (MW)Demanders or 
renewables

Energy type
Scenario 1 (00:00) Scenario 2 (09:00) Scenario 3 (14:00)

L1 Electricity 0.13 0.38 0.5
Heat 0.04 0.04 0.03

L2 Electricity 0.12 0.33 0.4
Heat 0.03 0.03 0.03

L3 Electricity 0.14 0.42 0.6
Heat 0.05 0.04 0.04
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L4 Electricity 0.19 0.38 0.45
Heat 0.05 0.04 0.03

L5 Electricity 0.2 0.44 0.55
Heat 0.06 0.04 0.04

L6 Electricity 0.26 0.4 0.5
Heat 0.07 0.04 0.04

L7 Electricity 0.07 0.18 0.35
Heat 0.02 0.02 0.02

PV1 Electricity 0 0.02 0.1
PV2 Electricity 0 0.01 0.1
PV3 Electricity 0 0.02 0.1
WT1 Electricity 0.28 0.25 0.2
WT2 Electricity 0.36 0.32 0.3

521 Table 7

522 The main parameters of parallel learning.

Parameter Range Value
α 0<α<1 0.9
γ 0<γ<1 0.1
ε 0<ε<1 0.9
μ μ>0 3
Cp 0<Cp<1 0.9
C1 C1>0 1
C2 C2>0 1000

kmax kmax>0 250

523 Table 8

524 Comparative results of optimal solutions obtained by different algorithms under scenario 3.

Optimal energy generations and consumptions (MW)Demanders or 
Suppliers

Energy type
GA PSO ABC GSO Parallel learning

L1 Electricity 0.419 0.410 0.422 0.432 0.412 
Heat 0.030 0.030 0.030 0.030 0.030 

L2 Electricity 0.371 0.357 0.344 0.385 0.362 
Heat 0.030 0.030 0.030 0.030 0.030 

L3 Electricity 0.597 0.600 0.581 0.600 0.600 
Heat 0.040 0.040 0.040 0.040 0.040 

L4 Electricity 0.448 0.450 0.409 0.450 0.450 
Heat 0.030 0.030 0.030 0.030 0.030 

L5 Electricity 0.540 0.550 0.542 0.550 0.550 
Heat 0.040 0.040 0.040 0.040 0.040 

L6 Electricity 0.451 0.450 0.461 0.454 0.450 
Heat 0.040 0.040 0.040 0.040 0.040 

L7 Electricity 0.279 0.270 0.282 0.270 0.270 
Heat 0.020 0.020 0.020 0.020 0.020 

PV1 Electricity 0.100 0.100 0.100 0.100 0.100
PV2 Electricity 0.100 0.100 0.100 0.100 0.100
PV3 Electricity 0.100 0.100 0.100 0.100 0.100
WT1 Electricity 0.200 0.200 0.200 0.200 0.200
WT2 Electricity 0.300 0.300 0.300 0.300 0.300

Tie-line power Electricity 0.355 0.399 0.387 0.399 0.399
DG1 Electricity 0.325 0.248 0.261 0.308 0.255
DG2 Electricity 0.040 0.040 0.096 0.041 0.040

CHP1 Electricity 0.993 1.000 0.923 0.999 1.000
Heat 0.009 0.000 0.047 0.001 0.000

CHP2 Electricity 0.591 0.600 0.573 0.594 0.599
Heat 0.026 0.000 0.152 0.015 0.000

Heat1 Heat 0.195 0.230 0.031 0.215 0.226
Total operating cost fcost ($/h) 1182.886 1176.073 1210.318 1178.385 1176.021
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533 Fig. 2  Feasible operating region of CHP units.
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546 Fig. 8  Energy demand profiles of energy demanders in a day.
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548 Fig. 9  Convergence of parallel learning in different systems.
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553 Fig. 10  Convergence of CE based human interaction in the real-world system.
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560 Fig. 11  Convergence of adaptive consensus algorithm based human interaction in the real-world system at the final game iteration.
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571 Fig. 13  Statistical results obtained by different algorithms under three scenarios in 50 runs.
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576 Fig. 14  Statistical results obtained by CPSS with parallel learning under different uncertainty degrees in 50 runs.
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 A cyber-physical-social system is constructed for distributed energy management.

 A game theory with various decision behaviors is proposed for human interaction.

 Energy suppliers or demanders can reach a consensus on the incremental cost.

 The parallel interactive systems can lead to a lower total operating cost.

 The proposed method outperforms other centralized heuristic algorithms for DEM.


