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Abstract: In the process of road pavement health and safety assessment, crack detection plays a
pivotal role in a preventive maintenance strategy. Recently, Convolutional Neural Networks (CNNs)
have been applied to automatically identify the cracks on concrete pavements. The effectiveness of a
CNN-based road crack detection and measurement method depends on several factors, including the
image segmentation of cracks with complex topology, the inference of noises with similar texture
to the distress, and the sensitivity to thin cracks. The presence of shadows, strong light reflections,
and road markings can also severely affect the accuracy in detection and measurement. In this
study, a review of the state-of-the-art CNN methods for crack identification is presented, paying
attention to existing limitations. Then, a novel deep residual convolutional neural network (Parallel
ResNet) is proposed with the aim of creating a high-performance pavement crack detection and
measurement system. The challenge and special feature of Parallel ResNet is to remove the noise
inference, identifying even thin and complex cracks correctly. The performance of Parallel ResNet
has been investigated on two publicly available datasets (CrackTree200 and CFD), comparing it with
that of competing methods suggested in the literature. Parallel ResNet reached the maximum scores
in Precision (94.27%), Recall (92.52%), and F1 (93.08%) using the CrackTree200 dataset. Similarly, for
the CFD dataset the novel method achieved high values in Precision (96.21%), Recall (95.12%), and F1
(95.63%). Based on the crack detection and image recognition results, mathematical morphology was
then used to further minimize noise and accurately segment the road diseases, obtaining the outer
contours of the connected domain in crack images. Therefore, crack skeletons have been extracted to
measure the distress length, width, and area on images of rigid pavements. The experimental results
show that Parallel ResNet can effectively minimize noise to obtain the geometry of cracks. The results
of crack characteristic measurements are accurate and Parallel ResNet can be assumed as a reliable
method in pavement crack image analysis, in order to plan the best road maintenance strategy.

Keywords: pavement monitoring; crack detection; crack measurement; automated distress evaluation
systems; image processing; convolutional neural networks; residual network

1. Introduction

Monitoring, measuring, and evaluating pavement conditions are essential parts of
road pavement maintenance activities, due to the perspective to plan corrective actions [1,2].
Cracking is one of the most common road diseases [3,4]. The identification of cracks is
a highly attractive problem as it allows the planning of the most efficient preventive
maintenance interventions; in fact, cracks activate the main degradation phenomena of
the pavement [5,6]. To recognize the extent of the crack and the corresponding degree
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of severity found during the inspection allows the assessment of the level of pavement
decay. As proof, the commonly used Pavement Condition Index (PCI) [7] provides a
global assessment of flexible or rigid pavements by distinguishing the extent and severity
of each defect. Traditional road crack detection methods are time consuming, wasteful,
and subjective [8–10]. Recent advances in technology had a significant impact in the
field of pavement distress evaluation and measurement, making it possible to analyze the
damage more quickly and reliably than consolidated methods [11–13]. Hence, the road
managers can prioritize and plan the maintenance of the road network, in order to keep
the infrastructure in good condition and to extend their service life [14].

Crack identification systems based on digital image processing have already been used
in the detection of transport infrastructures such as highways, tunnels, and bridges [15–17].
This approach requires image acquisition hardware and image detection software. Road
surface images are typically collected by multi-functional road detection vehicles or sur-
veyor robots [10,18]. Cracks in the images are distinguished into linear cracks and complex
cracks (block or network cracks): linear cracks are evaluated by measuring the average
width and length of cracks, while complex cracks are measured using the average crack
width and crack area [7]. The original images are generally processed using the main algo-
rithms of pre-processing, threshold segmentation, edge segmentation, and mathematical
morphology [16,17,19].

In recent years, digital image detection based on machine learning algorithms or
deep neural networks has been applied in many fields, such as equipment fault diagnosis,
medical image classification, and facial recognition [20–22]. At the same time, it has
also been used to automatically identify cracks on concrete pavements [23], with reliable
detection results. However, some issues limit the automatic detection of road surface
cracks based on digital image processing. Firstly, the problem of inaccurate crack detection
with complex topology and noise inference should be solved [12,23–25]. Furthermore,
it is very difficult to distinguish between certain noises in the image background (e.g.,
characterized by a dark and thin nature) and cracks. Then, the detection accuracy is low
and the measurement error is very large on thin cracks or with complex topology [10,26,27].

In order to overcome the above-discussed problems of well-known road crack detec-
tion and measurement systems, in this study the Convolutional Neural Network (CNN)
structure is improved by combining a fully convolutional layer network [28] and residual
network [29]. Thus, in this study is proposed a novel parallel residual CNN, namely Parallel
ResNet, with multiple branches of parallel structures, regularizing the loss function.

The mathematical morphology method to further filter noise, to eliminate blur, and
to segment cracks is applied. Using the medial axis skeleton algorithm [30,31], the crack
skeleton and the contour of the disease’s connected domain is extracted. The primary goals
are the reduction in error when measuring the maximum and average crack width, distress
length and area. Therefore, the proposed pavement crack detection and measurement
method can improve the accuracy and reliability in road health assessment systems.

2. Related Works

This section briefly reviews the literature on automatic crack detection and measure-
ment methods based on image processing applications.

2.1. Crack Detection

First studies on crack detection using image processing are related to the intensity-
threshold approach, due to its simplicity and efficiency [32]. However, this method is
generally suitable for image processing with consistent background grayscale, uniform
illumination, and high contrast.

The gray level of the crack edge has an obvious step phenomenon and the background
gray level changes slowly, so the crack target can also be segmented by detecting the edge
using algorithms such as Roberts, Sobel, Canny, Prewit, or Log [33]. Qu et al. in [34]
adopted basic mathematical morphology operations to complete the identification and
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connection of linear crack targets: too many threshold settings reduce the adoption of
similar approaches. On the other hand, the segmentation algorithm of edge detection is
mostly based on the local gray and gradient information to identify the crack edge, which
is only suitable for crack maps with a strong edge label [35].

Kass et al. in [36] proposed the Minimal Path Method (MPM) to extract simple open
curves from images, in order to avoid false detections and to measure the width of the
cracks. Some researchers in [37] introduced an approach that selects endpoints globally,
and then obtains a minimum path. Nguyen et al. in [38] applied Free-From Anisotropy to
consider intensity and crack form features for detection on pavement surface images.

As the image data size increases, several studies have considered the use of image
processing and machine learning approaches. Statistical analysis are the most popular and
widely used methodological approaches [39,40]. Delagnes and Barba in [41] suggested the
detection of poorly contrasted cracks in textured areas using a Markov random field model.
Wang et al. in [20] employed a Support Vector Machine (SVM) to recognize aircraft skin
cracks. Bray et al. in [42] used the neural networks classification approach to identify road
defects. Yang et al. in [28] adopted artificial neural network models to separate crack pixels
from the background by selecting appropriate thresholds. However, all these methods had
disadvantages in detecting the complete crack structure over the entire image. Shi et al.
in [24] proposed an automatic road crack detection method, i.e., CrackForest, based on
random structured forests. The main purpose of this system is to characterize the distress
and eliminate noise marked as cracks by learning the inherent structured information of
road diseases. Low accuracy in complex crack detection is the biggest limitation of the
CrackForest algorithm.

Deep learning is a subfield of machine learning. In recent years, Convolutional Neural
Networks have not only performed better in multi-class classification tasks but have also
made significant progress in segmentation and concrete cracks detection. Chambon and Mo-
liard in [43] presented a comparative study of deep learning software frameworks, network
architectures, selected hyper-parameters, and crack detection performances. Some re-
searchers in [28,30] adopted the Fully Convolutional Network (FCN) to achieve automated
road crack detection and measurement. Liu et al. in [44] applied U-net, an encoder–decoder
network approach, to detect concrete cracks. In more detail, the encoder network is similar
to a VGG-16 deep convolutional neural network, and it includes an up sampling layer
and dense skip connection. The U-net-based method showed high effectiveness, good
robustness, and better accuracy than previous FCNs. Liu et al. in [45] proposed a two-step
pavement crack detection and segmentation method based on CNN. The method combines
the detection and segmentation of cracks on the pavement together, so that the cracks found
in the first step are segmented in the second step to improve accuracy. Lau et al. in [46]
proposed a U-Net-based network architecture with an encoder of pre-trained ResNet-34.
In this study, techniques such as freezing the layer groups, assigning different learning
rates to each layer group, and incrementally increasing the image size were adopted. Song
et al. in [47] proposed the Multi-scale Feature Attention Network as an innovative ap-
proach to automatically identify cracks. Some researchers in [23] involved the use of a
cross-entropy loss function and the VGG16 network model for crack detection on concrete
pavements. He et al. in [29] adopted the Residual Network (ResNet), which solved the
network degradation problem with the residual network, a 152-layer successfully trained
neural network. ResNet can obtain higher accuracy than VGGNet and GoogleNet, and
higher computational efficiency than VGGNet. Shortcut connections in the ResNet realizes
identity mapping, so the data stream can flow across layers, and a deeper network should
improve image recognition. Kumar et al. in [21] proposed an ensemble of Fine-Tuned
Convolutional Neural Networks for medical image classification. Veit Andreas et al. in [48]
showed how residual networks work as relatively shallow networks.
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2.2. Crack Measurement

Several researchers have focused on techniques to measure the width, length, and area
of cracks: they are important factors in road safety diagnosis. Shan et al. in [49] pointed out
that the type, number, width and length of road cracks represent the early levels of decay of
concrete structures. Hyunwoo Cho et al. in [50] proposed a Crack Width Transform Method,
that can be summarized in the following steps: (I) crack width transform, (II) aspect ratio
filtering, (III) crack region search, (IV) hole filling, and (V) relative thresholding. The
method has high accuracy and consistency in linear or simple crack width measurements.

Thinning algorithms for binary images can extract crack skeletons. Peleg et al. in [51]
proposed an index table thinning algorithm, which can extract crack skeletons. How-
ever, the skeleton shape is easy to be deformed, and a spiculated margin is produced
in the process of thinning. In this regard, the Hilditch thinning algorithm [52] reduces
the distortion and the spiculated margin. However, due to too many conditions and the
computational complexity, significant resources are required and the processing speed is
slow. Zhang and Suen in [53] refined the algorithm: the processing speed is improved, but
a single pixel of thinning cannot be guaranteed, the bifurcation point is difficult to find,
and the thinning process has a spiculated margin. Some researchers in [27,54] pointed
out that many methods were used for crack width measurement: commonly, the left and
right boundary method, skeleton point oblique method and boundary point minimum
distance method have been applied to crack width measurement. The crack length can be
calculated from the crack skeleton, and the fracture area from the pixel statistical method.
However, the skeleton extraction process of cracks with complex topology creates more
spiculated margins.

3. Methodology

In this section, a novel method for crack detection and measurement based on raw
input road surface images is presented. The overall procedure of the proposed approach is
summarized in Figure 1.
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Figure 1. Overview of the proposed automated pavement crack detection and measurement approach.

A deep residual convolutional neural network, namely Parallel ResNet, is adopted to
improve the crack detection performance of CNNs. The main features of the model include
skip connection convolutional layer, parallel neural network structure, regularized loss
function, and convolutional layer with a stride equal to 2. Supervised learning analyzes the
crack image dataset (necessary for training) and yields the crack recognition as output.

The additional task of the novel approach is the crack measurement. The mathematical
morphology method is employed to further sort out blur and noise and effectively segment
the crack. Then, the crack skeleton is extracted by the medial axis skeleton algorithm from
the crack recognition image. The crack length is calculated considering the total number of
pixels of the crack skeletons with single pixel width. The outer contours of the connected
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domain are also extracted for the crack. Finally, the use of the normal vertical crack skeleton
method allows the crack width and area of each connected domain to be measured and the
crack characteristics to be counted, such as the crack width and area of the entire image.

3.1. Automatic Pavement Crack Detection Method

In this research, the innovative approach involves the multi-branch parallel combina-
tion of deep convolutional network structures, with the aim of providing a more accurate
and efficient detection method than the single branch structure. This assumption is in
accordance with real-life situations: the results obtained by merging the knowledge in crack
identification from different people are more reliable than the ones obtained from a single
person. The criterion is explained through the example in Figure 2.
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Figure 2. An example of parallel structure learning explained in terms of real-life situation.

The proposed methodology focuses on the implementation of residual convolutional
neural networks. This classical CNN architecture adopts skip connection to return the
feature map of a certain layer to the next one, or even deeper, avoiding the network model
degradation due to gradient disappearance and explosion. Then, a parallel structure
module of residual networks is introduced, which is based on the idea of paralleling
multiple residual networks, replacing the traditional pooling layer with a convolutional
layer characterized by a stride of 2, and regularizing the loss function.

The Parallel ResNet architecture, in the case of a number of branches equal to 3, is
described in Table 1.

The symbol ⊕ represents the tensor add operation, the terms “Conv*”, “Conv_*” and
“Conv_*_*all” are convolutional layers: for example, in Conv16 [3 × 3, 1, 1] the depth is
16, kernel size is 3 × 3, stride is 1, and with zero padding. The term “FC-*” represents the
full connection layer. The output patch 5 × 5 is a structured prediction center based on the
input patch 27 × 27. In the final output, the activation function sigmoid is used for the
binary classification task. The Rectified Linear Unit (ReLU) is employed to increase the
non-linearity for hidden layers.

The Parallel ResNet architecture forward propagation diagram is described in Figure 3a:
the size of the input patch is 27 × 27 with three channels; other cubes indicate the feature
maps obtained from the convolutional layer (Conv), Parallel Residual Convolutional Neural
Network Module (the Parallel ResNet Module), and Full Connection. An exploded view of
the Parallel ResNet Module is shown in Figure 3b.
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Table 1. The architecture of Parallel ResNet (branches = 3).

Architecture of Parallel ResNet

Input (27 × 27 RGB image)
Conv16 [3 × 3, 1, 1]

Conv_A_1 16 [3 × 3, 1, 1] Conv_A_2 16 [3 × 3, 1, 1] Conv_A_3 16 [3 × 3, 1, 1]
Conv_B_1 16 [3 × 3, 1, 1] Conv_B_2 16 [3 × 3, 1, 1] Conv_B_3 16 [3 × 3, 1, 1]

⊕Conv16 ⊕Conv16 ⊕Conv16
Conv_1 16 [3 × 3, 2, 1] Conv_2 16 [3 × 3, 2, 1] Conv_3 16 [3 × 3, 2, 1]

⊕
Conv32 [3 × 3, 1, 1]

Conv_A_1 32 [3 × 3, 1, 1] Conv_A_2 32 [3 × 3, 1, 1] Conv_A_3 32 [3 × 3, 1, 1]
Conv_B_1 32 [3 × 3, 1, 1] Conv_B_2 32 [3 × 3, 1, 1] Conv_B_3 32 [3 × 3, 1, 1]

⊕Conv32 ⊕Conv32 ⊕Conv32
Conv_1 32 [3 × 3, 2, 1] Conv_2 32 [3 × 3, 2, 1] Conv_3 32 [3 × 3, 2, 1]

⊕
FC-64
FC-64
FC-25

Output (5 × 5 structured prediction)
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Additional information is provided for a better understanding of the discussed ar-
chitecture. The convolutional layer (Conv) plays a key role in CNN. In the process of
data transmission, sparse interaction and parameter sharing are realized, which reduce
the number of parameters in the CNN model and allow the extraction of useful feature
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information. Turning to mathematics, Equation (1) represents the convolutional operation
of the convolutional layer:

Conv(x)i,j = ∑
m

∑
n

Xi−m, j−nKm,n (1)

where X is the two-dimensional input matrix; K is the convolutional kernel; and m and n
are the row and column values of the convolutional kernel. In expanded form, Equation (1)
is rewritten considering two different values of stride, for example, equal to 1 and 2
(Equations (2) and (3), respectively).[

a b c
e f g

d
h

]
⊗

[
i j
k l

]
= [ai + bj + ek + f l bi + cj + f k + gl ci + dj + f k + hl] (2)

[
a b c
e f g

d
h

]
⊗

[
i j
k l

]
= [ai + bj + ek + f l ci + dj + f k + hl] (3)

where
[

a b c
e f g

d
h

]
is the input two-dimensional tensor; and

[
i j
k l

]
is a 2 × 2

convolutional kernel tensor.
Based on the convolutional layer parallel structure of the concept-v3 model [12,54],

this paper proposes a network structure with a multiple skip connection convolutional
layer (residual block) connected in parallel, i.e., the Parallel ResNet Module (Figure 4). For
a better comprehension, it is distinguished in:

• Figure 4a, which represents two standard convolutional layers. The related function is
defined by Equation (4):

H(x) = F(x) (4)

• Figure 4b, which shows a residual module skipping two convolutional layers (L = 2).
The mathematical expression is described by Equation (5):

H(x) = F(x) + x (5)

• Figure 4c, a Parallel ResNet module with three branches in parallel. The structure of
each branch in the parallel module is the same. For example, the first parallel branch
is composed of a residual block skipping two convolutional layers (Conv_A_1 and
Conv_B_1), and a convolutional layer (Conv_1) with a stride of 2. Finally, through the
add operation, the module outputs N(x)

The Parallel ResNet module function is described by the following Equations (6)–(10):

Hi(x) = xl +
L

∑
k=l

Fi

(
xk
)

(6)

Fi

(
xk
)
= f

(
Ck

0, Ck
1, · · · , Ck

c

)
(7)

Ck
m = ∑

n∈xm

xk−1
i ∗ wl

nm + bl
m (8)

Li(x) = Hi(x)⊗Wi + ti (9)

N(x) =
n

∑
i=1

Li(x) (10)

where H(x) is the output of the residual module; L is the number of skip layers; F
(

xk
)

represents the output after Ck is activated; Ck
m is the m-th channel of the k-th layer’s

characteristic graph; the function f (· · · ) is the ReLU activation function; χm represents
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the subset of the input feature used to calculate Ck
i ; wl

nm is the convolutional kernel matrix
which size is 3× 3; Li(x) is the output tensor of the convolutional layer with a stride equal
to 2; ⊗ denotes the convolution operation symbol; Wi is the convolutional kernel matrix
which size is also 3× 3; and n is the number of batch elements. .
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The Parallel ResNet module, compared with standard convolutional modules, has the
following advantages:

• In the forward propagation of each branch, if the weights in the convolutional layer
(Figure 2a) have not learned any information, it is equivalent to performing an identity
transformation. If the convolutional layer has learned some useful knowledge, then it
may have a better learning ability than the identity function;

• The skip connects change the output function of convolutional layer training from
H(x) to H(x) = F(x) + x. This ensures that the gradient calculated for H(x) does not
tend to zero in the process of back propagation. In addition, in back propagation, the
residual block is more sensitive to the change of output, and can adjust the weight
more finely than the standard convolutional layer;

• A parallel structure, through multiple branches in parallel, can learn more useful
knowledge and can identify crack features in the training and learning phases.

Regularizing the loss function is another important issue to be considered in the
developed methodology. Cross entropy is a common loss function, and it can be calculated
as follows (Equation (11)):

Loss(x) = −
N

∑
i=1

pi(x) log(qi(x)) (11)
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where Loss(x) represents regularizing the loss function; N is the number of batch elements;
x is an input batch; and pi(x) and qi(x) are the actual probability and model prediction
probability that the input batch belongs to the ith type.

After performing L2 regularization on the unit, the formula can be rewritten as follows
(Equation (12)):

Loss(x) = −
N

∑
i=1

pi(x) log(qi(x)) + λ
M

∑
j=1
‖ω2

j ‖ (12)

where M is the number of parameters in the regularization part; ω is the parameter item
involved in the regularization; λ is the regularization coefficient, which defines the degree
of regularization; and ‖ · · · ‖ represents the L2 regularization method.

The regularization coefficient L2 limits the size of the parameter values and can prevent
overfitting. During the tests, the regularization coefficient is set to 0.0005. In the crack
detection method of Parallel ResNet, the convolutional kernel weight of a branch in the
Parallel ResNet Module is randomly selected in the regularization process to participate
in the L2 regularization calculation. In TensorFlow 2.0, the L2 regularization method is
adopted (R(ω) = ‖ω2

2‖ =
1
2 ×∑

j

∣∣∣ω2
j

∣∣∣). Therefore, the derived expression (Equation (13))

can be written:

Loss(x) = −
N

∑
i=1

pi(x) log(qi(x)) + λ× 1
2
×

M

∑
j=1
‖ω2

jk‖ (13)

where k = Rand(branchs); and λ in this study is set to 0.0005.
A branch of the Parallel ResNet module is randomly selected for L2 regularization to

provide a greater diversity of parameter learning and updating, which avoids over fitting
and is useful in achieving the global optimal solution.

3.2. Crack Measurement Method

The automatic crack detection process does not completely eliminate inferences (e.g.,
irregular distributions, small areas, similar pixels and shapes to cracks) in images returned
by Parallel ResNet. Hence, the mathematical morphology method has been used to further
minimize noise and accurately segment the investigated road diseases. Mathematical
morphology is based on set theory in order to describe different objects in an image,
perform matching operations on the image by defining structural elements of specific sizes
and shapes, and analyze and recognize the target area in the original image. Assuming
that the pixel set of the image to be processed is I and the structural element is set to P, the
mathematical morphology operation is the set operation of P and I. In this paper, the main
operations of mathematical morphology (expansion, corrosion, opening and closing) are
used to smooth the edges of the cracks, remove small holes, binary image deblurring and
other actions, as summarized in Table 2.

Table 2. Common operations in mathematical morphology.

Operation Name Function Action

Dilation I ⊕ P =
{

x
∣∣(P̂

)
x ∩ I 6= ϕ

}
Remove gaps and holes.

Erosion IΘP =
{

x
∣∣(P̂

)
x ⊆ I

}
Minimize the inference of noise points.

Opening I ◦ P = (IΘP)⊕ P The contour becomes smooth, the narrow discontinuity is
broken, and the elongated crack is eliminated.

Closing I · P = (I ⊕ P)ΘP Smooth contour lines, remove smaller holes and fill up the
breaks in contour lines

Then, the connected domain and the outer contour of the crack are extracted by
mathematical morphology methods. The adopted criterion is to remove unnecessary
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contour points and keep only skeleton points; multiple iterations are performed to obtain
the final result. In this work, the medial-axis skeleton algorithm is used to extract the
crack skeleton. The purpose of extracting the crack skeleton in the pavement surface
images is to measure the characteristic parameters of road diseases. As discussed above,
cracks in digital images may be incoherent, thin and complex; topology cracks may also
have multiple connected regions after being segmented, and can be divided into different
connected domains. The overall procedure is presented in Figure 5.
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Turning to mathematics, one by one statistical calculation, based on the connected
domain of the divided cracks, is required to define the width, length, and area of the cracks.
Based on the displacement of pixels for crack skeletons, the following Equation (14) can be
used to calculate the crack length:

Lcrack = ∑
m

∑
n

f (x, y)dl (14)

where f (x, y) are the calibrated pixel displacements in the coherent crack; dl is the finite
length of the crack skeleton elements; and m and n are the numbers of connected domains
in the crack images and the total numbers of finite lengths of the crack skeleton elements in
the coherent crack, respectively.

The crack skeleton normal line method measures the maximum crack width. The
average crack width is estimated by dividing the crack area by the crack length, as written
in Equation (15):

Wavg =
Acrack
Lcrack

(15)

Hence, the area of the crack (Acrack) is calculated by counting the total pixels of the
connected domain. For the calculation of crack area with complex topology, not only does
the area of the cracks themselves have to be counted, but also the minimum area of the
external rectangle of the cracks. Finally, the process of crack characteristic measurement is
shown in Table 3.
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Table 3. Crack measurement process.

Step Number Crack Measurement Process

1 The cracks are segmented by mathematical morphology, and the
contour of the cracks in the connected region is extracted.

2 Parallel thinning algorithm for crack thinning.

3 Crack skeleton extraction based on single pixel width.

4 The crack length is calculated according to Equation (14).

5 Calculation of maximum width of crack by vertical line method of
crack skeleton.

6
Based on the pixel statistics, the area of the crack and circumscribed

quadrilateral is calculated, and the average width of the crack is
calculated according to Equation (15).

4. Experiments and Results

The proposed method, Parallel ResNet, is trained and tested on two different databases
with RGB images: CrackTree200 [55] and CFD [24]. The CrackTree200 dataset contains
206 images (size 800 × 600 pixels) of cracks in concrete pavements, including noises such
as shadows and uneven lighting. The CrackTree200 dataset contains cracks that are thinner
in thickness and have a more complex topology. In this study, the CrackTree200 dataset was
split into two subsets: 156 images for training and 40 for testing. The CFD dataset contains
118 RGB images with a resolution of 320 × 480 pixels; these data also have some inferences
such as shadows, oil spots and water stains, and have non-uniform illumination. In this
case, the number of samples was extended; the images were flipped up and down, left
and right, and diagonally; and the expanded CFD dataset was then split into two subsets
(288 images for training and 184 for test).

In the data pre-processing stage, a strategy with a change in the ratio of positive to
negative training samples was proposed to solve the multi-label classification problem with
imbalanced samples [56]. The batch size for each iteration was set to 256, and 10 epochs
were conducted in the CrackTree200 and CFD datasets.

The computing platform was equipped with Intel Xeon CPU E3-1505M, GPU NVIDIA
Quadro M1200 8G, Windows 10 System, and TensorFlow2.0.

In order to evaluate the performance of Parallel ResNet, three statistical parameters
are considered: Precision, Recall and F1 scores. They are calculated as described in Table 4:

Table 4. The evaluation parameters calculation.

Evaluation Parameter Formula

Precision Pr = TP
TP+FP

Recall Re = TP
TP+FN

F1 F1 = 2×Pr×Re
Pr+Re

TP, true positive; FP, false positive; FN, false negative.

Considering that ground truth cracks are manually annotated and there are transitional
areas between crack pixels and non-crack pixels in real images, it was proposed to tolerate
a small distance between the detection and the reference segmentation for the calculation
of the TP rate [57]. In this study, it was assumed that the detected pixels, which are no more
than two pixels away from the manually labeled pixel, are also true positive pixels.

4.1. Multiple Branches of Parallel ResNet

By distinguishing the number of branches in the Parallel ResNet module, the perfor-
mance of the method will be different. To analyze this assumption in a numerical way,
several values (1, 2, 3, 4, and 5) were set as number of branches. Considering both available



Sustainability 2022, 14, 1825 12 of 21

datasets (CrackTree200 and CFD), the Precision, Recall and F1 parameters were calculated
(Table 5 and Figure 6). Specifically, in the CrackTree200 database it was noted that F1 obtains
the highest value for a number of branches equal to 3. Differently, for the CFD database,
the best score for F1 is reached when the number of branches is equal to 2. Regarding
the Recall parameter, the values obtained for different numbers of branches fall within a
narrow range: for the CrackTree200 database they are between 0.9 and 0.943; and for the
CFD database they are between 0.95 and 0.98. Comparing Figure 6a,c, the Precision and F1
parameters have a similar trend (a convex function) to the number of branches.

Table 5. Statistical parameter evaluation varying the number of branches in Parallel ResNet.

Number of
Branches

CrackTree200 CFD

Precision Recall F1 Precision Recall F1

1 0.8936 0.9389 0.9126 0.8095 0.9743 0.8716
2 0.9033 0.9429 0.9189 0.9621 0.9512 0.9563
3 0.9427 0.9252 0.9308 0.9237 0.9723 0.9465
4 0.9476 0.9046 0.9235 0.9323 0.9581 0.9436
5 0.9021 0.9284 0.9112 0.9240 0.9524 0.9352
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of Parallel ResNet for CrackTree200 (red curves) and CFD (black curves) databases.

For automatic detection of crack digital images, the branch amount of Parallel ResNet
was set according to the F1 score. Therefore, a number of branches equal to 3 was assumed
for the CrackTree200 dataset, and equal to 2 for the CFD dataset. Deep learning optimization
methods and hyper-parameters of Parallel ResNet model were selected by comparative
experimental methods. A gradient-descent optimization algorithm, i.e., Adaptive Moment
Estimation (Adam), was used in this study. The ReLU was employed to increase the non-
linearity for hidden layers. Moreover, in the final output the sigmoid activation function
was used for the binary classification task. It should also be noted that in the training phase,
the regularization coefficient (λ) was set to 0.0005, and the learning rate was set to 0.001.

4.2. Experimental Results in Crack Detection

In order to validate Parallel ResNet as a reliable method in pavement crack image
analysis, it was compared with six other competing methods defined in the literature,
namely Canny, CrackForest, Modified VGG16, U-Net, Structured Prediction, and Ensemble
Network. The Precision, Recall and F1 scores are reported in Table 6 for the CrackTree200
and CFD datasets.
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Table 6. Detection performance of different methods for CFD and CrackTree200 databases.

Method
CrackTree200 CFD

Precision Recall F1 Precision Recall F1

Canny 0.30 0.21 0.25 0.4377 0.7307 0.4570
CrackForest 0.7656 0.9133 0.8330 0.7466 0.9514 0.8318

Modified VGG16 0.912 0.891 0.901 0.889 0.903 0.896
U-Net 0.848 0.851 0.849 0.855 0.882 0.868

Structured Prediction - - - 0.9119 0.9481 0.9244
Ensemble Network 0.8525 0.9091 0.8799 0.9552 0.9521 0.9533

Parallel ResNet 0.9427 0.9252 0.9308 0.9621 0.9512 0.9563

Thus, the novel deep residual convolutional neural network, as compared with well-
known literature methods, achieved the following results:

• For the CrackTree200 dataset, the best scores in all performance metrics were found
(Precision = 94.27%, Recall = 92.52%, F1 = 93.08%);

• For the CFD dataset, the best scores were in Precision (96.21%) and F1 (95.63%); while
the obtained value in Recall (95.12%) was a little bit smaller than that achieved by
applying Ensemble Network (but fairly similar);

• Problems also arose for Structured Prediction, which failed in cracks detection for the
CrackTree200 database: the main reason may be that the crack width is very small,
and the noise and crack pixels are very close in the raw image;

• At the same time, it can also be found that the crack detection ability based on the deep
learning is much better than the traditional machine learning and the edge extraction
algorithms, such as CrackForest, Canny, and Structured Prediction;

• The histogram in Figure 7 shows the results, in terms of evaluation parameters, limited
to the deep learning-based methods considered in this paper.
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4.2.1. Detection Analysis on the CrackTree200 Dataset

In Figure 8, four different methods (Canny, CrackForest, Ensemble Network, and
Parallel ResNet) are compared on the CrackTree200 dataset. The traditional Canny edge
detection algorithm was not found to be suitable for road crack detection due to its high
sensitivity. CrackForest did not perform well on thin and complex topologies, as well as
in the presence of crack images with noise inference. Regarding Ensemble Network, it
detected most of the cracks, but there was still much noise left. The method proposed in
this research showed promising results on the effective discernment of noise inference,
especially in crack images with noises that have a similar texture to cracks. The example
crack images in Figure 8 (second and fifth rows) include shadows very similar to cracks in
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pixels; the proposed method was able to minimize inference and identify cracks better than
other crack detection methods.
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Figure 8. Results of different methods on the CrackTree200 dataset (from left to right: original image,
ground truth, Canny, CrackForest, Ensemble Network, Parallet ResNet).

4.2.2. Detection Analysis on the CFD Dataset

In Figure 9, five different methods (Canny, CrackForest, Structured prediction, En-
semble Network, Parallel ResNet) are compared on the CFD dataset. As can be intuitively
observed, the method presented in this paper outperformed other algorithms, with the
exception of Ensemble Network, which showed very similar detection results.
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Figure 9. Results of different methods on CFD (from left to right: original image, ground truth, Canny,
CrackForest, Structured Prediction, Ensemble Network, Parallet ResNet).
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4.2.3. Performance Evaluation of Parallel ResNet under Cross-Dataset Scenarios

In this section, different cross-dataset scenarios are investigated in order to confirm the
validation of the proposed model in terms of generalization. In particular, in this study the
performance of Parallel ResNet merging the CFD and CrackTree200 datasets was further
investigated in various ways:

• Training on CFD and testing on CrackTree200;
• Training on CrackTree200 and testing on CFD;
• Training and testing on a hybrid dataset from CFD and CrackTree200.

For a better comprehension, Figure 10 shows an application of the above-discussed
approach.
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Figure 10. Cross-dataset scenarios. From left to right on the top: original image, CFD/CFD (train-
ing/testing), CrackTree200/CFD, Hybrid/CFD. From left to right on the bottom: original image,
CrackTree200/CrackTree200, CFD/CrackTree200, Hybrid/CrackTree200. The outputs are in terms of
probability maps.

Cross-dataset results using Parallel ReseNet are listed in Table 7:

Table 7. Cross-dataset results.

CrackTree200
Testing

CFD
Testing

CrackTree200
(Training)

Pr = 0.9427 Pr = 0.9792
Re = 0.9252 Re = 0.8992
F1 = 0.9308 F1 = 0.9346

CFD
(Training)

Pr = 0.4658 Pr = 0.9237
Re = 0.6975 Re = 0.9723
F1 = 0.5139 F1 = 0.9465

Hybrid dataset
(Training)

Pr = 0.9335 Pr = 0.9288
Re = 0.9006 Re = 0.9483
F1 = 0.9131 F1 = 0.9369

Hence, the Parallel ResNet model trained on CrackTree200 and tested on CFD led to
high precision and low recall, while the model trained on CFD and tested on CrackTree200
achieved low scores. In addition, training with hybrid data and subsequent tests with each
of the publicly available datasets returned results slightly lower than the best performances.

4.3. Experimental Results in Crack Measurement

The crack detection algorithm cannot automatically remove noise from pavement im-
ages. Therefore, road surface crack measurement requires a mathematical morphology ap-
proach to minimize noise and blur in order to ensure accurate crack skeleton extraction and
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measurement of road distress characteristics. Figure 11 presents the main morphological
steps in crack measurement: original image (Figure 11a), ground truth image (Figure 11b),
recognition image of Parallel ResNet (Figure 11c), crack skeleton (Figure 11d), crack outer
contour image (Figure 11e), crack circumscribed quadrilateral image (Figure 11f). In partic-
ular, the crack circumscribed quadrilateral image shows more clearly that the topologically
complex crack is divided into multiple connected regions.
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Applying the methodology just discussed, the measurement results are shown for the
CrackTree200 and CFD databases in Tables 8 and 9, respectively.
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Table 8. Measurement results for the CrackTree200 dataset.

Original Image
(CrackTree200)

Sustainability 2022, 13, x FOR PEER REVIEW 16 of 21 
 

CrackTree200/CrackTree200, CFD/CrackTree200, Hybrid/CrackTree200. The outputs are in terms of 

probability maps. 

Cross-dataset results using Parallel ReseNet are listed in Table 7: 

Table 7. Cross-dataset results. 

 
CrackTree200 

Testing 

CFD 

Testing 

CrackTree200 

(Training) 

Pr = 0.9427 Pr = 0.9792 

Re = 0.9252 Re = 0.8992 

F1 = 0.9308 F1 = 0.9346 

CFD 

(Training) 

Pr = 0.4658 Pr = 0.9237 

Re = 0.6975 Re = 0.9723 

F1 = 0.5139 F1 = 0.9465 

Hybrid dataset 

(Training) 

Pr = 0.9335 Pr = 0.9288 

Re = 0.9006 Re = 0.9483 

F1 = 0.9131 F1 = 0.9369 

Hence, the Parallel ResNet model trained on CrackTree200 and tested on CFD led to 

high precision and low recall, while the model trained on CFD and tested on CrackTree200 

achieved low scores. In addition, training with hybrid data and subsequent tests with each 

of the publicly available datasets returned results slightly lower than the best perfor-

mances. 

4.3. Experimental Results in Crack Measurement 

The crack detection algorithm cannot automatically remove noise from pavement 

images. Therefore, road surface crack measurement requires a mathematical morphology 

approach to minimize noise and blur in order to ensure accurate crack skeleton extraction 

and measurement of road distress characteristics. Figure 11 presents the main morpho-

logical steps in crack measurement: original image (Figure 11a), ground truth image (Fig-

ure 11b), recognition image of Parallel ResNet (Figure 11c), crack skeleton (Figure 11d), 

crack outer contour image (Figure 11e), crack circumscribed quadrilateral image (Figure 

11f). In particular, the crack circumscribed quadrilateral image shows more clearly that 

the topologically complex crack is divided into multiple connected regions. 

Applying the methodology just discussed, the measurement results are shown for 

the CrackTree200 and CFD databases in Tables 8 and 9, respectively. 

Table 8. Measurement results for the CrackTree200 dataset. 

Original Image 

(CrackTree200) 

     
Morphological Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted 

Length 1474 1265 1468 1045 4383 4241 2000 1810 3063 2600 

Max Width 8.0 5.7 8.2 6.3 14 5.66 7.2 8.0 10.8 5.7 

Mean Width 4.5 3.7 4.5 3.8 4.8 3.7 4.6 4.0 4.8 3.7 

Area 6612 4490 6930 3917 22,334 15,568 9372 7310 15,127 9197 

  

Sustainability 2022, 13, x FOR PEER REVIEW 16 of 21 
 

CrackTree200/CrackTree200, CFD/CrackTree200, Hybrid/CrackTree200. The outputs are in terms of 

probability maps. 

Cross-dataset results using Parallel ReseNet are listed in Table 7: 

Table 7. Cross-dataset results. 

 
CrackTree200 

Testing 

CFD 

Testing 

CrackTree200 

(Training) 

Pr = 0.9427 Pr = 0.9792 

Re = 0.9252 Re = 0.8992 

F1 = 0.9308 F1 = 0.9346 

CFD 

(Training) 

Pr = 0.4658 Pr = 0.9237 

Re = 0.6975 Re = 0.9723 

F1 = 0.5139 F1 = 0.9465 

Hybrid dataset 

(Training) 

Pr = 0.9335 Pr = 0.9288 

Re = 0.9006 Re = 0.9483 

F1 = 0.9131 F1 = 0.9369 

Hence, the Parallel ResNet model trained on CrackTree200 and tested on CFD led to 

high precision and low recall, while the model trained on CFD and tested on CrackTree200 

achieved low scores. In addition, training with hybrid data and subsequent tests with each 

of the publicly available datasets returned results slightly lower than the best perfor-

mances. 

4.3. Experimental Results in Crack Measurement 

The crack detection algorithm cannot automatically remove noise from pavement 

images. Therefore, road surface crack measurement requires a mathematical morphology 

approach to minimize noise and blur in order to ensure accurate crack skeleton extraction 

and measurement of road distress characteristics. Figure 11 presents the main morpho-

logical steps in crack measurement: original image (Figure 11a), ground truth image (Fig-

ure 11b), recognition image of Parallel ResNet (Figure 11c), crack skeleton (Figure 11d), 

crack outer contour image (Figure 11e), crack circumscribed quadrilateral image (Figure 

11f). In particular, the crack circumscribed quadrilateral image shows more clearly that 

the topologically complex crack is divided into multiple connected regions. 

Applying the methodology just discussed, the measurement results are shown for 

the CrackTree200 and CFD databases in Tables 8 and 9, respectively. 

Table 8. Measurement results for the CrackTree200 dataset. 

Original Image 

(CrackTree200) 

     
Morphological Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted 

Length 1474 1265 1468 1045 4383 4241 2000 1810 3063 2600 

Max Width 8.0 5.7 8.2 6.3 14 5.66 7.2 8.0 10.8 5.7 

Mean Width 4.5 3.7 4.5 3.8 4.8 3.7 4.6 4.0 4.8 3.7 

Area 6612 4490 6930 3917 22,334 15,568 9372 7310 15,127 9197 

  

Sustainability 2022, 13, x FOR PEER REVIEW 16 of 21 
 

CrackTree200/CrackTree200, CFD/CrackTree200, Hybrid/CrackTree200. The outputs are in terms of 

probability maps. 

Cross-dataset results using Parallel ReseNet are listed in Table 7: 

Table 7. Cross-dataset results. 

 
CrackTree200 

Testing 

CFD 

Testing 

CrackTree200 

(Training) 

Pr = 0.9427 Pr = 0.9792 

Re = 0.9252 Re = 0.8992 

F1 = 0.9308 F1 = 0.9346 

CFD 

(Training) 

Pr = 0.4658 Pr = 0.9237 

Re = 0.6975 Re = 0.9723 

F1 = 0.5139 F1 = 0.9465 

Hybrid dataset 

(Training) 

Pr = 0.9335 Pr = 0.9288 

Re = 0.9006 Re = 0.9483 

F1 = 0.9131 F1 = 0.9369 

Hence, the Parallel ResNet model trained on CrackTree200 and tested on CFD led to 

high precision and low recall, while the model trained on CFD and tested on CrackTree200 

achieved low scores. In addition, training with hybrid data and subsequent tests with each 

of the publicly available datasets returned results slightly lower than the best perfor-

mances. 

4.3. Experimental Results in Crack Measurement 

The crack detection algorithm cannot automatically remove noise from pavement 

images. Therefore, road surface crack measurement requires a mathematical morphology 

approach to minimize noise and blur in order to ensure accurate crack skeleton extraction 

and measurement of road distress characteristics. Figure 11 presents the main morpho-

logical steps in crack measurement: original image (Figure 11a), ground truth image (Fig-

ure 11b), recognition image of Parallel ResNet (Figure 11c), crack skeleton (Figure 11d), 

crack outer contour image (Figure 11e), crack circumscribed quadrilateral image (Figure 

11f). In particular, the crack circumscribed quadrilateral image shows more clearly that 

the topologically complex crack is divided into multiple connected regions. 

Applying the methodology just discussed, the measurement results are shown for 

the CrackTree200 and CFD databases in Tables 8 and 9, respectively. 

Table 8. Measurement results for the CrackTree200 dataset. 

Original Image 

(CrackTree200) 

     
Morphological Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted 

Length 1474 1265 1468 1045 4383 4241 2000 1810 3063 2600 

Max Width 8.0 5.7 8.2 6.3 14 5.66 7.2 8.0 10.8 5.7 

Mean Width 4.5 3.7 4.5 3.8 4.8 3.7 4.6 4.0 4.8 3.7 

Area 6612 4490 6930 3917 22,334 15,568 9372 7310 15,127 9197 

  

Sustainability 2022, 13, x FOR PEER REVIEW 16 of 21 

CrackTree200/CrackTree200, CFD/CrackTree200, Hybrid/CrackTree200. The outputs are in terms of 

probability maps. 

Cross-dataset results using Parallel ReseNet are listed in Table 7: 

Table 7. Cross-dataset results. 

CrackTree200 

Testing 

CFD 

Testing 

CrackTree200 

(Training) 

Pr = 0.9427 Pr = 0.9792 

Re = 0.9252 Re = 0.8992 

F1 = 0.9308 F1 = 0.9346 

CFD 

(Training) 

Pr = 0.4658 Pr = 0.9237 

Re = 0.6975 Re = 0.9723 

F1 = 0.5139 F1 = 0.9465 

Hybrid dataset 

(Training) 

Pr = 0.9335 Pr = 0.9288 

Re = 0.9006 Re = 0.9483 

F1 = 0.9131 F1 = 0.9369 

Hence, the Parallel ResNet model trained on CrackTree200 and tested on CFD led to 

high precision and low recall, while the model trained on CFD and tested on CrackTree200 

achieved low scores. In addition, training with hybrid data and subsequent tests with each 

of the publicly available datasets returned results slightly lower than the best perfor-

mances. 

4.3. Experimental Results in Crack Measurement 

The crack detection algorithm cannot automatically remove noise from pavement 

images. Therefore, road surface crack measurement requires a mathematical morphology 

approach to minimize noise and blur in order to ensure accurate crack skeleton extraction 

and measurement of road distress characteristics. Figure 11 presents the main morpho-

logical steps in crack measurement: original image (Figure 11a), ground truth image (Fig-

ure 11b), recognition image of Parallel ResNet (Figure 11c), crack skeleton (Figure 11d), 

crack outer contour image (Figure 11e), crack circumscribed quadrilateral image (Figure 

11f). In particular, the crack circumscribed quadrilateral image shows more clearly that 

the topologically complex crack is divided into multiple connected regions. 

Applying the methodology just discussed, the measurement results are shown for 

the CrackTree200 and CFD databases in Tables 8 and 9, respectively. 

Table 8. Measurement results for the CrackTree200 dataset. 

Original Image 

(CrackTree200) 

Morphological Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted 

Length 1474 1265 1468 1045 4383 4241 2000 1810 3063 2600 

Max Width 8.0 5.7 8.2 6.3 14 5.66 7.2 8.0 10.8 5.7 

Mean Width 4.5 3.7 4.5 3.8 4.8 3.7 4.6 4.0 4.8 3.7 

Area 6612 4490 6930 3917 22,334 15,568 9372 7310 15,127 9197 

Sustainability 2022, 13, x FOR PEER REVIEW 16 of 21 
 

CrackTree200/CrackTree200, CFD/CrackTree200, Hybrid/CrackTree200. The outputs are in terms of 

probability maps. 

Cross-dataset results using Parallel ReseNet are listed in Table 7: 

Table 7. Cross-dataset results. 

 
CrackTree200 

Testing 

CFD 

Testing 

CrackTree200 

(Training) 

Pr = 0.9427 Pr = 0.9792 

Re = 0.9252 Re = 0.8992 

F1 = 0.9308 F1 = 0.9346 

CFD 

(Training) 

Pr = 0.4658 Pr = 0.9237 

Re = 0.6975 Re = 0.9723 

F1 = 0.5139 F1 = 0.9465 

Hybrid dataset 

(Training) 

Pr = 0.9335 Pr = 0.9288 

Re = 0.9006 Re = 0.9483 

F1 = 0.9131 F1 = 0.9369 

Hence, the Parallel ResNet model trained on CrackTree200 and tested on CFD led to 

high precision and low recall, while the model trained on CFD and tested on CrackTree200 

achieved low scores. In addition, training with hybrid data and subsequent tests with each 

of the publicly available datasets returned results slightly lower than the best perfor-

mances. 

4.3. Experimental Results in Crack Measurement 

The crack detection algorithm cannot automatically remove noise from pavement 

images. Therefore, road surface crack measurement requires a mathematical morphology 

approach to minimize noise and blur in order to ensure accurate crack skeleton extraction 

and measurement of road distress characteristics. Figure 11 presents the main morpho-

logical steps in crack measurement: original image (Figure 11a), ground truth image (Fig-

ure 11b), recognition image of Parallel ResNet (Figure 11c), crack skeleton (Figure 11d), 

crack outer contour image (Figure 11e), crack circumscribed quadrilateral image (Figure 

11f). In particular, the crack circumscribed quadrilateral image shows more clearly that 

the topologically complex crack is divided into multiple connected regions. 

Applying the methodology just discussed, the measurement results are shown for 

the CrackTree200 and CFD databases in Tables 8 and 9, respectively. 

Table 8. Measurement results for the CrackTree200 dataset. 

Original Image 

(CrackTree200) 

     
Morphological Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted 

Length 1474 1265 1468 1045 4383 4241 2000 1810 3063 2600 

Max Width 8.0 5.7 8.2 6.3 14 5.66 7.2 8.0 10.8 5.7 

Mean Width 4.5 3.7 4.5 3.8 4.8 3.7 4.6 4.0 4.8 3.7 

Area 6612 4490 6930 3917 22,334 15,568 9372 7310 15,127 9197 

  

Morphological
Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted

Length 1474 1265 1468 1045 4383 4241 2000 1810 3063 2600
Max Width 8.0 5.7 8.2 6.3 14 5.66 7.2 8.0 10.8 5.7

Mean Width 4.5 3.7 4.5 3.8 4.8 3.7 4.6 4.0 4.8 3.7
Area 6612 4490 6930 3917 22,334 15,568 9372 7310 15,127 9197

Table 9. Measurement results for the CFD dataset.

Original Image
(CFD)

Sustainability 2022, 13, x FOR PEER REVIEW 17 of 21 
 

Table 9. Measurement results for the CFD dataset. 

Original Image 

(CFD) 
     

Morphological Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted 

Length 3330 2833 540 539 697 689 523 535 451 455 

Max Width 14.6 11.7 7.2 8.9 14.4 14.6 14.6 12.4 7.2 10 

Mean Width 4.7 5.7 4.4 6.1 6.6 7.3 8.2 9.6 4.5 5.7 

Area 15383 16,237 2403 3527 4894 5420 4325 5056 2068 2656 

The numbers of truth and predicted data are in pixels. 

 

Figure 11. The proposed road crack detection and measurement method apply on CFD and Crack-

Tree200: (a) original image, (b) ground truth, (c) recognition image of Parallel ResNet, (d) crack 

skeleton, (e) crack outer contour image, lines of the same color represent connected crack outer con-

tour lines, (f) crack circumscribed quadrilateral image, the red box indicates the circumscribed 

quadrilateral of each connected crack. 

Sustainability 2022, 13, x FOR PEER REVIEW 17 of 21 
 

Table 9. Measurement results for the CFD dataset. 

Original Image 

(CFD) 
     

Morphological Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted 

Length 3330 2833 540 539 697 689 523 535 451 455 

Max Width 14.6 11.7 7.2 8.9 14.4 14.6 14.6 12.4 7.2 10 

Mean Width 4.7 5.7 4.4 6.1 6.6 7.3 8.2 9.6 4.5 5.7 

Area 15383 16,237 2403 3527 4894 5420 4325 5056 2068 2656 

The numbers of truth and predicted data are in pixels. 

 

Figure 11. The proposed road crack detection and measurement method apply on CFD and Crack-

Tree200: (a) original image, (b) ground truth, (c) recognition image of Parallel ResNet, (d) crack 

skeleton, (e) crack outer contour image, lines of the same color represent connected crack outer con-

tour lines, (f) crack circumscribed quadrilateral image, the red box indicates the circumscribed 

quadrilateral of each connected crack. 

Sustainability 2022, 13, x FOR PEER REVIEW 17 of 21 
 

Table 9. Measurement results for the CFD dataset. 

Original Image 

(CFD) 
     

Morphological Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted 

Length 3330 2833 540 539 697 689 523 535 451 455 

Max Width 14.6 11.7 7.2 8.9 14.4 14.6 14.6 12.4 7.2 10 

Mean Width 4.7 5.7 4.4 6.1 6.6 7.3 8.2 9.6 4.5 5.7 

Area 15383 16,237 2403 3527 4894 5420 4325 5056 2068 2656 

The numbers of truth and predicted data are in pixels. 

 

Figure 11. The proposed road crack detection and measurement method apply on CFD and Crack-

Tree200: (a) original image, (b) ground truth, (c) recognition image of Parallel ResNet, (d) crack 

skeleton, (e) crack outer contour image, lines of the same color represent connected crack outer con-

tour lines, (f) crack circumscribed quadrilateral image, the red box indicates the circumscribed 

quadrilateral of each connected crack. 

Sustainability 2022, 13, x FOR PEER REVIEW 17 of 21 
 

Table 9. Measurement results for the CFD dataset. 

Original Image 

(CFD) 
     

Morphological Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted 

Length 3330 2833 540 539 697 689 523 535 451 455 

Max Width 14.6 11.7 7.2 8.9 14.4 14.6 14.6 12.4 7.2 10 

Mean Width 4.7 5.7 4.4 6.1 6.6 7.3 8.2 9.6 4.5 5.7 

Area 15383 16,237 2403 3527 4894 5420 4325 5056 2068 2656 

The numbers of truth and predicted data are in pixels. 

 

Figure 11. The proposed road crack detection and measurement method apply on CFD and Crack-

Tree200: (a) original image, (b) ground truth, (c) recognition image of Parallel ResNet, (d) crack 

skeleton, (e) crack outer contour image, lines of the same color represent connected crack outer con-

tour lines, (f) crack circumscribed quadrilateral image, the red box indicates the circumscribed 

quadrilateral of each connected crack. 

Sustainability 2022, 13, x FOR PEER REVIEW 17 of 21 
 

Table 9. Measurement results for the CFD dataset. 

Original Image 

(CFD) 
     

Morphological Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted 

Length 3330 2833 540 539 697 689 523 535 451 455 

Max Width 14.6 11.7 7.2 8.9 14.4 14.6 14.6 12.4 7.2 10 

Mean Width 4.7 5.7 4.4 6.1 6.6 7.3 8.2 9.6 4.5 5.7 

Area 15383 16,237 2403 3527 4894 5420 4325 5056 2068 2656 

The numbers of truth and predicted data are in pixels. 

 

Figure 11. The proposed road crack detection and measurement method apply on CFD and Crack-

Tree200: (a) original image, (b) ground truth, (c) recognition image of Parallel ResNet, (d) crack 

skeleton, (e) crack outer contour image, lines of the same color represent connected crack outer con-

tour lines, (f) crack circumscribed quadrilateral image, the red box indicates the circumscribed 

quadrilateral of each connected crack. 

Morphological
Features Truth Predicted Truth Predicted Truth Predicted Truth Predicted Truth Predicted

Length 3330 2833 540 539 697 689 523 535 451 455
Max Width 14.6 11.7 7.2 8.9 14.4 14.6 14.6 12.4 7.2 10

Mean Width 4.7 5.7 4.4 6.1 6.6 7.3 8.2 9.6 4.5 5.7
Area 15383 16,237 2403 3527 4894 5420 4325 5056 2068 2656

The numbers of truth and predicted data are in pixels.
The experimental results show that the measurement error of crack length, average

width and area on crack images of the CrackTree200 dataset is larger than the CFD dataset.
As for the crack length and average width measurement errors, they are mainly caused

by the failure of crack edge segmentation.
There are relatively large errors in the measurement of crack areas. One reason is

that when there are multiple crack domains in a digital image with complex topology, the
predicted crack area is larger than the true area due to overlap. Another possible reason is
that some thin cracks are not detected, so the predicted crack area is underestimated.

Especially when the crack boundary is not smooth, the measurement result of the
maximum crack width will be worse, and the main reason is that the crack calculation
error of the crack crossing position is large. The operations of mathematical morphology,
expansion and closing, have been applied to segment cracks. These methods can smooth
the contour lines, eliminate the smaller holes, fill the breaks in contour lines and eliminate
the isolated pixels, which can reduce the number of predicted crack pixels. At the same
time, different combinations or sequences of morphological operations may affect the
extraction of crack skeletons and the number of pixels in the crack.

5. Conclusions

In this paper, a novel automatic pavement crack detection and measurement method
was proposed. The main goal is to provide an effective solution that overcomes the
limitations of established crack detection approaches based on image processing. Currently,
segmenting cracks with complex topology, reducing noises with similar texture to the cracks,
or identifying thin cracks is highly challenging. In addition, a measurement technique was
developed to accurately evaluate crack characteristics.

The Parallel ResNet Module was proposed in order to improve the deep neural
network structure, effectively minimize noise, and automatically identify thin and complex
crack topology in numerical pavement images. Publicly available datasets (CFD and
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CrackTree200) were used to validate the methodology. F1 scores reported in the experiments
were analyzed to identify the optimal number of branches in the Parallel ResNet Module; a
number of branches equal to three was assumed for the CrackTree200 dataset, and equal to
two for the CFD dataset.

Experimentally comparing Parallel ResNet with other competing methods suggested
in the literature, the novel methodology reached, in terms of detection performance:

• The maximum scores in Precision (94.27%), Recall (92.52%), and F1 (93.08%) using the
CrackTree200 dataset;

• High values in Precision (96.21%), Recall (95.12%), and F1 (95.63%) using the CFD dataset.

Therefore, an improved crack measurement method is presented that employs mathe-
matical morphology techniques to eliminate noise inferences and accurately segment the
cracks. The extracted crack skeleton was used to measure the characteristic parameters
of road diseases. The mathematical results show that the novel method, compared with
several competing methods, performs well, although it can be improved in future works,
especially in the estimation of the area and the maximum width of the crack.

It should also be pointed out that the method was only performed on accurate static
images; video streaming was not considered. Therefore, tests on video databases are
planned for future projects. Another important issue concerns the computational speed in
crack detection: it will be necessary to focus on the possibility of increasing it. It should
also be noted that the adopted algorithm requires manually labeling each crack pixel of
ground truth images, which makes data acquisition very expensive: unsupervised and
semi-supervised learning-based techniques can mitigate this problem. The determination
of the hyper parameter of the final module also takes a lot of time, and further studies will
focus on evolutionary computation to optimize the hyper parameters of the deep learning
module. Finally, other recent machine learning techniques and optimization methods
(e.g., [58,59]) will be investigated and incorporated into the proposed approaches in order
to obtain even more accurate results.
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