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A B S T R A C T   

The hard rock Tunnel Boring Machine (TBM) is a complex engineering equipment coupled with multiple sub- 
systems for underground tunnel excavation in complex geological environments. Resetting the operational 
and structural parameters of TBM according to different geological conditions usually requires engineers to 
spend a lot of time dealing with the interaction between various subsystems, which is a tedious and time- 
consuming job. To facilitate setting the operational and structural parameters of TBM, we present a con
strained multi-objective optimization model and its solving method in this paper. To be specific, three perfor
mance indices, i.e. minimizing the system construction period, construction energy consumption and 
construction cost of TBM, are firstly considered as the three objectives in the proposed model. Secondly, two push 
and pull search (PPS) based algorithms, including PPS-MOEA/D and PPS-KnEA, are suggested to solve the 
formulated constrained multi-objective optimization problem. Finally, to verify the performance of the devel
oped method, the presented method is compared with several popular constrained multi-objective evolutionary 
algorithms by tackling the established optimization model. The experimental results reveal that the presented 
method has the best performance among the comparison algorithms, and the overall performance of the algo
rithm with PPS is better than other algorithms without PPS, which indicates the superiority of PPS framework in 
solving practical optimization problems.   

1. Introduction 

TBM is a large underground engineering machine with tightly 
coupled subsystems. It is widely used in the construction of water 
conservancy, subway, and other infrastructure due to its good con
struction safety, high tunneling efficiency and environmental protection 
characteristics (Yagiz & Karahan, 2011; Sun, Wang, Wang, Zhang, & 
Song, 2016; Liao, Chen, & Yao, 2017; Ren, Shen, Zhou, & Chai, 2018a). 
However, it also has problems such as long construction period, high 
cost, and large energy consumption, especially the expensive hard rock 
TBM. In order to find feasible and mature TBM operational and struc
tural parameters, engineers usually deal with the interaction between 
different subsystems according to engineering experience, which not 
only involves a lot of repetitive work but also affects the selection of the 

best operational and structural parameters. Moreover, different sub
systems of TBM belong to different disciplines, including geotechnical, 
mechanical, electromagnetic, information, hydraulic, and other disci
plines. The tight coupling of a large number of subsystems and disci
plines brings great challenges for engineers in setting TBM system 
parameters. 

Researchers have built many mathematical models of TBM to help 
engineers understand the relationships between each subsystem and 
provide a basis for regulating operational parameters. For example, Wijk 
(1992) used the uniaxial compressive strength of the rock and the cer
char abrasivity index of the rock to propose the wear equation of the 
TBM’s disc cutter and simulated the relationships between the structure 
of the disc cutter and other subsystems. Roxborough and Phillips (1975) 
first attempted to determine the fundamental relationships between the 
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normal forces and rolling forces acting on the rock surface and the 
uniaxial compressive strength, disc diameter, and penetration of the 
rock. To describe the force on the cutter more precisely, Ozdemir (1977) 
established a TBM model taking into account the spacing of the cutter. 
He observed that there was an optimal spacing to penetration ratio. 
Rostami and Ozdemir (1993) established a new theoretical/empirical 
Colorado School of Mines model for TBM, which can also be used to 
optimize the design of disc cutter and calculate the penetration rate of 
TBM under given geological conditions. Rostami (1997) developed the 
Colorado School of Mines model and establishing more precisely the 
relationships between the pressure on the disc cutter and various pa
rameters. Yagiz (2003) analyzed and evaluated the impact of rock 
fracture and brittleness on TBM performance, and modified the Colo
rado School of Mines model. 

To make the mathematical model reflect the performance of TBM 
more accurately and obtain the optimal operation and structural pa
rameters, artificial intelligence technology has been widely used in the 
optimization and construction of TBM model in the past two decades 
(Yagiz & Karahan, 2011; Armaghani, Mohamad, Narayanasamy, Narita, 
& Yagiz, 2017; Yagiz & Karahan, 2015). Specifically, Benardos and 
Kaliampakos (2004) built the tunneling speed model by using Artificial 
Neural Network. Grima, Bruines, and Verhoef (2000) found that TBM 
modeling with neuro-fuzzy method had more accurate results than 
traditional modeling methods. Moreover, Sun, Wang, Shi, Wang, and 
Song (2018);Wang, Yuan, Mu, Sun, and Song (2019) employed genetic 
algorithm (GA) to find the optimal control and structural parameters, 
and studied the influence of different TBM prediction models on the 
minimum construction period of tunnel engineering. Armaghani, Far
adonbeh, Momeni, Fahimifar, and Tahir (2018) used the gene expres
sion programming(GEP) to build an equation model of TBM to estimate 
the performance of TBM, and found that the GEP equation was superior 
to the multiple regression equation. Wang and Wang (2020) trans
formed the multi-objective problem of TBM into a single objective 
problem, and took the single objective function as a linear combination 
of multiple objective functions. For the past few years, combining of 
deep learning and evolutionary algorithm are also applied on TBM. For 
example, Yagiz and Karahan (2011) combined artificial neural network 
and particle swarm optimization to predict the advance speed of granite 
tunneling machines in different weathered zones. 

Although a lot of work has been done on the optimization of the TBM 
performance, most of the work focused on the construction of TBM 
model and the single-objective optimization of performance indices. 
Wang and Wang (2020) presented several crucial performances of TBM 
during the excavating, and employed them as objective function in later 
formulation of multi-objective optimization problem for TBM control. 
However, they converted the established multi-objective optimization 
problem into single-objective optimization problem with setting well- 
matched weighted factors and provided only one solution. As a matter 
of fact, TBM model includes many performance indices, such as con
struction period, construction energy consumption, and construction 
cost. When any performance index decreases by changing subsystem 
operational parameters, it may lead to the increase of other performance 
indices. It is not appropriate to consider only one objective for optimi
zation. It must be balanced between low cost, low construction period, 
and low energy consumption. Therefore, multi-objective optimization 
model for TBM is very necessary. As far as we know, there are a few 
researches on multi-objective optimization of TBM models using con
strained multi-objective evolutionary algorithms (CMOEAs), so it is ur
gent to fill this gap. 

In addition, the optimization of TBM is often involved in many 
constraints, such as constraints on the power output from the hydraulic 
thrust system of the cutterhead, constraints on the power output from 
the cutter head driving system, geometric constraints on the disc cutter 
design(Wijk, 1992), performance requirements, etc. The TBM perfor
mance optimization problem can be summarized as a constrained multi- 
objective optimization problem (CMOP). Without loss of generality, a 

CMOP can be defined as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

minimize F
(
x
)
= (f1(x),…, fm(x))T

subject to gi(x)⩾0, i = 1,…, q
hj
(
x
)
= 0, j = 1,…, p

x ∈ Rn

(1)  

where F(x) is an m-dimensional objective vector, and F(x) ∈ Rm. gi(x)⩾0 
refers to inequality constraints, and q means the number of inequality 
constraints. hj(x) = 0 is an equality constraint, and p represents the 
number of equality constraints. x ∈ Rn refers to an n-dimensional deci
sion vector. 

A feasible solution set, FS = {ϕ(x) = 0,x ∈ Rn}, is constituted by all 
feasible solutions. Given a solution x* ∈ FS, if there is no any other so
lution x* ∈ FS satisfying fi(x*)⩽fi(x*)(i ∈ {1,…,m}), x* is called a Pareto 
optimal solution. All Pareto optimal solutions constitute a Pareto set 
(PS). The set of the mapping vectors of PS in the objective space is called 
a Pareto front (PF), which is defined as PF = {F(x)|x ∈ PS}. 

In recent years, a series of CMOEAs are proposed to tackle the 
CMOPs. CMOEAs mainly consist of two parts: (1) multi-objective opti
mization evolutionary algorithm; (2) constraint processing mechanism. 
Due to objectives are always in conflict with each other, CMOEAs not 
only need to maintain a balance between convergence and diversity of 
working population, but also need to maintain a balance between 
objective minimization and constraint satisfaction, so as to find an 
optimal set of compromise solutions. 

Existing CMOEAs fall into three different types according to their 
selection mechanism. The first type is a domination-based CMOEA, such 
as NSGA-II-CDP (Deb, Pratap, Agarwal, & Meyarivan, 2002), which uses 
a non-dominant sorting method to select solutions to the next genera
tion. The second is decomposition based CMOEA. A typical example of 
this type is MOEA/D-CDP (Zhang & Li, 2007), which decomposes a 
CMOP into a number of constrained single-objective optimization 
problems, each of which is solved in a collaborative manner. Finally, 
index-based CMOEA, such as KnEA (Zhang, Tian, & Jin, 2015; Tian, 
Zhang, Xiao, Zhang, & Jin, 2021), used hypervolume metrics to improve 
the convergence and diversity of the algorithm. In addition, for multi- 
and many-objective optimization problems, the compromise among the 
optimization objectives is different for each Pareto-optimal solution. 
Hence, the solution that has the best compromise among the objectives 
should satisfy the decision-maker’s constraints and preferences (Rao, 
2007). Rao and Lakshmi (2021a, 2021b) presents a R-method to 
selecting the best solution in the problems via ranking of Pareto-optimal 
solutions. First, the level assigned to the objectives and the alternative 
solutions that relative to each objective are converted into appropriate 
weights. These weights are used to calculate the final comprehensive 
score of the alternative solutions. Then the final ranking of alternative 
solutions is done based on the composite scores. At last, the experiments 
reveal that the proposed method is comparatively easier, more logical, 
and can be used for choosing the best compromise solution in multi- and 
many-objective optimization problems. 

In this paper, we formulate a TBM performance optimization as a 
CMOP. The modeled CMOP contains a number of inequality constrains. 
for a practical problem, it usually has small and narrow feasible regions. 
Moreover, the infeasible regions will block the way of the searching 
population towards the PF. Hence, it is very difficult to solve a CMOP, 
due to three types of difficulty, convergence difficulty, diversity diffi
culty, and feasibility difficulty (Fan et al., 2019a) exist in the problem. 
Recently, a kind of push and pull search (PPS) framework was proposed 
for solving CMOPs by Fan et al. (2019c, 2019b). The PPS framework is 
appropriate for the CMOP with small and narrow feasible regions. Two 
PPS-based algorithms, including PPS-MOEA/D and PPS-KnEA (embed
ding Finding knee points method in the PPS framework), are suggested 
to solve the formulated CMOP. The main contributions of the paper are 
as follows: 
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1. The mathematical model of TBM was established and the perfor
mance of TBM was optimized into CMOP.  

2. A PPS-based algorithm called PPS-KnEA which is also a knee point 
driven CMOEA is proposed. In the infeasible solution of the current 
population, the knee points preference is an approximation of the 
very large hypervolume preference, and the knee points are pushed 
to the feasible region from the infeasible region with the help of PPS 
framework, thus improving their diversity and convergence perfor
mance in CMOP.  

3. Within the PPS-KnEA, a new constraint multi-objective optimization 
strategy using knee point driven and improved epsilon constraint 
handling mechanism are proposed. In this strategy, the local knee 
points of the non-dominated fronts in the population is first locating. 
Then, the improved epsilon constraint handling mechanism is 
employed to control the constraint violation values of each genera
tion dynamically. If the constraint violation values of the infeasible 
solutions are less than or equal to a predefined threshold value, the 
knee points in the neighborhood are preferentially selected to 
accelerate the convergence and promote diversity. 

The rest of this paper is organized as follows. In Section 2, the 
modeling of the TBM is detailed, with its optimization formulated as a 
CMOP. In Section 3, a modified PPS-based algorithm called PPS-KnEA is 
proposed. Section 4 designs experiments to compare PPS-MOEAD and 
PPS-KnEA with four CMOEAs, including CM2M, MOEA/D-CDP, KnEA, 
and NSGA-II-CDP. Finally, conclusions and some future research di
rections are summarized in Section 5. 

2. Problem formulation 

2.1. Model of hard rock TBM 

In hard rock TBM tunnel construction, it is necessary to reset the 
operation parameters and structure design parameters of the disc cutter 
according to the different geological conditions. That is a tedious and 
time-consuming task, especially in complicated geological conditions of 
the construction environment, which need frequent to resetting the 
system parameters to adapt the changing of rock types. Furthermore, the 
main system of a TBM can be divided into the following three sub
systems: the thrust system, the cutter head driving system and the cutter 
head system as shown in Fig. 1. The variation of the parameters in a sub- 
system will affect the parameters of the other subsystems. That is, the 3 
subsystems interact and constrain each other to form a tightly coupled 
mechanical system (Rostami, 2016; Liu et al., 2016b; Home, 2016). 

2.1.1. Thrust system 
The thrust system provides a stable and reliable power source for the 

rock breaking progress of TBM, which has an important impact on the 
construction period, energy consumption and cost. The thrust system 
pushes the disc cutter onto the rock surface and acts a normal force Fn to 
squeeze and penetrate the rock, as shown in Fig. 2(a). The projected area 
of the disc cutter acting on the rock surface is trapezoid A, and the area 
of the trapezoid is provided as follows. ” 

A =
1
2

[(

w+w+ 2δtanα
) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2 − (r − δ)2
√ ]

(2)  

where w(m) is the disc cutter wear flat, r(m) means the radius of the 
cutter, α(◦) refers to the cutter edge angle, and δ(m) means the pene
tration depth. According to Wijk (1992)’s rock pressure equation, it can 
be known that the thrust acting on each disc cutter is fn: 

fn = 3σcA (3)  

where σc (Pa) is the UCS of the rock, assuming that the thrust acting on 
each cutter is the same, then the total thrust needed to break the rock on 
the cutter head is Fn: 

Fn = NT fn (4)  

where NT is the total number of the disc cutter, by combining Eqs. ()()() 
(2)–(4), we obtain that the total thrust force of the thrust system applied 

Fig. 1. The whole structure of TBM(Sun et al., 2016).  

Fig. 2. The structure of the constant wear flat disc cutter.  
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to the cutter head is Fn: 

Fn = 3NT σc

(
w+ δtanα

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2rδ − δ2

√
(5)  

Therefore, the total power on the thrust system is: 

PF =
Fnδω

60
(6)  

where ω(rd/min) is the rotating speed, the corresponding notations are 
explained in Table 1. 

2.1.2. Cutterhead driving system 
The cutterhead hydraulic driving system provides a reliable and 

stable torque Tt for the rotation of the cutterhead. The rotation of the 
cutterhead provides a tangential force ft for the disc cutter which is 
attached to the cutterhead (Wang, Kang, Zhao, & Zhang, 2015; Zhang, 
Huang, Huang, Cai, & Kang, 2013). From Wijk (1992)’s work, its 
tangential force equation can be obtained as follows: 

ft = 3σcδ
(

w+
2
3

δtanα
)

(7)  

According to the definition of friction, the friction coefficient is assumed 
to be η, then: 

η =
ft

fn
(8)  

Then the total torque on the cutterhead is: 

Tt = η FnD
NT + 1

4NT
(9)  

By combining (5), (7), (8) and (9), we can get the total torque applied to 
the cutting head as follows: 

Tt =
NT + 1

4NT
FnD

δ
(
w + 2

3 δtanα
)

(
w + δtanα

) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2rδ − δ2

√ (10)  

where D (m) is the diameter of the cutterhead, So the total power on the 

cutter-head driving system is: 

PT =
2πωTt

60
(11)  

2.1.3. Cutterhead system 
The disc cutter attached to the cutterhead system is a system in direct 

contact with the rock (Ren, Shen, Arulrajah, & Cheng, 2018b). It is 
necessary to design different disc cutter structures according to different 
geological parameters and cooperate with appropriate operational pa
rameters, so as to maximize the cutter-life of the disc cutter and save 
construction cost without affecting the construction period and energy 
consumption(Armaghani, Koopialipoor, Marto, & Yagiz, 2019; Singh, 
2014; Rostami, 2008). Here, Wijk (1992)’s cutter-life model is adopted 
as follows: 

Cf =
2rw3φcot α

2

Fn(CAI)2 ̅̅̅̅̅̅̅̅̅̅̅̅̅σcσPLT
√ (12)  

where φ(Pa/m2) means the cutter wear coefficient, σPLT(Pa) refers to the 
point load test index for tensile rock strength. 

2.2. Optimization variables 

Six control variables are considered in the optimization problem, 
which are defined as: x = [H,w,δ,ω,r,α]. H and ware the wear height and 
flat of the disc cutter respectively, and δis the penetration depth. α is the 
cutter edge angle, ω presents the rotary speed, r refers to the disc cutter 
radius. In addition, the ranges of design variables are provided in 
Table 2, the values for a set of the constant parameters are provided in 
Table 3. 

2.3. Objectives 

In the tunnel construction project of TBM, the construction period, 
energy consumption and cost are the three performance indices that 
need to be considered. The optimization of TBM performance is a multi- 
objective optimization problem, so we consider minimizing the con
struction period, energy consumption and cost. 

2.3.1. Minimize construction period 
The excavation period of the tunnel is mainly divided into normal 

excavation time (tn), and down time (td) which mainly includes the time 
of replacing the cutter (tcha) and maintenance time (tmai = ς ∗ tn), where 

Table 1 
Nomenclature.  

w the disc cutter wear flat (m) r the radius of the cutter(m) 

α the cutter edge angle (◦) δ the penetration depth (m) 
Fn thrust force of the thrust system 

(N) 
fn the thrust acting on one disc 

cutter (◦) 
A the projected area (m2) PF the total power on the thrust 

system (W) 
ω the rotating speed (rd/min) α the cutter edge angle (◦) 
ft tangential force of one disc 

cutter (N) 
Tt the total torque (Nm) 

NT the total number of the disc 
cutter 

η the friction coefficient 

σPLT the Point Load Test index for 
tensile rock strength(Pa) 

PT the total power on the cutter- 
head driving system (W) 

H the wear height for constant 
wear flat tool(m) 

φ the Cutter wear coefficient 
(Pa/m2)

D the diameter of the cutterhead 
(m) 

CAI Cerchar abrasivity index 

Lo the length of each ring(m) LT the total length of the tunnel (m) 
tn the normal excavation time (h) td the down time (h) 
tcha the time of replacing the cutter 

(h) 
tmai the maintenance time (h) 

Cf the cutter-life of the disc cutter 
(m) 

λ the proportionality constant 

E the construction energy 
consumption (m) 

Lz the total rolling length of all 
cutters (m) 

Nc the number of the changed 
cutters 

M the TBM capital cost ($/h) 

Ct the tools cost ($) C the construction cost ($)  

Table 2 
The ranges of design variables.  

Variables Range Units Original design 

H [0.5,20] mm 0.5 
w [2,20] mm 2 
δ [1,20] mm 5 
α [30,120] ◦ 80 
ω [0.5, 10] rd/min 6 
r [100, 300] mm 200  

Table 3 
The values of the related parameters.  

Parameter value Units  

D 10 m  
Lo 1 m  
φ 1.7× 1025 Pa2/m  
σc 1.3× 108 Pa  

σPLT 7.5× 106 Pa  
CAI 2.5   
LT 10000 m  
NT 40 one   
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ς is the coefficient, so the total construction period is (Sun et al. (2018)): 

t = tn + td = tn + tcha + ς ∗ tn (13)  

where 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

tn =
LT

60δω

tcha = tchasfloor
(

Lz

Cf

)

Lz =
πD(NT + 1)LT

2δ

(14)  

LT is the total length of the tunnel, Lz presents the total rolling length of 
all cutters, tchas refers to the changing time of each cutter. Thus, the first 
objective function can be written as follows: 

f1 = min(t) (15)  

2.3.2. Minimize construction energy consumption 
In TBM tunnel engineering, in order to ensure engineering energy 

saving, we reduce the construction energy consumption of each ring of 
the tunnel to the minimum. In this study, the construction energy con
sumption mainly includes hydraulic thrust system and tool head torque 
system. The construction energy consumption can be calculated by the 
following formula. 

E =

(

PF +PT

)
LT

60δω (16)  

Thus, the second objective function can be written as follows: 

f2 = min(E) (17)  

2.3.3. Minimize construction cost 
In the TBM tunnel project, in order to reduce the cost of the project, 

we minimize the construction cost of each ring of the tunnel. In this 
study, the cost of the project mainly includes the rent of TBM and the 
expenditure of the disc cutter. The construction cost of the tunnel can be 
calculated by the following formula. 

C =
MT LT

60δHω+

(

NT +Nc

)

Ct (18)  

where Nc is the number of the changed cutters, MT means the TBM 
capital cost, Ct refers the tools cost. Thus, the third objective function 
can be written as follows: 

f3 = min(C) (19)  

2.4. Constraints 

The constraints of TBM mainly include the design of the disc cutter 
and performance constraints of the thrust system, cutterhead driving 
system. Therefore, there are the following six constraints: 

λ =
H
w

(20)  

Equation.(20) represents the constraints on the design of the disc cutter. 
H is the wear height for constant wear flat disc cutter, and λ is the 
proportionality constant. Cutter wear flat w and cutter wear height H are 
two mutually constrained variables. The smaller the cutter wear flat is, 
the sharper the cutter is, the higher the driving speed is. However, it is 
easy to be damaged, the cutterlife of the cutter is shorter, increasing the 
cost of the cutter. In order to reduce tool consumption, disc cutter wear 
height H should be as large as possible, but wear plane w must increase 
with the increasing of wear height H, to obtain stable cutting perfor
mance. Therefore, λ should not be greater than 1.5. 

1.5 − λ⩾0 (21)  

In order to maintain the performance of the tool and the successful 
completion of the project, we limit the cutterlife of the tool to within 
3000 meters. 

3000 − Cf ⩾0 (22)  

The torque system consists of a set of hydraulic motors which has a limit 
to the maximum output torque. Exceeding this limit will easily cause the 
cutterhead to get stuck, resulting in unnecessary downtime for mainte
nance, in which case the total torque is less than 5,000 KNm: 

5 × 106 − Tt⩾0 (23)  

Similarly, the hydraulic thrust system provides a limit to the thrust of the 
cutter. In addition to overcoming the ground resistance from penetrating 
the rock, it also prevents damage to the disc cutter. In general, the total 
thrust should be less than 15,000 KN: 

1.5 × 107 − Fn⩾0 (24)  

In addition, both the Cutterhead driving system and the Thrust system 
are limited in the output power. Exceeding the mechanical load will 
make the TBM unable to work normally and even bring potential con
struction safety hazards. The constraint equations are as follows: 

4.5 × 106 − PT ⩾0 (25)  

1.2 × 104 − PF⩾0 (26)  

In summary, the overall optimization model contains three objectives 
(minimizing construction period, energy consumption, cost), and six 
constraints (including the design of the disc cutter, performance con
straints of the thrust system and cutter head driving system). The overall 
optimization model is provided as follows. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize F
(
x
)
= (t,E,C)

T

subject to 1.5 − λ⩾0
3000 − Cf ⩾0
5 × 106 − Tt⩾0
1.5 × 107 − Fn⩾0
4.5 × 106 − PT ⩾0
1.2 × 104 − PF⩾0

(27)  

3. PPS-KnEA 

PPS-KnEA is in principle a knee point driven CMOEA based on PPS 
framework. The main difference between PPS-KnEA and PPS-MOEA/D 
is that, in addition to the dominance relationship, the knee point is 
used as a preferred selection criterion. In the process of environmental 
selection, PPS-KnEA preferentially selected individuals carrying knee 
points to improve the diversity of the population. In this section, we 
describe the main components of PPS-KnEA. 

3.1. Definition of knee points 

A knee point, Bk, is defined to be the one having the maximum dis
tance from the convex hull of individual minima to the hyperplane S 
constructed by the extreme points. 

Bk = argmax
p

{(

d
(

p, S
)}

(28)  

where p is a solution on the PF. d(p,S) denotes the distance from solution 
p to the hyperplane S: f1 +…+fm = 1 in a normalized coordinator sys
tem(Yu, Jin, & Olhofer, 2020). 

In the above definition, an extreme point x in the i-th objective can be 
described as follows for a given population P: ∀y∈ P, ∃i ∈
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{1,…,m}, x = argmaxf i(y)∧∀j ∈ {1,…,i − 1,i + 1,…,m},fj(x) = minf j(y). 
In Fig. 3, point Bk is the knee point on the PF, which has the largest 
distance to the hyperplane constructed by the extreme points, AE and CE. 
Additional definitions of knee points can be found in Qiu, Liu, Zhang, Li, 
and Cheng (2019), Zhang et al. (2015) and Das (1999). 

3.2. Finding knee point method 

In the multi-objective optimization of real world problems, a small 
improvement in one of the objectives would result in a severe degra
dation of at least one other objectives. Knee points are a subset of the 
Pareto optimal solution. Hence, when the user has no specific preference 
for the Pareto solution, knee point is considered the preferred solution. 
In this work, we adopt the Finding knee point method presented by 
Zhang Zhang et al. (2015). By looking at Fig. 4, we can see that solution 
B is a knee point in its neighborhoods denoted by the rectangle in dashed 
lines, as it has the maximum distance to L among A,B and C inside its 
neighborhood. From Fig. 4, we can conclude that the knee point in the 
evolution population has the maximum hypervolume value. Therefore, 
with guidance of the knee point, the evolution population are able to 
accelerate convergence and maintain diversity (Zhang et al., 2015; Yu 
et al., 2020). 

For a bi-objective problem, L can be defined by ax + by + c = 0, 
where the parameters can be determined by the two extreme solutions. 
Then the distance from a solution A(xA, yA) to L can be calculated as 
follows: 

d

⎛

⎜
⎜
⎜
⎝

A,L

⎞

⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|axA + byA + c|
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√ ifaxA + byA + c

−
|axA + byA + c|

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 + b2

√ otherwise
(29)  

” If the set of mapping vectors in the objective space for the solutions of 

generation g contains Ng nondominated solutions based on non
dominated sorting, and each set of nondominated soltuions has Si 
(1⩽i⩽Ng) solutions.” 1⩽i⩽Ng. The neighborhood of the solutions is 
defined by the size of the hypercube R1

g × R2
g × ⋯× Rj

g × ⋯× RM
g , where 

1⩽j⩽M,M represent the number of objectives. So, the size of the 
neighborhood regarding objective j,Rj

g is determined as follows: 

Rj
g =

(
fmaxg

j
− fming

j

)
⋅rg (30)  

where fmaxj
g
and fminj

g
represent the maximal and the minimal values of the 

j-th objective at the g-th generation in set Si, and rg is the ratio of the size 
of the neighborhood to the span of the j-th objective in non-dominated 
front Si at generation g, which is updated as follows: 

rg = rg− 1*e−
1− tg− 1/T

M (31)  

where rg− 1 means the ratio of the size of the neighborhood to the span of 
the j-th objective of the solutions in Si at the (g − 1)-th generation, tg− 1 

refers the ratio of knee points to the number of non-dominated solutions 
in front i at the (g − 1)-th generation, and 0 < T < 1 is a threshold that 
controls the ratio of knee points in the solution set Si. 

3.3. PPS framework 

In CMOPs, the constraints define infeasible regions in the decision 
space, and have an effect on the PF in the objective space. The influence 
of infeasible regions on PFs exists in the following three situations. On 
one hand, infeasible regions may block the way of evolutionary popu
lation towards the PF; On the other hand, the unconstrained PF is 
covered by infeasible regions and all of it is infeasible; Finally, infeasible 
regions make the original unconstrained PF partially feasible. PPS 
mainly prefers to focus on the above situations. The PPS framework can 
be described as the following two stages: push search and pull search. In 
the stage of push search, the constraints are ignored and the population 
converges to the unconstrained PF, so that the population can cross the 
infeasible region without being blocked. If the change of the population 
fitness within several generations is less than a predefined threshold 
value, which indicates that the population has converged to the PF of the 
unconstrained MOP or trapped into local optimization. 

Then, the algorithm will switch to the second stage. In the pull stage, 
the feasible solution with the knee point will be pulled slowly to the real 
PF by using an improved epsilon constraint handling(IECH) mechanism, 
which is set as follows: 

ε

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

k

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ϕθ if k = 0

(1 − τ)ε(k − 1) ifrf k < α

ε
(

0
)(

1 −
k
Tc

)cp

ifrf k⩾α

0 otherwise

(32)  

”where ε(k) is the value of ε function, ϕθ means the overall constraint 
violation of the top θ-th individual in the initial population, rfk refers to 
the proportion of feasible solutions in the generation k. τ controls the 
speed when the relaxation of constraints reduces in the case of rfk < α 
(τ ∈ [0,1]). α controls the searching preference between the feasible and 
infeasible regions. cp is employed to control the reducing interval of 
relaxation of constraints in the case of rfk⩾α. ε(k) stops updating until 
the generation counter k reaches Tc. ε(0) is set as the maximum overall 
constraint violation when the push search finishes (Fan et al., 2019a)”. 

3.4. An instantiation of PPS-KnEA 

From the above discussion of knee points, it can be seen that it is very 
important to select knee points for evolution in the process of multi- 

Fig. 3. An illustrative example of the knee point (Bk) of a PF. Solutions AE and 
CE are the extreme points. 

Fig. 4. An illustration for finding knee points for a biobjective minimiza
tion problem. 
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objective optimization. Nevertheless, the use of knee points to improve 
the search ability of CMOEA, especially for CMOPs that solve feasibility 
difficulties, has not been reported so far. In this work, we embed the 
Finding knee points method into the PPS framework to obtain a novel 
algorithm termed PPS-KnEA. In the PPS-KnEA algorithm, the knee 
points in the infeasible region can get across the infeasible region and 
converge to the PF with the help of PPS framework, and maintain the 
diversity of the population. 

3.4.1. The general framework of the PPS-KnEA 
The overall framework of the PPS-KnEA is illustrated in Fig.5. Firstly, 

the algorithm randomly generates an initial population with N in
dividuals. Secondly, the PPS framework driven by knee points is applied 
to guide individuals to cross the infeasible area and converge to the real 
PF. Using the push search, the individual can quickly converge to the 
unconstrained PF, making the fitness value better and the individual 
with the knee point quickly converges to the unconstrained PF. Thirdly, 
in the pull search stage, the dynamic feasible individuals with knee point 
are pulled to the real PF under the improved epsilon constraint handling 
mechanism. To be detailed here, the strategy for finding knee points is to 
dynamically find the knee points in the small neighborhood of each 
individual. In other words, the local knee area is not exactly the knee 
point of the whole PF, so there will also be N individuals as the parent 
population of the next generation after environmental selection. Finally, 
individuals are selected through environment selection. Environment 
selection is to dynamically balance objective and constraints under the 
improved epsilon constraint handling (IECH) mechanism and select a 
more suitable solution for the next generation of individuals. Compared 
with PPS-MOEA/D, PPS-KnEA prefers knee points rather than just dy
namic selection of feasible solutions. Algorithms 1 and Algorithms 2 give 
the main steps of environmental selection. 

3.4.2. Analysis of PPS-KnEA 
In order to analyze the effectiveness of the PPS-KnEA framework and 

understand its mechanism, it was combined with MOEA/D to solve the 
challenges of CMOP. The unconstrained Tchebycheff decomposition 
method is adopted in this paper, with the detailed definition of the 
decomposition function given as follows. 

gte

(

x, λi, z*

)

= max
j=1,…,m

1
λi

j

(

|fj

(

x

)

− z*
j |

)

(33)  

where λi is a weight vector, and Σj=1,…,mλi
j = 1, λi

j ⩾0. z* means the ideal 
point, and z*

j = mink=1,…,N fj(xk). 
With the mentioned decomposition method, we decompose the MOP 

into a set of single optimization subproblems and optimize them 
simultaneously in a collaborative way. Each subproblem is associated 
with a decomposition function by using a weight vector λi, a set of N 
uniformly spread weight vectors λ1, ..., λN are adopted to formulate N 
subproblems. The weight vectors λi satisfy 

∑m
j=1λi

j = 1 and λi
j⩾0 for each 

j ∈ {1, ...,m}. 
PPS-KnEA performs unconstrained search and constrained search 

under knee point driving. In the unconstrained search, MOP is decom
posed into a set of unconstrained scalar subproblems. If the individual 
has the smaller value of gte(Tchebycheff aggregation function) for the 
neighbors of ith subproblem, then the individual of the neighbor re
places the subproblem and searches for the local knee point information 
of unconstrained PF. It is worth noting that the individual on uncon
strained PF is still an infeasible solution, because the constraint is not 
considered, so the information of the knee point is the knee point of the 
infeasible solution. In the process of constraint search, MOP is decom
posed into a set of constrained scalar subproblems. The above four rules 
of IECH mechanism(Eq. 32) are used to update individuals driven by 
knee points. If a individual of the subproblem with the value of 
constraint violation less than zero, then the feasible solution which has 
smaller value of gte for the neighbors of the subproblem will replace the 
individual of the subproblem. It should be noted that the constraint 
violation values here are dynamically controlled by the four laws of 
IECH mechanism, not real values of constraint violation, the ε(k) of the 
IECH mechanism is the real values of constraint violation only when the 
individual is pushed to the real PF. If the individual constraint violation 
value of the subproblem is greater than zero, then the infeasible solution 
with the knee point and smaller value of gte can replace the individual of 
the subproblem. Therefore, driven by knee points, more potential 
infeasible solutions can be found as the parent of the next generation, 
thus improving the diversity of the population. 

In the push stage, the MOP is decomposed into a set of unconstrained 
scalar subproblems because the constraints are not considered. Algo
rithm 1 gives the pseudo-code of push search. In line 2–5, an individual 
was selected to survive in the next generation according to the value of 
gte. The knee point is also pushed to an unconstrained PF without 
considering any constraints, so each solution has the information about 
knee point. 

In the pull stage, the MOP is decomposed into a set of constrained 
scalar subproblems using the above decomposition method, these sub
problems are collaborative optimized simultaneously under knee point 
driving. In Algorithm 2, in the process of updating the subproblem, an 
offspring replacing an individual of the population can be divided into 
three situations: two solutions xj and yj, if their global constraint 
violation is less than or equal to ε(k), and the gte of yj is smaller than xj, 
then xj is replaced by yj (line 2–5). If xj and yj have the same constraint 
violation value, xj is replaced by yj. If yj is a knee point and the gte of yj is 
smaller than xj (line 6–9). Otherwise, if the global constraint violation 
value of yj is smaller than xj and yj is the knee point, then xj is replaced 
by yj (lines 10–12). 

The pseudo-code of PPS-KnEA is introduced in Algorithm 3. In line 
1–2, a CMOP is decomposed into N single-objective subproblems and 
these subproblems are initialized at line 2. Each subproblem is solved by 
employing a subpopulation. The algorithm runs repeatedly from line 3 

Fig. 5. General framework of the PPS-KnEA.  
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to 40 until the termination condition is met. Seeing lines 4, if the dis
tance from the solution to the extreme line or hyperplane is the greatest 
in its neighborhood, the solution is recognized as a knee point and 
placed in K. In lines 13–24, an improved epsilon constraint processing is 
used to set the value for epsilon in the push and pull phases. Lines 25–38 
update the knee points of each subproblem while updating each sub
problem. In line 27, when r2 ∕= r3 is randomly selected, differential 
evolution (DE) is utilized to generate new solutions. When r2 = r3 is 

randomly selected, the knee points are selected from the neighborhoods 
of the subproblem for differential evolution to produce a new solution. 
Lines 16–29 show the transition between the push search phase and the 

pull search phase for each subproblem. When push = true, the algorithm 
automatically enters the unconstrained push stage, updates the knee 
points and sub-problem information while pushing, and converges to the 
unconstrained PF. When pull = true, the algorithm automatically enters 
the pull stage involving the epsilon constraint processing mechanism, 
and updates the knee points and sub-problem information while pulling. 
At line 41, a set of non-dominated and feasible solutions is output. 

Algorithm 1. Push Subproblems  

Algorithm 2. Pull Subproblems   
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Algorithm 3. PPS-KnEA    
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3.5. Computational complexity of each tested CMOEA 

MOEA/D decomposes the CMOP into N subproblems and uses Che
byshev method to sort each subproblem, so its total computational 
complexity is O(MNT) (Zhang & Li, 2007), while NSGA-II directly non- 
dominant sorting all the populations, so its total computational 
complexity is O(MN2) (Deb et al., 2002). Where M is the number of 
objectives, N is the population size, and T is the size of the neighbor
hoods in MOEA/D-CDP. CM2M is a NSGA-II based algorithm, it de
composes a CMOP into k sub-regions and non-dominant sorting on each 
subregion. Therefore, the computational complexity of CM2M is only 1/
K of NSGA-II, that is O(KMS2) = O(MN2/K). Where S is the size of a 
subpopulation. PPS-MOEA/D and PPS-KnEA are MOEA/D based algo
rithms, therefore, the computational complexity of PPS-MOEA/D and 
PPS-KnEA are the same as that of MOEA/D-CDP. 

4. Experimental study 

To evaluate the performance of the proposed PPS-KnEA, and five 
other CMOEAs, including PPS-MOEA/D (Fan et al., 2019b), KnEA 
(Zhang et al., 2015), MOEA/D-CDP (Zhang & Li, 2007), NSGA-II-CDP 
(Deb et al., 2002), CM2M (Liu, Peng, Gu, & Wen, 2016a) are used to 
make comparisons. The detailed parameters are listed as follows:  

1. The mutation probability Pm = 1/n (n denotes the dimension of 
the decision vector). The distribution index in the polynomial 
mutation is set as 20.  

2. Differential evolution(DE) parameters: CR = 1.0, f = 0.5.  
3. Population size: N = 300. Neighborhood size: T = 30. 
4. Halting condition: each algorithm runs for 30 times indepen

dently, and stops when 600,000 function evaluations are 
reached.  

5. Probability of selecting individuals from its neighborhood: δ =

0.9.  
6. The max number of solutions updated by a child: nr = 2.  
7. Parameter setting in PPS-KnEA: Tc = 1600,α = 0.95,T = 0.05,

cp = 2. l = 20. The rate of knee points in population Tr = 0.5.  
8. Parameter setting in PPS-MOEA/D: Tc = 1600, α = 0.95,T =

0.05, cp = 2. l = 20.  
9. Parameter setting in CM2M: K = 10.  

10. Parameter setting in KnEA: Tr = 0.5. 

4.1. Performance Metric 

In order to evaluate the performance of the CMOEAs, two perfor
mance indicators, including the inverted generation distance (IGD) 
(Bosman & Thierens, 2003) and the hypervolume (HV) (Zitzler & Thiele, 
1999), are adopted in this paper.  

• Inverted Generational Distance (IGD): 

Inverted Generational Distance(IGD) is an inverse mapping of 
Generational Distance(GD). It is expressed by the average distance from 
the individual in Pareto optimal solution set to the non-dominant solu
tion set PF obtained by the algorithm. Therefore, the calculation formula 
is 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

IGD

⎛

⎝P*,A

⎞

⎠ =

∑

y*∈P*
d

(

y*,A

)

|P*|

d

(

y*,A

)

= min
y∈A

{ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1

(
y*

i − yi
)2

√ }

(34)  

where P* is a set of representative solutions in the true PF. d(y*,A)
represents the minimum Euclidean distance from point y*

i on the ob
tained Pareto optimal surface to individual yi in P*. The smaller the IGD 
value, represents that the population achieves the nondominated set 
closer to the true PF.  

• Hypervolume (HV): 

HV is a popular evaluation index, which reflects the closeness of the 
set of non-dominated solutions achieved by a CMOEA to the true PF. The 
performance of CMOEAs is evaluated by calculating the hypervolume of 
the space surrounded by the non-dominant solution set and the refer
ence point. The calculation formula is as follows: 

HV
(

S
)

= VOL
(
⋃

x∈S

[

f1

(

x
)

, zr
1

]

× …
[

fm

(

x
)

, zr
m

])

(35)  

where VOL(⋅) is the Lebesgue measure, m means the number of objec
tives, zr = (zr

1,…, zr
m)

T refers to a user-defined reference point in the 
objective space. The larger the HV value, the better the performance of 
the algorithm. The reference point is placed at 1.2 times the distance to 
the nadir point of the true PF. A larger value of HV indicates better 
performance regarding diversity and convergence. 

4.2. Experimental results 

4.2.1. Performance comparisons 
We conduct 30 independent runs for each CMOEA to solve the 

optimization problem of the TBM. The statistical results of IGD and HV 
values are listed in Table 4. Wilcoxon’s rank sum test at a 0.05 signifi
cance level is performed between PPS-KnEA and each of the other five 
CMOEAs. † represents that the performance of the corresponding algo
rithm is significantly worse than that of PPS-KnEA. In terms of IGD and 
HV metric, the performance of PPS-KnEA is significantly better than 
those of PPS-MOEA/D, CM2M, MOEA/D-CDP, KnEA and NSGA-II-CDP 
on the optimization problem of the TBM. 

The distributions of IGD and HV values for the six algorithms in the 
30 independent runs are shown in Fig. 6. We can observe that PPS-KnEA 
has the highest median of IGD and HV value, which indicates that PPS- 
KnEA outperforms the other five algorithms in solving the performance 
optimization problem of the TBM. 

From Table 4, we can obtain that PPS-KnEA performs significantly 
better than KnEA in terms of IGD and HV metrics, and PPS-MOEA/D is 
significantly better than MOEA/D-CDP in the IGD and HV metric. PPS- 
based methods (PPS-KnEA and PPS-MOEA/D) outperform their coun
terparts (KnEA and MOEA/D-CDP) without adopting PPS framework, 
which demonstrates the superiority of the PPS framework for solving the 
performance optimization of the TBM. 

Non-dominated solutions achieved by each algorithm on the design 

Table 4 
The IGD and HV results of the six CMOEAs on the optimization problem of the TBM design.  

Test Index PPS-KnEA CM2M PPS-MOEA/D MOEA/D-CDP KnEA NSGA-II-CDP     

IGD mean 0.5661 1.4126 † 0.5977† 1.0626† 76.4509† 101.2178†
std 0.0270 0.1958† 0.0349 † 0.0679 † 37.153 † 50.0392†

HV mean 1.3942E þ 07 1.3891E + 07† 1.3940E + 07 1.3931E + 07 † 7.6983E + 06† 6.1869E + 06†
std 908.7283 7.6141E + 03† 1.4043E + 03 † 2.1464E + 03 † 3.5457E + 06 † 3.7153E + 03†
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optimization of the TBM with the best HV values during the 30 inde
pendent runs are plotted in Fig. 7. It can be observed that most of the 
achieved solutions in PPS-KnEA are located in the reference PF, while 
the populations of the other five CMOEAs are trapped in local optima. 

4.2.2. Analysis of the results 
To study the characteristics of the TBM design optimization problem, 

5, 200,000 solutions are generated as shown in Fig. 8, where 1,000,000 
solutions are generated randomly, and the rest of the solutions are 
generated by PPS-KnEA, PPS-MOEA/D, CM2M, MOEA/D-CDP, KnEA 
and NSGA-II-CDP. The approximated landscape of the TBM optimization 
problem is a narrow strip. Some feasible and infeasible solutions are 
located in the same regions in the objective space. Its PF is hidden at the 
bottom of the infeasible region near the f1 axis, as shown in Fig. 8. 
Therefore, the TBM performance optimization problem is feasible-hard 
and converge-hard, which means it is difficult to get across the infea
sible region and converge to the whole PF for a CMOEA. 

Decomposition based CMOEAs decompose a CMOP into a set of 
single constrained optimization problems, which have an intrinsic 
capability to help the population get across the infeasible region. For 
example MOEA/D-CDP adopts the MOEA/D framework, while CM2M 

employs the NSGA-II framework in each sub-region, they are all 
decomposition based CMOEAs. Without the help of PPS, decomposition 
based CMOEAs such as MOEA/D-CDP and CM2M perform better than 
KnEA and NSGA-II-CDP, because the TBM performance optimization 
problem is feasible-hard and converge-hard, which can also be observed 
from Table 4. 

Knee-points driven CMOEAs embed the Finding knee point method 
in the original framework, the knee points are used as a criterion only 
next to the dominance criterion in both mating and environmental se
lection, which can help the algorithm to maximize the hypervolume 
values, thus improving its diversity and convergence performance of the 
population. Knee points driven CMOEAs such as PPS-KnEA and KnEA 
perform better than PPS-MOEA/D and NSGA-II-CDP in terms of HV and 
IGD values, which can also be observed from Table 4. For PPS-KnEA 
embed the Finding knee points method in the PPS-MOEA/D frame
work, while KnEA embed the Finding knee points method in the NSGA-II 
framework, they are all knee points driven CMOEAs. 

A characteristic of the TBM performance optimization problem is 
that the unconstrained PF is close to its constrained PF, it is almost part 
of unconstrained PF and in the infeasible region near the bottom of the 
f1 axis, and the ratio of feasible to infeasible solutions is small, as 

Fig. 6. The IGD box and HV box plot of PPS-KnEA and the other four CMOEAs on the optimization problem of the TBM design in 30 independent runs. To facilitate 
the display of the box plot, the number 1–4 represent PPS-KnEA, CM2M, PPS-MOEA/D, MOEA/D-CDP, respectively. 

Fig. 7. Non-dominated solutions achieved by each algorithm on the design optimization of the TBM with the best HV values during the 30 independent runs 
are plotted. 
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illustrated by Fig. 8. To be more specific, AB and CD denote the distance 
between the infeasible regions and the reference PF. In the f1 and f2 
axes, EF and GH denote the length of unconstrained PF and reference PF, 
as illustrated in Fig. 8. Since EF and GH are much smaller than AB and 
CD, it is easy for the PPS-based algorithms to pull the solutions across the 
infeasible regions from the unconstrained PF to the reference PF. 

With the help of PPS framework, PPS-KnEA can search for knee 
points while crossing the infeasible region. This is the first time that the 
Finding knee point method have been used in PPS framework to increase 
the pressure of infeasible solution selection, so as to improve the di
versity of the population. PPS-KnEA can fully consider the specific 
characteristics of TBM problem. Firstly, because constraints are not 
considered, many knee points are quickly pushed to the unconstrained 
PF. Secondly, because PPS-KnEA prefers knee points, the knee points in 
infeasible solutions are more favored than other infeasible solutions. The 
IECH mechanism can better balance the relationship among of the ob
jectives, constraints and knee points, slowly pull the knee points in the 
population to the real PF, and then accelerate the convergence of the 
population. 

Therefore, the integration of the Finding knee point method and PPS 
framework can not only help the population cross the infeasible region, 
but also improve the diversity of the population. PPS-KnEA performs 
better than other algorithms without Finding knee point method and 
PPS framework. 

From the above discussion, we can conclude that PPS-KnEA out
performs the other five CMOEAs (PPS-MOEA/D, CM2M, MOEA/D-CDP, 
KnEA and NSGA-II-CDP) significantly on the TBM optimization prob
lem. PPS-based methods (PPS-KnEA and PPS-MOEA/D) outperform 
their counterparts (KnEA and MOEA/D-CDP) without adopting PPS 
framework, which demonstrates the superiority of the PPS framework 
for solving the TBM design optimization problem. Methods using knee 
points (PPS-KNEA and KnEA) are superior to their counterparts (PPS- 
MOEA/D and NSGA-II-CDP) without Finding knee point method. This 
shows that under PPS framework, knee points driven algorithm can 
significantly improve the relevant evaluation indices (IGD and HV) of 
the algorithm in solving TBM problems. 

4.2.3. Comparison with single objective optimization (SOP) algorithm 
To our knowledge, this paper is the first time to optimize TBM using 

multi-objective optimization evolutionary algorithm. Its advantages are 
self-evident. A PS will be provided when an MOP is solved, while the 
SOP only has one solution. If an MOP is transformed into a SOP, the 
other two objectives in the MOP must be set as constraints. In order to 
fully illustrate the advantages of MOP, a state-of-the-art algorithm for 
SOP, particle swarm optimization (PSO), is employed as the comparing 
one. . 

4.2.3.1. SOP model of TBM. Since it is an SOP, the optimization model 
of TBM must be readjusted. Only one of the three objectives will be 
selected as the optimization objective. Here, the construction period is 
selected as the optimization objective: 

f = min(t) (36)  

The other two objectives, construction energy consumption and con
struction cost, are adjusted as constraints. According to the previous 
MOP results and engineering requirements, we control the construction 
energy consumption within 500 kJ/m and the construction cost within 
400$/m. 

500 − E⩾0 (37)  

400 − C⩾0 (38)  

The overall SOP model of TBM is provided as follows. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize F
(
x
)
= (t)T

subjectto 1.5 − λ⩾0
3000 − Cf ⩾0
5 × 106 − Tt⩾0
1.5 × 107 − Fn⩾0
4.5 × 106 − PT ⩾0
1.2 × 104 − PF⩾0
500 − E⩾0
400 − C⩾0

(39)  

4.2.3.2. Introduction of PSO and experimental parameter setting. PSO 
algorithm was first developed by Kennedy and Eberhart (Kennedy & 
Eberhart, 1995). It is a swarm intelligence algorithm inspired by birds or 
fish. These swarms conform a cooperative way to find food, and each 
member in the swarms keeps changing the search pattern according to 
the learning experiences of its own and other members. The ith particle 
is represented as Xi = (Xi1,Xi2,…,Xip). The best previous position (the 
position giving the best fitness value) of the ith particle is recorded and 
represented as Pi = (pi1,pi2,…,piD). The index of the best particle among 
all the particles in the population is represented by the symbol g. The 
rate of the position change (velocity) for particle i is represented as V =

(Vi1, Vi2, …, ViD). The particles are manipulated according to the 
following equation: (Shi & Eberhart, 1999; Wang, Tan, & Liu, 2018) 

Vid = W ∗ Vid + c1 ∗ r1 ∗
(
Pid − Xid

)
+ c2 ∗ r2 ∗

(
Pgd − Xid

)
(40)  

Xid = Xid +Vid (41)  

where i = 1,2,…,NP, and NP is the size of the population, c1 and c2 refer 
to the learning factors, and r1 and r2 mean two random numbers within 

Fig. 8. The distribution of solutions of the TBM design optimization problem in the objective space.  
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the range [0,1], W is the inertia weight. In order to help PSO solve 
constrained optimization problems, we embed Deb’s (Deb et al., 2002) 
constraint dominance principle into PSO algorithm. The detailed pa
rameters are listed as follows.  

1. c1 = 2,c2 = 2.  
2. The maximum number of iteration: TP = 500.  
3. Population size: NP= 300.  
4. W = WMax − 1 ∗ ((WMax − WMin)/TP),WMax = 0.9,WMin = 0.2. 

4.2.3.3. Analysis and comparison of experimental results. As shown in 
Fig. 10, the relationship between construction period and Iteration ob
tained by SOP with PSO algorithm is presented. The minimum con
struction period optimized in the end is t = 462.83 (day), at which time 
the constraint violation value is zero, so the construction energy con
sumption is 500 (kJ/m) and the construction cost is 400 $/m. As shown 
in Fig. 9, the SOP results of PSO were dominated by PF of CMOEAs 
optimization results. Here, we can see that the SOP can only optimize 
the construction period, but the energy consumption and construction 

cost can only be set as constraints within a certain value. Meanwhile, the 
MOP can carry out collaborative optimization of multiple objectives, 
and finally find a group of PS. 

4.2.4. The design of the TBM 
The achieved reference PF obtained by six CMOEAs and the original 

design suggested by a human expert are shown in Fig. 8. Each solution in 
the reference PF dominates the original design. The performance of the 
TBM is improved significantly by using the proposed PPS-KnEA. Since 
the reference PF is a continuously convex PF, the endpoints and other 
three midpoints of the PF are selected as representative cases, as illus
trated in Fig. 9. The detailed comparison of the original design by the 
human expert and the five representative solutions in the reference PF 
are listed in Table 5. The values of δ,H and α of case A, B, C, D, E are 
significantly change different from those values of w,ωand r. A possible 
reason is that different constraints are activated in each different part of 
the reference PF. 

4.2.5. Limitation of PPS 
It is worth noting that PPS-based algorithms are not suitable for 

solving CMOPs whose unconstrained PFs are degenerated, which means 
the dimension of the unconstrained PFs is less than their constrained 
counterpart. One possible reason is that at the end of the push stage, the 
populations of PPS-based algorithms are converged to the unconstrained 
PFs. Since the unconstrained PFs are degenerated, the diversity of the 
populations in PPS-based algorithms is lost, and it is very difficult to pull 
the populations to the constrained PFs whose dimensions are greater 
than these of their unconstrained counterpart. Therefore, the PPS-KnEA 
algorithm which based on PPS also has the above limitation in solving 
practical constrained multi-objective optimization problems. 

5. Conclution 

In this paper, a hard rock TBM model is established and formulated 
as a constrained multi-objective optimization problem. Two kinds of 
PPS-based algorithms, including PPS-MOEA/D and PPS-KnEA, are 
employed to solve the formulated CMOP. It is worth noting that PPS- 
KnEA is a new algorithm which combines PPS with Finding knee point 
method to solve CMOPs. To be more specific, PPS-KnEA also divides the 
search process into two different stages push and pull search, as done in 

Fig. 9. The five points of the reference PF are selected as the representative cases to be compared with the original design by the human expert. The TBM models of 
the five solutions are drawn out with the different appearance to the original design and the single objective optimization result.zx 

Fig. 10. Convergence histories of the Construction period and Iteration of 
the PSO. 
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PPS-MOEA/D. At the push search stage, a CMOP is decomposed into a 
set of simple constrained single-objective optimization problem and 
finding the knee points. Each simple constrained single-objective opti
mization problem corresponded to a sub-population with knee point 
information is solved by using MOEA/D without considering any con
straints, which also can help each sub-population and its knee points get 
across infeasible regions efficiently. Some constrained information 
about the constrained landscape of the objective space will be gathered 
to help guide the parameters setting of the constraint processing 
mechanism in the pull search stage. At the beginning of the pull search 
stage, infeasible solutions in each subpopulation and knee points are 
pulled to the feasible and non-dominated regions by employing an 
improved epsilon constraint-handling mechanism and the knee points 
are used as a criterion only next to the dominance criterion in both 
mating and environmental selection. 

The experimental results indicate that PPS-KnEA outperforms the 
other five CMOEAs (PPS-MOEA/D, CM2M, MOEA/D-CDP, KnEA and 
NSGA-II-CDP) significantly on the TBM optimization problem. PPS- 
based methods (PPS-KnEA and PPS-MOEA/D) outperform their coun
terparts (KnEA and MOEA/D) without adopting PPS framework, which 
demonstrates the superiority of the PPS framework for solving real- 
world optimization problems. Knee points driven methods (PPS-KnEA 
and KnEA) outperform their counterparts (PPS-MOEA/D and NSGA-II- 
CDP) without adopting Finding knee point method, which demon
strates that under the PPS framework, the knee points get across the 
infeasible region and evolve to a true PF. The selection of knee points is 
approximate to maximize the large hypervolume value, which helps 
accelerating population convergence and increasing diversity in solving 
the TBM problem. 

It is notable that few works have been done by employing CMOEAs to 
solve real-world CMOPs. This paper provides a feasible method. In the 
future, we will study multi-scenario and multi-model optimization, and 
use different methods to model and optimize the overall performance of 
TBM, so as to test the performance of PPS based CMOEAs in solving real- 
world optimization problems. 
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