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a b s t r a c t

To achieve an effective coordination between the secondary control and the tertiary con-

trol of load frequency control (LFC), a new optimal active power control (OAPC) is con-

structed for real-timely changing the operating points of distributed energy resources

(DERs) and thermostatically controlled loads (TCLs) in an islanded microgrid. A large

number of TCLs are integrated as a load aggregator (LA) for participating the secondary

control of LFC, which can enhance the dynamic response performance due to their much

faster response speeds compared with that of distributed generators. Since OAPC is a

nonsmooth and nonlinear optimization with a quite short implementation period, a novel

model-free ensemble learning (EL) is proposed to rapidly obtain a high-quality optimal

solution for it. EL based OAPC is composed of multiple sub-optimizers and a learning

concentrator, where each sub-optimizer is responsible for providing the exploitation and

exploration samples to the learning concentrator, while the reinforcement learning based

concentrator is mainly used for knowledge learning and knowledge transfer. Case studies

are thoroughly carried out to verify the performance of EL based OAPC in an islanded

microgrid with 12 DERs and 900 TCLs.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

Microgrid has become a popular way to effectively integrate

various small-scale distributed energy resources (DERs) and

associated loads [1]. When the microgrid is operated in the

islanded mode, load frequency control (LFC) will become one

of themost crucial operation tasks for themicrogrid without a
u).
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strong support from the main grid [2]. In general, LFC for an

islanded microgrid is a hierarchical control with three levels

[3], i.e., primary control (droop control), secondary control,

and tertiary control.

The primary control commonly maintains the system

frequency stability via the active power-frequency droop

control, which is achieved by a local control manner [4]. In

order to improve the droop control performance, various
evier Ltd. All rights reserved.
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Nomenclature

Variables

Tin indoor temperature

TR refrigerator temperature

THW hot water temperature

sAC switch state of air conditioner

sR switch state of refrigerator

sEWH switch state of electric water heater

Df frequency deviation

DPP total generation command

DPM power mismatch

DPm generation command of the mth generator of

secondary control

Pm
0 scheduled operating point of the mth generator of

tertiary control

DPm
1 real-time corrective power of themth generator of

primary control

DPLA generation command of LA of secondary control

fm
c fuel cost of the mth generator

Q Q-value matrix (knowledge)

DQ knowledge increment

R reward function

arand a random action

Qn0 initial knowledge of the new task

Qh* optimal knowledge of the hth source task

rh similarity between the hth source task and the

new task

SAp
k state-action pairs set of the best individual

F fitness function

Indices

m index of generator

i index of controllable variable

j index of binary bit

k index of iteration

e index of individual

h index of source task

o index of current best sub-optimizer

p index of sub-optimizer

Parameters

PAC
r rated power of the air conditioner

PEWH
r rated power of the electric water heater

DPm
min minimum reserve capability of the mth generator

DPm
max maximum reserve capability of the mth generator

DPLA
min minimum reserve capability of LA

DPLA
max maximum reserve capability of LA

DPm
rate maximum ramp rate of the mth generator

CLA regulation cost coefficient of LA

am, bm, cm fuel cost coefficients of the mth generator

a knowledge learning factor

g discount factor

ε exploitation rate

pm positive multiplicator

E number of learning agents

M penalty factor

N number of sub-optimizers

L length of binary bit string

kmax maximal iteration number

Abbreviations

OAPC optimal active power control

LFC load frequency control

DERs distributed energy resources

TCLs thermostatically controlled loads

LA load aggregator

WT wind turbine

PV photovoltaic

TOU time of use

AC air conditioner

Re refrigerator

WH water heater

EL ensemble learning

GA genetic algorithm

PSO particle swarm optimization

PROP proportional

GSO group search optimizer

IPM interior point method
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modified droop control techniques have been investigated,

including e.g., adaptive and robust droop controls [5,6].

However, the primary control will inevitably lead to the fre-

quency deviation. Hence, the secondary control is used to

restore the frequency to the nominal value with a centralized

controller [7], which usually employs a proportional-integral

(PI) controller with fixed participation factors to calculate the

supplementary active power set points of all the reserve re-

sources [8]. In order to enhance the dynamic security of

microgrid with a high penetration of wind energy, an effec-

tive control method [9] was designed for the distribution

static synchronous compensator with superconducting

magnetic energy storage. Finally, the tertiary control aims to

achieve an optimal operation according to the forecast data

of load demand and renewables generation [10], and the

implementation period commonly ranges from 15 min to

several hours [11]. In Ref. [12], a stochastic smart microgrid
Please cite this article in press as: Zhang X, et al., Ensemble learning
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operation was proposed by fully considering the intermit-

tency of renewable energy resources and load in the optimal

energy management with hydrogen storage. Furthermore,

the environmental impact [13] was also combined into the

tertiary control of a microgrid with penetration of photovol-

taic and micro turbine units.

In the past decades, though extensive investigations have

been carried out for these three controls of LFC in an islanded

microgrid, most of these studies [7e19] did not address two

important issues, as follows:

� Online optimization of participation factors: for the secondary

control, the output of the centralized controller (total

generation command) is simply distributed among all the

reserve resources with the fixed participation factors,

which is usually optimized by an offline manner. Hence,

the fixed participation factors easily lead to an unsatisfied
for optimal active power control of distributed energy resources
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dynamic response performance of secondary control when

the system operation state change greatly (e.g., outage of a

unit).

� Coordination between secondary control and tertiary control: the

secondary control will change the units' operating points

due to the unexpected power disturbance, but it often ne-

glects the objective function (e.g., the total operating cost

[18]) of tertiary control, which may lead to a low economic

operation for an islandedmicrogrid as the implementation

period of the tertiary control is much longer than that of

the secondary control. Although the total generation cost

of tertiary control was incorporated in real-time LFC in Ref.

[19], it did not consider the improvement of dynamic

response performance for the secondary control, and

various constraints (e.g., GRC) of different units for

participating the secondary control.

To handle these issues, this paper proposes a novel

optimal active power control (OAPC) of participation factors

optimization of secondary control via an effective coordi-

nation with primary and tertiary controls. By considering

the dynamic response performance of secondary control

[20], OAPC is essentially a nonsmooth nonlinear optimiza-

tion with a min-max objective function. Consequently, the

traditional gradient-based algorithms are difficult to find a

high-quality optimal solution for OAPC with a given initial

solution [21] as they are highly dependent on its accurate

mathematical model. Compared with that, the model-free

heuristic optimization algorithms are more flexible and

more efficient for global optimization. For example, the

novel hybrid cuckoo search optimization [22] was employed

for the optimal design of the smart microgrid due to its

efficient search. In Ref. [23], three heuristic optimization

algorithms, including harmony search, modified flower

pollination algorithm, and electromagnetic field optimiza-

tion, were used for tuning the PI controllers of the inverter of

a grid-connected fuel cell since they are highly independent

on the strong non-linearities of the control system. How-

ever, these model-free heuristic optimization algorithms

often consume more computation time and can hardly meet

the online implementation requirement of OAPC (1e16 s). In

order to overcome these problems, this paper proposes a

novel ensemble learning (EL) for rapidly searching a high-

quality optimal solution of OAPC with the following

features.

� EL is composed of multiple sub-optimizers and a learning

concentrator, in which various sub-optimizers can effec-

tively enhance the exploration ability with different opti-

mization mechanisms, while the learning concentrator

can efficiently implement a deep exploitation by utilizing

the current searching results from the sub-optimizers.

Hence, the high-quality of the obtained optimum can be

guaranteed.

� The learning concentrator is not only able to learn the

knowledge via the self-learning and the guidance by the

sub-optimizers, but also can achieve the knowledge

transfer from the source tasks to a new task. Therefore, the

computation time of EL can be dramatically reduced,
Please cite this article in press as: Zhang X, et al., Ensemble learning
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which is adequate to satisfy the online optimization of

OAPC.

The remaining of this paper is organized as follows: Sec-

tion Optimal active power control of LFC presents the math-

ematical model of OAPC. Section Ensemble learning provides

the basic principle of EL. The design of EL for OAPC is devel-

oped in Section Design of EL for OAPC, while simulation re-

sults and discussions are given in Section Case studies.

Finally, Section Conclusion concludes the paper.
Optimal active power control of LFC

LFC framework in an islanded microgrid

In an islanded microgrid, the power mismatch DPM may re-

sults from the power output fluctuations of wind turbine (WT)

and photovoltaic (PV) unit with the changeable weather, load

disturbance, and operation faults. As the frequency deviates

from its nominal value, then the frequency regulation gener-

ators or loads will change their operating points according to

the distributed primary control and the centralized secondary

control [2,3], based on the initial operating points of tertiary

control, as given in Fig. 1. Note that the PI controller is used for

tracking the power mismatch according to the dynamic fre-

quency deviation Df, where DPP is the controller output, i.e.,

the total generation command. Then EL based OAPC will

optimally distribute DPP among the controllable DERs and the

load aggregator (LA), thus the frequency can be quickly

restored with a low operation cost.

Reserve capability of LA

In this study, a large number of household consumers are

aggregated as a LA for secondary control of LFC [24], thus the

optimization difficulty of OAPC can be significantly reduced

with much fewer controllable variables. Particularly, only

three types of common thermostatically controlled loads

(TCLs) including air conditioner, refrigerator, and electric

water heater, are employed for LFC as they can excellently act

as energy storage [25]. When they are disconnected, the

temperature will slightly change in a few minutes, thus the

consumer comfort can be guaranteed at a high level.

To evaluate the reserve capability of LA, it needs to acquire

the real-time operating states of all the TCLs [11]. For satis-

fying the consumer comfort, each TCL should keep the tem-

perature within an ideal range via the constant spaced

switches. For example, the air conditioner needs to maintain

the indoor temperature within the range from Tmin to Tmax,

which will be automatically turned on if the indoor tempera-

ture Tin exceeds Tmax, and turned off if the indoor temperature

is lower than Tmin, as shown in Fig. 2. When the thermostat-

ically controllable load is off, it can provide the down reserve

capability for LFC via turning on. Similarly, it can provide the

up reserve capability from the ON state to the OFF state.

Note that the maximal participation time of each TCL for

LFC is determined by its current operating state and temper-

ature variation feature, as.
for optimal active power control of distributed energy resources
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Fig. 1 e The LFC framework in an islanded microgrid.

Fig. 2 e The reserve capability of air conditioner.
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a) Air conditioner
The indoor temperaturemainly depends on its previous value,

outdoor temperature, rated temperature, and the house heat

resistance, as [26].

Tinðtc þ DtÞ ¼ TinðtcÞe�Dt=ðRCairÞ þ �
ToutðtcÞ

� R$Pr
AC$sACðtcÞ

�
$
�
e�Dt=ðRCairÞ � 1

�
(1)
Please cite this article in press as: Zhang X, et al., Ensemble learning
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where Tout(tc) is the outdoor temperature at time tc; Dt is the

time length of ON or OFF state; R is the heat resistance of the

house; Cair is the specific heat capacity of air; PAC
r is the rated

power of the air conditioner; and sAC is the switch state of air

conditioner, which is 1 at ON state and 0 at OFF state.

b) Refrigerator
The refrigerator temperature is mainly determined by its

cooling effect of the ON state, and warming effect of the OFF

state, as [27].

TRðtc þ DtÞ ¼ TRðtcÞ þ Dt½gR � aR$sRðtcÞ� (2)

where TR(tc) is the refrigerator temperature at time tc; gR is the

warming effect of the OFF state; aR is the cooling effect of the

ON state; and sR is the switch state of refrigerator.

c) Electric water heater
According to the law of conservation of energy, the hot water

temperature can be calculated as [28].
for optimal active power control of distributed energy resources
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THWðtc þ DtÞ ¼ THWðtcÞ
�
Vtank � frðtcÞ$Dt

�
Vtank

þ TIWðtcÞ$frðtcÞ$Dt
Vtank

þC1

�
C2$P

r
EWH$sEWH ðtcÞ$hEWH �Atank$

�
THWðtcÞ � TinðtcÞ

�
Rtank

�
Dt

Vtank

(3)

where THW(tc) is the hot water temperature at time tc; TIW(tc) is

the inlet water temperature at time tc; Vtank is the volume of

the tank; fr(tc) is the hot water flow rate at time tc; PEWH
r is the

rated power of the electricwater heater; and sEWH is the switch

state of electric water heater; ƞEWH is the efficiency factor;

Atank is the surface area of the tank; and Rtank is the tank heat

resistance.

It can be found from (1)e(3) that the maximal participation

time Dtup or Dtdown of refrigerator and electric water heater

can be directly solved due to the simple linear equations,

while that of air conditioner requires a iterative method (e.g.,

Newton method) to approximate the real solution as it is

essentially a transcendental equation.

Assume the unexpected power disturbance occurs at time

tc, then the TCL can participate secondary control of LFC if its

maximal participation time is longer than the minimal

participation time requirement Dtfc, as

tm ¼
(
Dtup � Dtfc � 0; if DPP <0
Dtdown � Dtfc � 0; if DPP >0

(4)

where tm is the time margin of participation secondary

control.

Hence, the up and down reserve capabilities of LA are equal

to the total rated power of all the TCLs with positive tm under

the current DPP, respectively. For the sake of consumer

comfort, the generation command DPLA of LA is distributed to

all the TCLs according to the descending order of tm, i.e., the

onewith a larger positive tmwill be dispatched in priority until

the power balance constraint can be satisfied.

It is worth noting that each TCL could participate in sec-

ondary control LFC only if it is fitted with control device, tem-

peraturesensor,user interface,andcommunicationdevice [11].

Particularly, the control device is not only used for switching

the load to response thecontrol command from theLA,but also

for electricmeasurements. Besides, the communication device

can achieve the interaction between the TCL and the LA.

Mathematical model of OPAC

In this study, the proposed OAPC mainly focuses on the dy-

namic response performance and the operation cost. The first

one can be improved by minimizing the maximum of all the

regulation generators’ ramp time f1, while the second one f2
consists of the fuel cost of the generation side and the regu-

lation cost of LA. In order to reduce the solving difficulty and

shorten the computation time, these two objectives are

transformed into a single overall objective f by the multipli-

cation method, thus OAPC can be constructed with the power

balance constraints, power output limits, and generation rate

constraints (GRC), as.

Minimize fðxÞ ¼ f1ðxÞ$f2ðxÞ (5)
Please cite this article in press as: Zhang X, et al., Ensemble learning
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with

8>>>><
>>>>:

f1ðxÞ¼ max
m¼1;2;:::;n

���DPmþDP1
m

��	DPrate
m

�
f2ðxÞ¼

Xn
m¼1

f cm
�
DPmþDP1

m

�þCLADPLA

f cmðDPmÞ¼ am

�
P0
mþDPmþDP1

m

�2þbm

�
P0
mþDPmþDP1

m

�þ cm

(6)

subject to

8>>>>>>>>>>><
>>>>>>>>>>>:

DPS ¼
Xn

m¼1

DPm þ DPLA

DPS$DPLA � 0
DPmin

LA � DPLA � DPmax
LA

DPS$DPm � 0; m ¼ 1;2; :::;n
jPmðtÞ � Pmðtþ 1Þj � DPrate

m ; m ¼ 1;2; :::;n
Pm ¼ P0

m þ DPm þ DP1
m

DPmin
m � DPm þ DP1

m � DPmax
m ; m ¼ 1;2; :::;n

(7)

where DPm is the generation command of themth generator of

secondary control; Pm
0 is the scheduled operating point of the

mth generator of tertiary control; DPm
1 is the real-time correc-

tive power of the mth generator of primary control; Pm is the

real-time operating point command of the mth generator;

DPLA is the generation command of LA of secondary control;

DPm
rate is the maximum ramp rate of the mth generator; fm

c is

the fuel cost of the mth generator; CLA is the regulation cost

coefficient of LA; am, bm, and cm are the fuel cost coefficients of

the mth generator; t is the time period index; DPmin
m and DPmax

m

are theminimum andmaximum reserve capability of themth

generator, respectively; DPmin
LA and DPmax

LA are theminimum and

maximum reserve capability of LA, respectively; and n is the

number of generators which participate LFC.
Ensemble learning

Optimization framework

As shown in Fig. 3, EL consists of multiple sub-optimizers and

a learning concentrator. For each new optimization task, each

sub-optimizer will search a potential higher quality optimum

based on its own searching mechanism, while the learning

concentrator will approximate the optimal knowledge of the

current task via a knowledge transfer from the previous

optimal knowledge of the source tasks. Then the knowledge of

the learning concentrator can be updated by continuous

interactionwith the environment, which includes three steps,

i.e., 1) implementing different actions (solutions) to the envi-

ronment based on exploitation and exploration, and the

guidance from multiple sub-optimizers; 2) getting the feed-

back reward and state from the environment; and 3) updating

the knowledge with the reinforcement learning.

Learning concentrator

Knowledge learning
In order to construct the knowledge for each continuous

controllable variable, a binary Q-learning [29] with associative

memory is adopted for storing and learning the knowledge.

Hence, the knowledge for each continuous controllable vari-

able can be represented as a binary bit string, where each bit (0

or 1) has a knowledge value. Like other reinforcement
for optimal active power control of distributed energy resources
ational Journal of Hydrogen Energy (2018), https://doi.org/10.1016/
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Fig. 3 e Optimization framework of EL.
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learning, the binary Q-learning can update the knowledge

according to the feedback reward after implementing an ac-

tion to the environment at the current state, as follows:

8<
:

Qkþ1
il

�
skeil ;a

ke
il

� ¼ Qk
il

�
skeil ; a

ke
il

�þ aDQk
il

DQk
il ¼ Re

il



skeil ; s

kþ1;e
il ;ake

il

�
þ gmax

ail2Abb

Qk
il



skþ1;e
il ; ail

�
� Qk

il

�
skeil ;a

ke
il

�
(8)

where a is the knowledge learning factor; g is the discount

factor; the subscript i and l represent the ith controllable

variable and the jth binary bit, respectively; superscripts k and

e denote the kth iteration and the eth individual, respectively,

with e ¼ 1,2,…, E; E is the number of learning agents; Qil is the

Q-value matrix (knowledge) of the lth binary bit for the ith
Please cite this article in press as: Zhang X, et al., Ensemble learning
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controllable variable; DQ is the knowledge increment; (s,a)

means the state-action pair; R(sk,skþ1,ak) is the reward func-

tion of a transition from state sk to skþ1 used under a selected

action ak; ail is any alternative actions (0 or 1); and Abb is the

action space of each binary bit.

In general, a learning agent prefers choosing a binary bit

with a large knowledge value as it can get a larger feedback

reward with a higher probability, which also easily leads to a

low quality optimum. To properly balance the exploitation

and exploration, the ε-Greedy rule [30] is used for determining

the actions, as follows:

ake
il ¼

(
argmax

ail2Abb

Qk
il

�
skeil ; ail

�
; if q0 � ε

arand; otherwise
(9)
for optimal active power control of distributed energy resources
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where q0 is a random number with a probability uniformly

distributed in the range [0, 1]; ε is the exploitation rate; and

arand denotes a random action (exploration).

Knowledge transfer
For most optimization algorithms, one of their common

drawbacks is incapable of rapidly handing a new task by uti-

lizing the knowledge of the source tasks (previous tasks), thus

it often takes a long computation time. To fill up this gap, the

knowledge transfer from the source tasks to a new task is

introduced in EL, which can be described as follows [31]:

Qn0
il ¼

XH
h¼1

rhQ
h*
il ; i ¼ 1;2; :::;nþ 1; l ¼ 1;2; :::; L (10)

where Qn0
il is the initial knowledge of the new task; Qh*

il is the

optimal knowledge of the hth source task; L is the length of the

binary bit string; and rh denotes the similarity between the hth

source task and the new task, which will be a larger number if

the corresponding source task is more similar with the new

task, i.e., the new task will exploit more knowledge from the

optimal knowledge of the hth source task, with 0�rh�1 andPH
h¼1rh ¼ 1.

Interaction between sub-optimizers and learning
concentrator

EL is an ensemble system with various optimization algo-

rithms in nature, which can reach amost satisfactory solution

via a comprehensive evaluation of multiple decision strate-

gies [32], as illustrated in Fig. 3. And this is also the greatest

advantage of EL. Generally speaking, a more diversity of sub-

optimizers is beneficial to the quality of the final optimal so-

lution, thus various types of optimization algorithms are

encouraged to be employed as the sub-optimizers, e.g., ge-

netic algorithm (GA) [33], PSO [34], and grey wolf optimizer

(GWO) [35]. To achieve an effective comprehensive evaluation,

the interaction between sub-optimizers and learning

concentrator can be designed as follows:

8<
:

Qkþ1
il



skpil ;a

kp
il

�
¼ Qk

il



skpil ;a

kp
il

�
þ aDQk

il

DQk
il ¼ Rp

il



skpil ; s

kþ1;p
il ; akp

il

�
þ gmax

ail2Abb

Qk
il



skþ1;p
il ;ail

�
� Qk

il



skpil ; a

kp
il

�
(11)

SAk
p ¼

n

skpil ; a

kp
il

����i ¼ 1;2; :::;nþ 1; l ¼ 1;2; :::; L
o

(12)

o ¼ arg min
p¼1;2;:::;N

h
F


SAk

p

�i
(13)

SAk
lc ¼

(
SAk

o ; if F


SAk

o

�
<F



SAk

lc

�
SAk

lc; otherwise
(14)

where SAp
k is the state-action pairs set of the best individual

obtained by the pth sub-optimizer, p ¼ 1,2, …,N; N is the

number of sub-optimizers; SAlc
k is the state-action pairs set of

the best individual obtained by the learning concentrator; F is

the fitness function; and o is the index of the current best sub-

optimizer with the smallest fitness function.
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Design of EL for OAPC

Feedback reward

The feedback reward needs to be designed by fully integrated

themathematical model of OAPC from (5)e(7), while a feasible

solution with a smaller fwill obtain a higher feedback reward.

To accelerate the knowledge learning of EL, the cooperative

mechanism of ant colony [36] is introduced for the calculation

of feedback reward, as

Re
il



skeil ; s

kþ1;e
il ; ake

il

�
¼

8>><
>>:

pm

F


SAk

lc

� ; if
�
skeil ;a

ke
il

�
2SAk

lc

0; otherwise

(15)

F ¼

8><
>: f þ

XNC

u¼1

M


Zu � Zlim

u

�2

; if violated

f ; otherwise

(16)

where pm is a positive multiplicator; M is the penalty factor to

guarantee a feasible solution; Zu denotes the uth constraint in

(7); and Zu
lim is the constraint limit of Zu..

Knowledge transfer between different tasks

Based on the mathematical model of OAPC (5)e(7), the dis-

tinctions between different optimization tasks mainly in-

cludes the total generation command DPP and the reserve

capabilities of all units. Hence, the knowledge transfer of EL

should be designed with these two elements.

Firstly, the deviation of total generation command can be

regarded as the similarity between the sources tasks and a

new task, which can be calculated as [20].

rh ¼

8>>>>>>><
>>>>>>>:

DPbP � DPntP
DPbP � DPb�1P

; if h ¼ b� 1

DPntP � DPb�1P
DPbP � DPb�1P

; if h ¼ b

(18)

where DPPnt is the total generation command of a new task,

with DPPb �DPPnt<DPPb�1; DPPb and DPPb�1 are the total generation

commands of the most two similar source tasks, respectively.

Secondly, a continual pre-learning is carried out to update

the optimal knowledge of the dynamic source tasks with

changing reserve capabilities. In this paper, the implementa-

tion period of pre-learning is set to be 15 min as the reserve

capability of each resource is basically unchanged during this

period.

Design of sub-optimizers

For the sake of an efficient interaction between sub-

optimizers and learning concentrator, all the sub-optimizers

need to be compatible with the binary Q-learning. Therefore,

ten various binary heuristic algorithms are employed as the

sub-optimizers of EL, including GA [33], six various binary PSO

with different transfer functions [37], binary bat algorithm,

binary dragonfly algorithm, and binary GWO.
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Overall execution procedure

In summary, the overall execution procedure of EL for OAPC is

provided in Table 1, where kmax is the maximal iteration

number. In order to shorten the computation time, all the sub-

optimizers and the learning concentrator are executed in

parallel based on multi-core CPU.
Table 2 e The Parameters used in EL for OAPC.

Parameter Range Pre-learning Online optimization

a 0<a<1 0.1 0.8

g 0<g<1 0.1 0.1

ε 0<ε<1 0.8 0.9

pm pm � 0 1 1

E E�1 50 10

M c>0 108 108

N N>0 10 10

L L�1 16 16

kmax kmax�2 150 30

Table 3 e Main parameters of various DERs.

Type No. DPm
rate (kW/s) Fuel cost coefficient

Up Down am bm cm

Diesel generator

(DG)

#1 1 1 0.0004 0.2348 10.9952

#2 1 1 0.0004 0.2348 10.9952

#3 1 1 0.0004 0.2348 10.9952

#4 1 1 0.0004 0.2348 10.9952

Microturbine (MT) #1 1.8 2.4 0.0002 0.1164 5.2164

#2 1.8 2.4 0.0002 0.1164 5.2164

#3 1.2 1.6 0.0002 0.1088 5.2164

#4 1.2 1.6 0.0002 0.1088 5.2164

#5 1.8 2.4 0.0002 0.1164 5.2164

#6 1.8 2.4 0.0002 0.1164 5.2164

Fuel cell (FC) #1 6 6 0.0003 0.1189 3.5442

#2 6 6 0.0003 0.1189 3.5442
Case studies

The performance of EL for OAPC is thoroughly evaluated on an

islanded microgrid, which is compared with that of five al-

gorithms, including proportional (PROP) method [38], GA [33],

PSO [34], group search optimizer (GSO) [39], and interior point

method (IPM), where PROP is an engineering method with

fixed participation factors; the population size and the

maximal iteration number of three heuristic algorithms are

set to be 150 and 150, respectively. Through the trial-and-

error, the main parameters of EL are given in Table 2. More-

over, all the simulations are undertaken in Matlab R2016a by a

small server with Intel(R) Xeon (R) E5-2670 v3 CPU at 2.3 GHz

with 64 GB of RAM.

System model

The islandedmicrogrid consists of 12 DERs and 300 household

consumers for secondary control of LFC, where the main pa-

rameters of all the regulation units and TCLs are given in Table

3 and Table 4, respectively. Note that the reserve capabilities

of all the regulation units can be calculated according to their

maximum power outputs and the current operating points,

while the number of TCLs can be determined by their time

margins of participation secondary control of LFC in (4).

Moreover, the power load demand curve and time of use (TOU)

price are given in Fig. 4, where the regulation cost coefficient
Table 1 e Overall execution procedure of EL for OAPC.

EL inputs: DPP and operating parameters of each reserve resource;

EL outputs: optimal knowledge matrices and optimal generation

commands;

Initialize the learning parameters;

If the current task is a source task

Initialize the knowledge without knowledge transfer;

Else

Initialize the knowledge with knowledge transfer using (10) and

(18);

End-if

Repeat

1) Select an action for each binary bit at the current state by (9);

2) Searching a potential high-quality optimum with each sub-

optimizer;

3) Calculate the fitness function of each solution using (5)e(7) and

(16);

4) Calculate the feedback reward of each state-action pair by (15);

5) Implement the interaction between the sub-optimizers and the

learning concentrator using (11)e(14);

6) Update the knowledge of each controllable variable using (8);

7) Let k ¼ k þ1; If k > kmax, then iteration terminates, otherwise

return to step 1).

End

Please cite this article in press as: Zhang X, et al., Ensemble learning
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CLA is set to be 30% of TOU price for the electricity compen-

sation fee of LA; each household consumer has an air condi-

tioner (AC), a refrigerator (Re) and an electric water heater

(WH). In the following case studies, the implementation

period of the secondary control is set to be 4 s.
Table 4 e Main parameters of TCLs.

Type Number Rated
power
(kW)

Ideal temperature
range (�C)

Tmin Tmax

Air conditioner (AC) 300 2.5 24 26

Refrigerator (Re) 300 0.5 2 8

Electric water

heater (WH)

300 1.5 40 50

Fig. 4 e Power load demand curve and time of use price at

the current day.
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Fig. 5 e Convergence of EL for the source task (DP∑ ¼ 200 kW) in pre-learning.
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Pre-learning for offline optimization of source tasks

EL requires a pre-learning to obtain the optimal knowledge

matrices of all source tasks, which will then be transferred to

the initial knowledge matrices of a new task for online opti-

mization of OAPC. For the testing system, the deviation of

total generation command DPP is divided into 12 intervals,

i.e., {[-300, �250), [-250, �200), …, [250, 300]} kW, with one

endpoint for each source task. As illustrated in Fig. 5, EL can

converge to the optimal culture matrices and the optimal so-

lution of the source task (DPP ¼ 200 kW) within 25 iterations,

where DQ represents thematrix 2-norms of knowledgematrix

difference. It also can be found that each sub-optimizer can

search an optimal solution with a low fitness function for the

current source task, which can guarantee a high-quality

optimal solution of learning concentrator due to diversity of

sub-optimizers. Following the same calculation manner, the

optimal knowledge matrices of other source tasks can be ob-

tained by EL.

Online optimization of new tasks

Study of knowledge transfer
Fig. 6 shows the convergence of different algorithms for the

new task (DPP ¼ 225 kW) in online optimization. According to

(10) and (18), the initial knowledge matrices of this new task

can be generated via a linear weighted sum of two most

similar sources tasks (DPP¼ 200 kW and DPP¼ 250 kW). It can
Fig. 6 e Convergence of different algorithms for the new

task (DP∑ ¼ 225 kW) in online optimization.

Fig. 7 e Online optimization of different algorithms for a

step power disturbance (DPM ¼ 225 kW) from 12:00 p.m. to

12:10 p.m.

Please cite this article in press as: Zhang X, et al., Ensemble learning for optimal active power control of distributed energy resources
and thermostatically controlled loads in an islandedmicrogrid, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/
j.ijhydene.2018.10.062

https://doi.org/10.1016/j.ijhydene.2018.10.062
https://doi.org/10.1016/j.ijhydene.2018.10.062


i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( 2 0 1 8 ) 1e1 310
be clearly observed that all the algorithms are adequate to

satisfy the online optimization of OAPC as their execution

time are less than the implementation period of secondary

control (4 s). In particular, the proposed EL can rapidly

approximate a higher quality optimal solution with a much

shorter execution time compared with other four methods, in

which the convergence rate of EL is around 6 times faster than

that of GA. This fully proves that the knowledge transfer can

dramatically accelerate the convergence rate of EL.

Study on a step power disturbance
In order to further test the performance of EL, it is put into the

closed-loop secondary control for online optimization of

different real-time new tasks in an islanded microgrid. Fig. 7

provides the online optimization results of different algo-

rithms for a step power disturbance (DPM ¼ 225 kW) from 12:00
Fig. 8 e Temperature variation curves of some TCLs in online o

(DPM ¼ 225 kW) from 12:00 p.m. to 12:10 p.m.
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p.m. to 12:10 p.m. It can be seen from Fig. 7(a) that all the total

active power output deviations can match well with the power

disturbance, thus the frequency deviation can be rapidly

recovered to zero (See Fig. 7(b)). Among them the frequency

deviation obtained by EL is the smallest, while three heuristic

algorithms lead to larger frequency deviation due to their low

searching efficiency. Besides, the fluctuation of the total active

power output deviation obtained by IPM is the largest as its

optimal solution is mainly determined by the initial solution.

On the other hand, GA also results in a large power fluctuation

because of its random search and low convergence stability. As

shown in Fig. 7(c), the total operation cost of EL is the lowest,

which also confirms that EL can converge to the high-quality

optimums for different new tasks. In contrast, the total oper-

ation cost obtained PROP is the highest as it is lack of dynamic

optimization of OAPC and adopt the fixed participation factors
ptimization of EL for a step power disturbance
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for different new tasks. Furthermore, it can be observed from

Fig. 7(d) that all of LA, FC #1, and FC #2 bear more power

disturbance than that of other units due to their faster ramp

rates and relatively low operation costs.

As the step power disturbance is positive, thus the

controllable TCLs should be turned off from the ON state for

providing the up reserve capability. It can be found from
Fig. 9 e Online optimization of EL for a stocha

Please cite this article in press as: Zhang X, et al., Ensemble learning
and thermostatically controlled loads in an islandedmicrogrid, Intern
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Fig. 8 that three types of TCLs can adequately satisfy the

consumers comfort because all of the indoor temperature,

refrigerator temperature, and hot water temperature can be

controlled in the ideal range after participating secondary

control of LFC. This validates the effectiveness of the

dispatch strategy for TCLs by considering the time margin

in (4).
stic power disturbance over 24-h period.
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Fig. 10 e Comparative results of different algorithms for a stochastic power disturbance over 24-h period.
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Study on a stochastic power disturbance
For thoroughly evaluating the performance of EL, a stochastic

power disturbance is added in the testing islanded microgrid

over a 24-h period, where the online optimization results ob-

tained by EL are given in Fig. 9(a)e(d). It can be obviously

observed that the total active power output deviation obtained

by EL can still match well with the stochastic power distur-

bance, which also leads to a smaller dynamic frequency devi-

ation and a higher cumulative total operation cost. Moreover,

LA is assigned to the largest generation commands, which in-

dicates that LA can significantly improve the dynamic response

performance and reduce the total operation cost due to its fast

response speed and low regulation cost coefficient.

Compared with other algorithms, EL obtains the smallest

frequency deviation and a low cumulative total operation

cost over a day, as illustrated in Fig. 10. More specifically, the

frequency deviation obtained by EL is 20.58% lower than that

of PSO, while the cumulative total operation cost obtained by

EL is only 0.95% higher than that of PROP. This also demon-

strates that EL can greatly guarantee the optimum quality via

an efficient search combination between various sub-

optimizers and a learning contractor. Note that the cumula-

tive total operation cost obtained by PROP is the lowest as the

units with larger reserve capabilities just have the lower cost

coefficients.
Conclusion

In this paper, a novel EL is presented for OAPC of DERs and

TCLs in an islanded microgrid, which has the main contribu-

tions as.

1) A mathematical model of OAPC is firstly presented for an

effective coordination between secondary control and

tertiary control of DERs and TCLs in an islanded microgrid,

thus a high dynamic response performance and a low

operation cost can be achieved.

2) Large number of TCLs with ultra-fast ramp rates can be

effectively utilized for secondary control of LFC by aggre-

gating them as a LA, while the consumer comfort can be
Please cite this article in press as: Zhang X, et al., Ensemble learning
and thermostatically controlled loads in an islandedmicrogrid, Intern
j.ijhydene.2018.10.062
completely satisfied via a real-time evaluation of their

maximal participation time.

3) Through an efficient integration between various sub-

optimizers and a learning concentrator, a high-quality

optimum obtained by EL can be guaranteed with a wide

exploration and a deep exploitation.

4) The optimal knowledgematrices of the source tasks can be

reused for different real-time new tasks via knowledge

transfer, such that EL is adequate to satisfy the online

optimization of OAPC with a quite short implementation

period.

Acknowledgment

This work was jointly supported by National Natural Science

Foundation of China (51477055, 51777078), Hong Kong RGC

Theme based Research Scheme Grants No. T23-407/13N and

T23-701/14N, Guangdong Key Laboratory of Digital Signal and

Image Processing, Project of Educational Commission of

Guangdong Province of China (2017KZDXM032) and Project of

International, as well as Hong Kong, Macao & Taiwan Science

and Technology Cooperation Innovation Platform in Univer-

sities in Guangdong Province (2015KGJH2014).
r e f e r e n c e s

[1] Mukherjee U, Maroufmashat A, Ranisau J, Barbouti M,
Trainor A, Juthani N, et al. Techno-economic,
environmental, and safety assessment of hydrogen powered
community microgrids; case study in Canada. Int J Hydrogen
Energy 2017;42(20):14333e49.

[2] Bevrani H, Feizi MR, Ataee S. Robust frequency control in an
islanded microgrid: H∞ and m-synthesis approaches. IEEE
Trans Smart Grid 2016;7(2):706e17.

[3] Ziouani I, Boukhetala D, Darcherif AM, Amghar B, Abbassi IE.
Hierarchical control for flexible microgrid based on three-
phase voltage source inverters operated in parallel. Int J
Electr Power Energy Syst 2018;95:188e201.

[4] Vigneysh T, Kumarappan N. Autonomous operation and
control of photovoltaic/solid oxide fuel cell/battery energy
for optimal active power control of distributed energy resources
ational Journal of Hydrogen Energy (2018), https://doi.org/10.1016/

http://refhub.elsevier.com/S0360-3199(18)33239-7/sref1
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref1
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref1
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref1
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref1
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref1
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref2
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref2
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref2
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref2
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref3
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref3
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref3
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref3
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref3
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref4
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref4
https://doi.org/10.1016/j.ijhydene.2018.10.062
https://doi.org/10.1016/j.ijhydene.2018.10.062


i n t e r n a t i o n a l j o u r n a l o f h yd r o g e n e n e r g y x x x ( 2 0 1 8 ) 1e1 3 13
storage based microgrid using fuzzy logic controller. Int J
Hydrogen Energy 2016;41(3):1877e91.

[5] Mohamed YAI, El-Saadany EF. Adaptive decentralized droop
controller to preserve power sharing stability of paralleled
inverters in distributed generation microgrids. IEEE Trans
Power Electron 2008;23(6):2806e16.

[6] Gholami S, Saha S, Aldeen M. Robust multiobjective control
method for power sharing among distributed energy
resources in islanded microgrids with unbalanced and
nonlinear loads. Int J Electr Power Energy Syst
2018;94:321e38.

[7] Vachirasricirikul S, Ngamroo I, Kaitwanidvilai S. Application
of electrolyzer system to enhance frequency stabilization
effect of microturbine in a microgrid system. Int J Hydrogen
Energy 2009;34(17):7131e42.

[8] Liu S, Wang X, Liu PX. Impact of communication delays on
secondary frequency control in an islanded microgrid. IEEE
Trans Ind Electron 2015;62(4):2021e31.

[9] Molina MG, Mercado PE. Stabilization and control of tie-line
power flow of microgrid including wind generation by
distributed energy storage. Int J Hydrogen Energy
2010;35(11):5827e33.

[10] Guerrero J, Vasquez JC, Vicuna LGD. Hierarchical control of
droop-controlled AC and DC microgrids-A general approach
toward standardization. IEEE Trans Ind Electron
2011;58(1):158e66.

[11] Lakshmanan V, Marinelli M, Hu J, Binder HW. Provision of
secondary frequency control via demand response
activation on thermostatically controlled loads: solutions
and experiences from Denmark. Appl Energy
2016;173:470e80.

[12] Konstantinopoulos SA, Anastasiadis AG, Vokas GA,
Kondylis GP, Polyzakis A. Optimal management of hydrogen
storage in stochastic smart microgrid operation. Int J
Hydrogen Energy 2018;43(1):490e9.

[13] Anastasiadis AG, Konstantinopoulos SA, Kondylis GP,
Vokas GA, Papageorgas P. Effect of fuel cell units in economic
and environmental dispatch of a microgrid with penetration
of photovoltaic and micro turbine units. Int J Hydrogen
Energy 2017;42(5):3479e86.

[14] Tang X, Hu X, Li N, Deng W, Zhang G. A novel frequency and
voltage control method for islanded microgrid based on
multienergy storages. IEEE Trans Smart Grid 2016;7(1):410e9.

[15] Pahasa J, Ngamroo I. Coordinated control of wind turbine
blade pitch angle and PHEVs using MPCs for load frequency
control of microgrid. IEEE Syst J 2016;10(1):97e105.

[16] Sekha PC, Mishra S. Storage free smart energy management
for frequency control in a diesel-PV-fuel-cell based hybrid AC
microgrid. IEEE Trans Neural Netw Learn Syst
2016;27(8):1657e71.

[17] Kim YS, Kim ES, Moon SI. Distributed generation control
method for active power sharing and self-frequency recovery
in an islanded microgrid. IEEE Trans Power Syst
2017;32(1):544e51.

[18] Anastasiadis AG, Konstantinopoulos S, Kondylis GP,
Vokas GA. Electric vehicle charging in stochastic smart
microgrid operation with fuel cell and RES units. Int J
Hydrogen Energy 2017;42(12):8242e54.

[19] Liu Y, Qu Z, Xin H, Gan D. Distributed real-time optimal
power flow control in smart grid. IEEE Trans Power Syst
2017;32(5):3403e14.
Please cite this article in press as: Zhang X, et al., Ensemble learning
and thermostatically controlled loads in an islandedmicrogrid, Intern
j.ijhydene.2018.10.062
[20] ZhangXS, Li Q, YuT, Yang B. Consensus transferQ-learning for
decentralized generation command dispatch based on virtual
generation tribe. IEEE Trans Smart Grid 2018;9(3):2152e65.

[21] Qiu X, Xu JX, Xu Y, Tan KC. A new differential evolution
algorithm for minimax optimization in robust design. IEEE
Trans Cybern 2018;48(5):1355e68.

[22] Derakhshan G, Shayanfar HA, Kazemi A. Optimal design of
solar PV-WT-SB based smart microgrid using NSHCSO. Int J
Hydrogen Energy 2016;41(44):19947e56.

[23] Mosaad MI, Ramadan HS. Power quality enhancement of
grid-connected fuel cell using evolutionary computing
techniques. Int J Hydrogen Energy 2018;43(25):11568e82.

[24] Hu J, Cao J, Guerrero JM, Yong T, Yu J. Improving frequency
stability based on distributed control of multiple load
aggregators. IEEE Trans Smart Grid 2017;8(4):1553e67.

[25] Xu Z, Østergaard J, Togeby M. Demand as frequency
controlled reserve. IEEE Trans Power Syst 2011;26(3):1062e71.

[26] Wang J, Li Y, Zhou Y. Interval number optimization for
household load scheduling with uncertainty. Energy Build
2016;130:613e24.

[27] Chehreghani Bozchalui M. Optimal operation of energy hubs
in the context of smart grids. Ph.D. dissertation. Waterloo,
ON, Canada: Dept. Elect. Comput. Eng., Univ. Waterloo; 2011.

[28] Shao S, Pipattanasomporn M, Rahman S. Development of
physical-based demand response-enabled residential load
models. IEEE Trans Power Syst 2013;28(2):607e14.

[29] Zhang X, Bao T, Yu T, Yang B, Han C. Deep transfer Q-
learning with virtual leader-follower for supply-demand
Stackelberg game of smart grid. Energy 2017;133:348e65.

[30] Bianchi RAC, Celiberto LA, Santos PE, Matsuura JP, Lopez de
Mantaras R. Transferring knowledge as heuristics in
reinforcement learning: a case-based approach. Artif Intell
2015;226:102e21.

[31] Pan J, Wang X, Cheng Y, Cao G. Multi-source transfer ELM-
based Q learning. Neurocomputing 2014;137:57e64.

[32] Dietterich TG. Ensemble learning. In: Arbib MA, editor. The
handbook of brain theory and neural networks. 2nd ed.
Cambridge, MA: MIT Press; 2002.

[33] Obara S, Watanabe S, Rengarajan B. Operation planning of an
independent microgrid for cold regions by the distribution of
fuel cells and water electrolyzers using a genetic algorithm.
Int J Hydrogen Energy 2011;36(22):14295e308.

[34] Soufi Y, Kahla S, Bechouat M. Particle swarm optimization
based sliding mode control of variable speed wind energy
conversion system. Int J Hydrogen Energy
2016;41(45):20956e63.

[35] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv Eng
Software 2014;69:46e61.

[36] Zhang X, Yu T, Yang B, Cheng L. Accelerating bio-inspired
optimizer with transfer reinforcement learning for reactive
power optimization. Knowl Base Syst 2017;116:26e38.

[37] Mirjalili S, Lewis A. S-shaped versus V-shaped transfer
functions for binary particle swarm optimization. Swarm
Evol Comput 2013;9:1e14.

[38] Yu X, Zhou Q. Practical implementation of the SCADA þ
AGC/EDC system of the Hunan power pool in the central
China power network. IEEE Trans Energy Convers
1994;9(2):250e5.

[39] Basu M. Group search optimization for combined heat and
power economic dispatch. Int J Electr Power Energy Syst
2016;78:138e47.
for optimal active power control of distributed energy resources
ational Journal of Hydrogen Energy (2018), https://doi.org/10.1016/

http://refhub.elsevier.com/S0360-3199(18)33239-7/sref4
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref4
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref4
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref5
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref5
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref5
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref5
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref5
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref6
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref6
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref6
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref6
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref6
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref6
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref7
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref7
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref7
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref7
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref7
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref8
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref8
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref8
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref8
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref9
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref9
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref9
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref9
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref9
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref10
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref10
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref10
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref10
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref10
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref11
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref11
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref11
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref11
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref11
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref11
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref12
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref12
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref12
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref12
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref12
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref13
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref13
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref13
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref13
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref13
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref13
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref14
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref14
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref14
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref14
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref15
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref15
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref15
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref15
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref16
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref16
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref16
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref16
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref16
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref17
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref17
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref17
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref17
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref17
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref18
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref18
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref18
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref18
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref18
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref19
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref19
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref19
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref19
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref20
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref20
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref20
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref20
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref21
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref21
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref21
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref21
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref22
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref22
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref22
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref22
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref23
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref23
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref23
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref23
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref24
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref24
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref24
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref24
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref25
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref25
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref25
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref26
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref26
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref26
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref26
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref27
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref27
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref27
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref28
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref28
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref28
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref28
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref29
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref29
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref29
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref29
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref30
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref30
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref30
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref30
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref30
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref31
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref31
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref31
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref32
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref32
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref32
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref33
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref33
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref33
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref33
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref33
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref34
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref34
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref34
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref34
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref34
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref35
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref35
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref35
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref36
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref36
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref36
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref36
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref37
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref37
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref37
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref37
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref38
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref38
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref38
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref38
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref38
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref39
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref39
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref39
http://refhub.elsevier.com/S0360-3199(18)33239-7/sref39
https://doi.org/10.1016/j.ijhydene.2018.10.062
https://doi.org/10.1016/j.ijhydene.2018.10.062

	Ensemble learning for optimal active power control of distributed energy resources and thermostatically controlled loads in ...
	Introduction
	Optimal active power control of LFC
	LFC framework in an islanded microgrid
	Reserve capability of LA
	a) Air conditioner
	b) Refrigerator
	c) Electric water heater

	Mathematical model of OPAC

	Ensemble learning
	Optimization framework
	Learning concentrator
	Knowledge learning
	Knowledge transfer

	Interaction between sub-optimizers and learning concentrator

	Design of EL for OAPC
	Feedback reward
	Knowledge transfer between different tasks
	Design of sub-optimizers
	Overall execution procedure

	Case studies
	System model
	Pre-learning for offline optimization of source tasks
	Online optimization of new tasks
	Study of knowledge transfer
	Study on a step power disturbance
	Study on a stochastic power disturbance


	Conclusion
	Acknowledgment
	References


