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Abstract—Optimization modeling of real-world application
problems usually involves noise from various sources. Noisy
optimization imposes challenges to optimization methods since
the objective values can be different for multiple evaluations.
In this article, we propose a novel online population size learn-
ing (OPL) technique of evolution strategies for handling noisy
optimization problems. By re-evaluating a fraction of the candi-
dates, we measure the strength of noise level of the re-evaluated
candidate solutions and adapt the population size according to
the noise level. The proposed OPL combines the advantages of
both explicit averaging by re-evaluations and the implicit averag-
ing by large population size and overcomes their limitations. We
incorporate it with the covariance matrix adaptation evolution
strategy (CMA-ES) and obtain OPL-CMA-ES. Compared with
the existing noise handling technique, the proposed OPL is much
simpler in both concepts and computation. We conduct com-
prehensive experiments to evaluate the algorithm’s performance
on standard problems with Gaussian noise. We further evaluate
the performance of OPL-CMA-ES on the black-box optimization
benchmarks (BBOBs) noisy testbed, which is a standard platform
for comparing black-box optimization algorithms, compared
with the state-of-the-art noise-handling algorithms. The exper-
imental results show that OPL-CMA-ES achieves remarkable
performance and outperforms the compared variants.
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I. INTRODUCTION

MANY real-world applications are formulated for
optimization problems. During the modeling, noise

stems from various sources and leads to noisy optimization
problems (NOPs) [1], [2]. In the presence of noise, the
objective values of a specific point with multiple evaluations
can be different. The noisy optimization imposes important
challenges for optimization algorithms that assume the exact
objective value for a given point. Evolutionary algorithms
(EAs) repeatedly sample a population of candidate solutions
and select the most promising ones to generate highly qualified
candidate solutions at each generation. EAs are more robust
against noise [3]–[5] and have attracted an increasing amount
of attention in the presence of noise [6], [7]. The selection
of EAs depends on the comparison of objective values. The
selection can be distorted when the noise level becomes strong
enough, and the evolutionary search is misled and fails. To
enhance the performance of EAs under the noise environment,
a straightforward approach is to evaluate each candidate solu-
tion multiple times and average the fitness [8]. Re-evaluating
the candidate solutions can effectively reduce the variance of
noise and one can obtain a more accurate objective value. One
of the successful re-evaluation methods is the uncertainty han-
dling (UH) technique for evolution strategies (UH-CMA-ES).
However, empirical results illustrate that the re-revaluation
and explicit average methods can perform well only on the
problems with Gaussian noise of low to medium level. For
non-Gaussian noise, such as uniform noise and Cauchy noise,
the explicit averaging methods UH-CMA-ES cannot perform
well.

Another method is to use a large population size. As EAs
repeatedly sample the promising area, the sampled candidate
solutions are usually highly similar, and the effect of noise in
evaluating each candidate solution can be largely compensated
by the similar ones. This implicit averaging reduces the effects
of noise and improves the performance of EAs for NOPs. To
reduce the number of function evaluations (FEs), the popula-
tion size is usually adapted based on the estimated noise level
during the optimization procedure [9]–[11]. The noise level
can be estimated based on the reduction of the noisy objec-
tive values, or the accuracy of the update mechanisms. These
methods cannot take advantage of re-evaluations and converge
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slower than the re-evaluation methods in the Gaussian noise
case.

In this article, we propose a new online population size
learning (OPL) method for NOPs. We incorporate OPL with
the covariance matrix adaptation (CMA-ES) as the basic
search engine, which is one of the most successful variants
of EAs, and denote the obtained algorithm by OPL-CMA-ES.
The main features of OPL-CMA-ES are as follows.

1) OPL combines the advantages of both explicit averag-
ing and implicit averaging methods and overcomes the
limitations of both methods. We re-evaluate a small frac-
tion of the whole population of candidate solutions and
measure the noise level by the rank changes of the re-
evaluated solutions. The noise level is then used to adapt
the population size. By re-evaluating a fraction of the
candidate solutions, OPL reduces the effects of noise by
following the explicit averaging and adapting the pop-
ulation size improves the robustness on more general
NOPs.

2) OPL represents a general framework for handling NOPs.
It does not depend on any specific evolutionary opera-
tions and adaption mechanisms and is well suited for any
ranking-based EAs. We incorporate it with the covari-
ance matrix adaptation as the search engine and present
OPL-CMA-ES.

We conduct comprehensive experiments to evaluate the
performance of the proposed OPL-CMA-ES, compared with
state-of-the-art noisy evolutionary optimization algorithms.
The experimental results show that OPL-CMA-ES achieves
superior performance in terms of the number of FEs to
reach the predefined accuracy and the ratio of solved func-
tions. We evaluate its performance on the standard black-box
optimization benchmark (BBOB) noisy testbed and validate
that OPL-CMA-ES achieves STOA performance. In particu-
lar, OPL-CMA-ES outperforms all the compared algorithms
and shows more promising performance as the dimension
increases.

The remainder of this article is organized as follows.
Section II presents the problem setting of noisy optimization
in the continuous domain and summarizes the noise han-
dling methods. In Section III, we introduce the proposed
OPL-CMA-ES in detail. We study the performance of OPL-
CMA-ES on some basic noisy test functions in Section IV.
In Section V, we further comprehensively evaluate the
performance of OPL-CMA-ES on the BBOB noisy testbed,
compared with other existing noise handling algorithms.
Finally, we conclude this work and present our future work in
Section VI.

II. BACKGROUND AND RELATED WORKS

In this section, we present the problem setting of noisy
optimization, and the noise handling techniques for EAs.

A. Noisy Optimization Problems

In this article, we consider unconstrained NOPs in the
continuous domain

min
x∈Rn

˜f (x) = f (x)+ δ (1)

where f (x) is the true objective function part and δ is a stochas-
tic part. The random variate δ can scale with the objective
function δ = ε · f (x), or not as δ = ε, where ε is the noise
distributed according to some unknown distribution. The goal
of noisy optimization is to find the optimum for the expected
objective function

J(x) = E
[

˜f (x)
]

. (2)

Under the assumption that the random number δ is unbi-
ased, we have E[˜f (x)] = f (x). In practice, we cannot directly
evaluate J(x). Instead, we need to approximate the expected
objective function J(x) by evaluating the objective function
˜f (x) multiple times for each candidate solution x, namely

Ĵ(x) = f (x)+ 1

Neval

Neval
∑

i=1

δi (3)

where Neval is the number of FE times for each candidate
solution, and δi for i = 1, . . . ,Neval are independent identically
distributed copies of δ. In the noise-free case, Neval is set to
1, i.e., each candidate solution is evaluated only once.

B. Noise Handling Techniques in Evolutionary Algorithms

The population nature of EAs makes them more robust and
suitable for NOPs. As the FEs are computationally expensive
and regarded as the cost of optimization, the goal of EAs for
NOPs is to find more accurate solutions with as few FEs as
possible. We summarize some existing noise handling methods
in EAs in the following section and refer to [3] for a more
comprehensive survey of this topic.

1) Explicit Averaging With Re-Evaluations: Explicit aver-
aging methods are straightforward to reduce the noise level
by evaluating the candidate solutions multiple times and aver-
aging the objective values. For an additive Gaussian noise,
re-evaluating each candidate Neval times can effectively reduce
the noise level of objective function˜f (x) by a factor of

√
Neval.

In practice, evaluating the objective function multiple times
increases the number of FEs.

To save the number of FEs, researchers propose to adapt
the number of re-evaluations. The optimal computing budget
allocation scheme assigns the optimal re-evaluations to each
candidate solution to reduce the influence of noise [12], [13].
The UH technique [14] adapts the times of re-evaluations
Neval for CMA-ES based on the estimated noise level, lead-
ing to the UH-CMA-ES. However, the effect of noise can
only be reduced by re-evaluation if the noise is not heavy-
tailed [15]. Hence, the explicit averaging methods for handling
noise can hardly be regarded as a general method. In practice,
the explicit averaging methods are well suited for the noisy
objective functions with Gaussian noise of low to medium
level but do not perform well on the noisy objective functions
with non-Gaussian noise.

2) Implicit Averaging With Large Population Size: Using
a large population size can be considered as an implicit
average approach for solving NOPs [16]. EAs repeatedly gen-
erate many similar solutions in consecutive generations when
searching the promising areas, the effect of noise in the objec-
tive values is very highly to be implicitly compensated by
that of similar candidate solutions with a large population.
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Regardless of the type of noise, increasing the population size
instead of explicit averaging can reduce the effects of noise.

To reduce the computational cost, the population size is usu-
ally adapted during the optimization procedure [9]–[11]. In
pcCMSA-ES [9], the population size is adapted by analyzing
the dynamics of the objective values. The CMAES-APOP [17]
adjusts the population size according to the improvements
of the objective value over generations. The PSAaLmC [10]
adjusts the population size according to the accuracy of
the update for the distribution parameters, following the
natural gradient from the structure of information-geometric
optimization [18]. The idea is further extended to PSA-CMA-
ES [19] following the paradigm of the standard CMA-ES. It
adjusts the population size according to the accuracy of the
updates. These methods have the following important draw-
backs. First, these methods usually converge slower than the
re-evaluation methods on the Gaussian noisy problems as they
do not make use of the re-evaluations. Second, the adaption of
population size usually depends on some specific mechanisms
and can be hardly generalized to other variants of evolution
strategies (ESs) and EAs. Third, these methods are usually
very complicated and not easy to implement.

3) Robust Selection: The robust selection scheme revises
the selection operation to enhance the reliability of quality
solutions from the population [20], [21]. The threshold-based
selection uses a threshold for selection and accepts an off-
spring individual if its fitness is better than that of the parent by
a threshold [22]–[24]. However, the performance of threshold-
based selection depends intensely on the sensible predefined
threshold, which depends on the optimization problems and is
usually hard to design.

4) Hybrid Search: Some researchers view the NOPs as
noise-induced multimodal problems [25] and propose to han-
dle them by hybridizing evolutionary operators to enhance
the global search ability and robustness in the presence of
noise [26]. DE-PSO [27] is an improved particle swarm
optimization algorithm (PSO) that applies the differential
variation mechanism employed in the differential evolution
algorithm (DE) to adapt the velocity of particles. The multiple
offspring sampling (MOS) [28] is a hybrid algorithm that
uses MOS structures to combine the different EAs to enhance
robustness. The main drawback of these algorithms is that
they fail to take advantage of the specific information of noisy
objective values and usually converge slowly.

III. OPL-CMA-ES ALGORITHM

In this article, we propose a novel OPL method for ESs to
handle NOPs. We adapt the population size depending on the
detected noise level of the uncertain environment. Algorithm 1
presents the general framework of the proposed OPL for
ESs. In the following sections, we will introduce the involved
components of our algorithm in detail.

A. Noise Measurement

ESs select the candidate solutions by comparing their
objective values. Due to the ranking-based selection in ESs,
noise affects the selection procedure when the rankings among

Algorithm 1 General Framework of OPL for ESs

1: Initialize λ0 and search distribution N (m0, σ
2
0 C0).

2: repeat
3: Generate λt candidate solutions xi ∼ N (mt, σ

2
t Ct).

4: Detect the noise level by re-evaluating a fraction of
the candidate solutions (Section III-A).

5: Adapt the population size λt (Section III-B).
6: Update the distribution parameters mt, σt,Ct

(Section III-C).
7: Update the parameters depending on the population

size λt.
8: t = t + 1
9: until stopping criterion is met

the candidate solutions change. We measure the level of noise
strength by the rank changes of the multiple evaluations of spe-
cific candidate solutions following the idea of [14] and then
adapt the population size by the normalized noise strength.

1) Rank Changes of Re-Evaluated Solutions: Fig. 1
presents the rank changes of the candidate solutions with some
of them re-evaluated. In this case, we consider an additive
Gaussian noise δ ∼ N (0, σ 2

ε ) with standard deviation σε . In
Fig. 1, we present f (x) and a standard deviation f (x) ± σε
with different level of noise strengths σ (1)ε < σ

(2)
ε < σ

(3)
ε . The

black points mark the objective values of candidate solutions,
and the blue triangles mark the re-evaluated objective values
of the first three candidate solutions. We have the following
observations and discussions according to Fig. 1.

1) Fig. 1(a) shows that the rankings of candidate solutions
xi, i = 1, 2, 3, do not change after the re-evaluation. It
shows that the selection is not affected by the noise. It
indicates that the noise strength is weak.

2) Fig. 1(b) shows that the rankings of candidate solu-
tions after re-evaluation change from 〈3, 2, 1, 4, 5, 6〉 to
〈2, 3, 1, 4, 5, 6〉. Hence, with the medium level of noise
strength, the selection is slightly affected by the noise.

3) Fig. 1(c) shows the changes in objective values of re-
evaluated solutions. The rankings of candidate solutions
change from 〈3, 2, 1, 4, 5, 6〉 to 〈1, 4, 2, 3, 5, 6〉 after the
re-evaluation. The dramatic change in the ranking indi-
cates that the level of noise strength is strong and the
selection is seriously affected by the noise.

The above observations validate that the rank changes of
re-evaluated solutions can be used as a measure of the noise
strength.

2) Noise Strength Measurement: We measure the noise
strength by the changes in the rank of the re-evaluated solu-
tions. The procedure of noise strength level detection is revised
from the noise measurement of [14]. The steps of detecting
the noise strength are presented in Algorithm 2.

1) Compute the number of re-evaluated candidate solutions
by means of λreev = �rλ · λ	, where rλ ≤ 1 is the ratio
of re-evaluation (line 2).

2) Re-evaluate the first λreev solutions and let L =
{˜f1, . . . ,˜fλ,˜f new

1 , . . . ,˜f new
λreev
} (lines 3 and 4).
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(a) (b) (c)

Fig. 1. Illustration of rank changes within candidate solutions at an iteration, minimizing an objective function ̂f with a 1-D continuous domain. The figure
shows three rank changes within candidate solutions from different noise situations. Each subfigure shows: noise-free objective function f (solid red line); a
standard deviation for f , f ±σε (dashed red lines); objective function ˜f values of candidate solutions (black points); and re-evaluated objective function values
of the first three candidate solutions (blue triangles). (a) Weak. (b) Moderate. (c) Severe.

Algorithm 2 Detection([x1 · · · , xλ], [˜f1, · · · ,˜fλ])
1: Initialize: rλ = max (0.1, 2/λ), θ = 0.2
2: λreev = �rλ · λ	
3: for i = 1, · · · , λreev do˜f new

i ←˜f (xi)

4: L = {˜f1, · · · ,˜fλ,˜f new
1 , · · · ,˜f new

λreev
}

5: for i = 1, · · · , λreev do
6: �i = rank(˜f new

i )− rank(˜fi)
− sign(rank(˜f new

i )− rank(˜fi))
7: end for
8: r = 1

λreev·λ
∑λreev

i=1

(

2|�i|
−�θ(rank(˜f new

i )− 1{˜f new
i >˜fi})

−�θ(rank(˜fi)− 1{˜fi >˜f new
i }))

9: for i = 1, · · · , λreev do˜fi ← 1
2 (

˜fi +˜f new
i )

10: return r, [˜f1, · · · ,˜fλ]

3) Calculate the rank change of each re-evaluated solution
�i (lines 5–7), where rank(˜fi) is the rank of ˜fi in the
set L. The rank change, |�i| ∈ {0, 1, . . . , λ+λreev− 2},
counts the number of objective values from the set
L\{˜fi,˜f new

i } that lie between ˜fi and ˜f new
i . The sign func-

tion sign() will return +1 if its argument is positive, or
−1 if its argument is negative, or 0 otherwise.

4) Compute the normalized noise strength r (line 8) with
respect to a threshold θ . The rank change�i is compared
with �θ(R), which denotes the θ/2 percentile of the pos-
sible rank changes |1−R|, |2−R|, . . . , |λ+λreev−1−R|
when having the original rank R. The indicator function
1 will return +1 if its argument is true and 0 otherwise.
Then, it is averaged over the λreev re-evaluated solutions
and normalized by a factor 1/λ into (−1, 1).

5) Average the objective values of the re-evaluated candi-
date solutions for the selection procedure of CMA-ES
(line 9).

The normalized rank changes r measure the noise strength
of the noisy objective function. If r > 0, the rank changes of
re-evaluated solutions are larger than the acceptance threshold.
In this case, the objective values and selection are dramatically
affected by the noise.

In this algorithm, two parameters are involved in the
calculation of r.

1) rλ: The re-evaluation ratio rλ ≤ 1 controls the fraction of
candidate solutions to be re-evaluated. It should be large
enough for sufficient reliable noise measurement and as
small as possible for optimization speed. Generally, we
use rλ = max (0.1, 2/λ) following the setting of [14],
i.e., we re-evaluate on average max (λ/10, 2) candidate
solutions at each iteration.

2) θ : The parameter θ ∈ [0, 1] controls the acceptance
threshold for the measured rank changes. It denotes the
noise level that we can tolerate. The noise level that
we can tolerate decreases as the threshold θ decreases.
In this article, we generally set θ = 0.2 as [14] unless
specified otherwise.

These parameters are well evaluated for the UH methods.
We evaluate that the proposed algorithm’s performance is
relatively robust to the parameter settings.

B. Online Population Size Learning

We learn the population size according to the measured
noise strength r. After the normalization, we accumulate r
over iterations to reduce the influences of randomness

ψt+1 = (1− cλ)ψt + cλr (4)

where cλ > 0 is a constant changing rate. Since the accumu-
lated r is in the range (−1, 1), we set cλ = 0.2. Then, the
population size is adapted as

λt+1 = λt · exp

(

ψt+1

dλ

)

(5)

where dλ is a damping parameter that scales the change mag-
nitude of ln λt. It can reduce the variance of the population
size change, and a large dλ can slow down the adaptation. In
this article, we set dλ = 1+ cλ.

The population size is adapted by using the accumulated
noise strength. If r > 0 over multiple generations, it implies
the rank changes within candidate solutions are severe and
ψt+1 tends to be positive. Hence, the population size tends
to increase. Otherwise, if r < 0 over generations, the rank
changes are weak and ψt+1 < 0, which means a decrease in
the population size.

Then, we restrict the population size in the range of
[λmin, λmax]. The lower bound λmin is set to the default value
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(λdef = 4 + �3 ln n	) of the CMA-ES, i.e., λmin = λdef.
Following the setting of [29], the upper bound λmax is set
to be λmax = (20n+ 30)λdef.

C. Update the Distribution Parameters

We use the covariance matrix adaptation evolution strategy
(CMA-ES) as the basic search engine. Any variants of ESs,
such as the natural ESs [30] and Cholesky variants [31], [32],
can be used as the search engine without change of the algo-
rithm framework. After the re-evaluation and detection of
noise level, we sort the evaluated points according to their
function values ˜f (x1:λ) ≤ ˜f (x2:λ) ≤ · · · ≤ ˜f (xλ:λ). The dis-
tribution mean is updated by a weighted sum of the best
μ = �λ/2	 parent individuals selected among λ generated
offspring individuals as

mt+1 =
μ

∑

i=1

wixi:λ (6)

where wi > 0, i = 1, . . . , μ, are the weights. An evolution path
p is constructed by tracking the movements of the distribution
mean mt and update the covariance matrix

pt+1 = (1− cc)pt +
√

cc(2− cc)
√
μw

mt+1 −mt

σt
(7)

Ct+1 =
(

1− c1 − cμ
)

Ct + c1pt+1pT
t+1 + cμCMLE (8)

where μw = 1/
∑μ

i=1 w2
i , CMLE = (1/σ 2

t )
∑μ

i=1 wi(xi:λ −
mt)(xi:λ −mt)

T is the weighted maximum-likelihood estima-
tion of the covariance matrix of the selected points, and cc, c1,
and cμ are learning rates. In practice, these learning rates are
set c−1

c ≈ n and c−1
1 , c−1

μ ≈ n2, i.e., inversely proportional to
the number of parameters to be adapted.

In addition to the covariance matrix, the step size is adapted
by constructing an evolution path s and comparing its strength
to the expectation E[‖N (0, I)‖]

st+1 = (1− cσ )st +
√

cσ (2− cσ )
√
μwC

− 1
2

t
mt+1 −mt

σt
(9)

σt+1 = σt · exp

(

cσ
dσ

( ‖st+1‖
E[‖N (0, I)‖] − 1

))

(10)

where C−(1/2)t is the inversion of the unique symmetric factor,
cσ is the learning rate setting to cσ ≈ (1/n), and dσ ≈ 1 is
the damping parameter. We refer to [33] for more details and
discussions on the updates and parameter settings.

D. OPL-CMA-ES

We term the resulting algorithm by OPL-CMA-ES, the
CMA-ES with OPL. The algorithm framework and involved
parameters are presented in Algorithm 3. In each generation,
λt candidate solutions in the population are generated from
the Gaussian distribution (lines 5–8). The rank changes are
detected by re-evaluating a fraction of the candidate solu-
tions (lines 9 and 10). In the online learning of population
size, the cumulative noise strength ψt+1 is first computed
(line 12). Then, the population size is adapted according to
the proposed mechanism and is restricted in the range of
[λmin, λmax] (lines 13 and 14). The distribution parameters

Algorithm 3 OPL-CMA-ES
1: Input: m0 ∈ R

n, σ0 ∈ R+
2: Set: λdef = 4+ �3 ln n	, μ = �λdef/2	, cc = 4

n+4 ,

wi = ln (μ+0.5)−ln i
∑μ

k=1 ln (μ+0.5)−ln k
, i = 1, · · · , μ,

μw = 1
∑μ

i=1 w2
i
, c1 = 2

(n+1.3)2+μw
, cσ = μw+2

n+μw+3 ,

cμ = 2(μw−2+ 1
μw
)

(n+2)2+μw
, dσ = 1+ 2 max (0,

√

μw−1
n+1 − 1)+ cσ ,

cλ = 0.2, λdef = λ, dλ = 1+ cλ
3: Initialize: C0 = I,p0 = 0, s0 = 0, λ0 = kn × λdef,

t = 0, ψ0 = 0
4: repeat
5: // sample λt candidate solutions from N (mt, σ

2
t Ct)

6: for i = 1 to λt do
7: xi = mt + σtyi with yi ∼ N (0,Ct)

8: end for
9: // compute the noise strength

10: r, [˜f1, · · · ,˜fλ]← detection([x1 · · · , xλ], [˜f1, · · · ,˜fλ])

11: // update the population size
12: ψt+1 = (1− cλ)ψt + cλr

13: λt+1 = λt · exp

(

ψt+1

dλ

)

14: λt+1 = min(max(�λt+1	, λmin), λmax)

15: // update the distribution parameters
16: sort ˜f (x1:λ) ≤˜f (x2:λ) ≤ · · · ≤˜f (xλ:λ)

17: mt+1 = mt +∑μ
i=1 wi(xi:λ −mt)

18: pt+1 = (1− cc)pt+
√

cc(2− cc)
√
μw

mt+1−mt
σt

19: st+1 = (1− cσ )st+
√

cσ (2− cσ )
√
μwC

− 1
2

t
mt+1 −mt

σt

20: Ct+1 = (1− c1 − cμ)Ct + c1pt+1pT
t+1 + cμ

μ
∑

i=1

wiyi:λyT
i:λ

21: σt+1 = σt · exp

(

cσ
dσ

( ||st+1||
E[||N (0, I)||] − 1

))

22: if λt+1 is changed then
23: update the parameters depending on λt+1
24: end if
25: t = t + 1
26: until stopping criterion is met

m, σ , and C are updated as the default CMA-ES (lines 15–21).
At the end of each generation, the parameters that depend on
the population size are accordingly updated (lines 22–24).

In OPL-CMA-ES, we do not correct the step size after the
adaption of population size for simplicity. This differs from
that of PSA-CMA-ES [19] that corrects the step size to make
the population size adaptation stable [34]. Experimental results
validate that the effect of the step size correction is marginal.

We use a large initial population size for NOPs. The initial
population size is increased by a factor of kn = min (4n, 100)
to prevent the potential premature convergence.

IV. EXPERIMENTAL STUDIES

In this section, we evaluate the performance of OPL-CMA-
ES on some basic noisy test functions defined in Table I. These
test functions are characterized with different features and we
can investigate the convergence behaviors of OPL-CMA-ES on
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TABLE I
TEST PROBLEMS

different local landscapes. We consider the additive Gaussian
noise ˜f (x) = f (x) + ε with ε ∼ N (0, σ 2

ε ) and strong noise
strength σε = 1. In the experiments, the initial distribution
mean m0 is randomly uniformly generated in the range [1, 5]n,
and σ0 = 2. We set the maximum FEs to 105× n. Each algo-
rithm independently runs 51 times. We conduct the Wilcoxon
rank-sum hypothesis test at significance level p = 0.05 to
assess the differences.

We take CMA-ES with the default population size and
noise handling methods into the comparison, including
the pcCMSA-ES, CMAES-APOP, and UH-CMA-ES. Both
pcCMSA-ES and CMAES-APOP handle NOPs by adapting
the population size. The pcCMSA-ES controls the population
size according to the analysis of the objective dynamics [9].
The CMAES-APOP adapts the population size by using the
improvements of objective values. The UH-CMA-ES adapts
the number of re-evaluations of candidate solutions to reduce
the variance of the objective value [14].

A. Compared Algorithms

Fig. 2 presents the median run of each algorithm,1 where
the dashed line denotes the noise strength σε = 1. The main
observations are as follows.

1) CMA-ES: OPL-CMA-ES outperforms CMA-ES dramat-
ically on all the test functions. CMA-ES with the default
population size stops improving the objective value once
the objective value is comparative to the noise strength.
With the same FEs, OPL-CMA-ES achieves much bet-
ter final solutions than CMA-ES, which cannot find
qualified solutions.

2) UH-CMA-ES: OPL-CMA-ES performs much better
results than that of UH-CMA-ES on all the test
functions.

3) pcCMSA-ES: OPL-CMA-ES achieves superior results
than pcCMSA-ES on the test functions except for the
Sphere and Diffpow function. On the Benign Ellipsoid
and Ellipsoid function, pcCMSA-ES improves the objec-
tive value slowly. On the Rosenbrock and Rastrigin

1The median run indicates the run with the median final solution value of
each algorithm.

function, pcCMSA-ES fails to improve the objective
value. The experimental results indicate that the popula-
tion control of pcCMSA-ES works poorly as the noise
is relatively strong.

4) CMAES-APOP: OPL-CMA-ES performs similar to
CMAES-APOP on most test functions. OPL-CMA-ES
converges faster than CMAES-APOP on the Rosenbrock
and Rastrign function and achieves better final results in
terms of the median value on the Tablet, Rastrigin, and
Ackley function.

The experimental results show that OPL-CMA-ES generally
performs significantly better than the compared algorithms on
most of the test functions with relatively strong noise. It vali-
dates the effectiveness of the proposed mechanism of learning
the population size.

V. EXPERIMENTS ON THE BBOB NOISY TESTBED

In this section, we comprehensively evaluate the
performance of OPL-CMA-ES on the standard BBOB
noisy testbed [35]. The BBOB noisy testbed consists of 30
noisy test functions and is commonly used as the standard
benchmark for noisy optimization2 [36]. We present a precise
description of the benchmark functions of the BBOB noisy
testbed in Table II. These test functions are classified into
three subgroups according to the noise strength and the global
structure of the landscape: 1) the subgroup with moderate
noise; 2) the subgroup with severe noise; and 3) the subgroup
with highly multimodal and severe noise.

The BBOB noisy testbed uses the expected runtime (ERT)
and the empirical cumulative distribution function (ECDF) to
evaluate algorithms’ performance. The ERT estimates the ERT,
i.e., the expected number of FEs to reach a given target func-
tion value [37], ftarget = fopt + �f . It is summed over the
number of FEs executed in all trials while the best function
value did not reach ftarget during and divided by the number of
trials reached ftarget [38]. The ECDF estimates the percentages
of given target function values ftarget reached for a given bud-
get. The standard target function values ftarget used in BBOB
are ftarget = min [f ]+10k, k = {−8, . . . , 2}. The maximum FEs
are set to 106× n for each objective function on BBOB noisy
testbed. The initial mean m0 is randomly uniformly drawn
from [−4, 4]n, and σ0 = 4.

In the experiments, we take some state-of-the-art noise-
handling algorithms into the comparison. In addition to
the compared algorithms APOP, pcCMSA, and UHCMA in
Section IV,3 we also include PSAaLmC [10], the MOS [28],
and DE-PSO [27] in the comparison. These algorithms are of
different categories of handling the noise. The MOS [39] is
a hybrid algorithm that uses MOS structures to combine the
advantages of different EAs. It achieves good performance
on complicated multimodal functions and NOPs. The DE-
PSO [27] is an improved PSO algorithm that applies the
differential variation mechanism employed in DE to adapt

2Software and documentation are available
from https://coco.gforge.inria.fr/.

3For convenience, we simplify OPL-CMA-ES, CMAES-APOP, pcCMSA-
ES, and UH-CMA-ES to OPLCMA, APOP, pcCMSA, and UHCMA in this
section.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Performance comparison on noisy functions with n = 10 and the noise strength σε = 1. Presented are objective trajectories of f (m) of the median
runs with the median final results out of 51 independent runs. (a) Sphere. (b) Benign ellipsoid. (c) Ellipsoid. (d) Diffpow. (e) Cigar. (f) Tablet. (g) Rosenbrock.
(h) Rastrigin. (i) Ackley.

the velocity of particles and is robust against noise. The
experimental data of the PSAaLMC, MOS, and DE-PSO are
available at the BBOB workshops.4

A. Restart Strategy

CMA-ES can be considered as a robust local search
method [40]. The restart strategy is commonly used to improve
the robustness against multimodal or severe noisy problems.
Hence, we restart the algorithm once any termination criteria
of reaching the local minima are met [41].

In the detection of noise strength, the parameter θ represents
the noise level that the algorithm can tolerate. With small θ ,
the algorithm can capture the subtle change in the rank and
is more sensitive to the noise. Hence, we use different values
of θ as well as the initial population size for restarts to detect
the level of noise as follows.

First Run: In the first run, we expect that the algorithm can
solve the unimodal function or the well-structured multimodal

4https://coco.gforge.inria.fr/doku.php?id=algorithms-bbob-noisy

function with moderate noise. Hence, we use a relatively large
threshold θ = 0.5 and a small initial population size λ0 = λdef.

Second Run: After the termination of the first run, we
investigate whether the objective function is a well-structured
multimodal function with severe noise. To prevent the possible
premature convergence, we use a large initial population size
λ0 = kn × λdef and moderate threshold θ = 0.3.

Other Runs: If the first two runs fail to find the optimum,
the objective function can be viewed as a weakly structured
multimodal function with severe noise. We use a large initial
population size λ0 = kn × λdef and small threshold θ = 0.2.

B. Experimental Results and Discussion

In this section, we present the experimental results of
compared algorithms on the BBOB noisy testbed. More exper-
imental results that include the ECDF data of each function
and the numerical results of the ERT performance in all
dimensions are presented in the supplementary material.

1) Expected Runtime Performance: Fig. 3 shows the ERT
performance measured by the costed number of FEs of
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TABLE II
MAIN FEATURES OF THE TEST FUNCTIONS OF BBOB NOISY TESTBED

TABLE III
NUMBER OF SOLVED PROBLEMS FOR EACH ALGORITHM

ON EACH DIMENSION

each algorithm to reach the target accuracy 10−8 on dimen-
sions 2, 3, 5, 10, 20, and 40. The experimental results show
that OPLCMA scales linearly on dimension in most of the
test functions. OPLCMA generally outperforms PSAaLmC,
pcCMSA, UHCMA, MOS, and DE-PSO in terms of the num-
ber of FEs to reach the required accuracy. It generally costs
fewer FEs than APOP on f101, f102, f103, and f106, while APOP
consumes fewer functions evaluations on f105, f116, f119, and
f124. OPLCMA shows a remarkable improvement of the ERT
on f126 in dimension 5, outperforming all the compared algo-
rithms. The performance of OPLCMA differs from that of
PSAaLmC, pcCMSA, and APOP, indicating the difference
between the adaptation mechanisms. By adapting the popu-
lation size, OPLCMA achieves robust performance on strong
noise. Compared with UHCMA, OPLCMA achieves much
more robust performance on strong noise and non-Gaussian
noise, while UHCMA performs poorly on such problems. It
indicates that adapting the number of evaluations can hardly
work well on problems with strong noise and non-Gaussian
noise.

Table III presents the number of solved problems among
30 test functions of each algorithm in the tested dimen-
sions, where a problem is considered to be solved if the
algorithm successfully reaches the required accuracy 10−8

within the limitation of FEs. OPLCMA can successfully
solve more problems than PSAaLmC, pcCMSA, UHCMA,
MOS, and DE-PSO on all the tested dimensions except
that MOS solves the same number of functions on dimen-
sion 2. It should be noted that the performances of PSAaLmC,
pcCMSA, UHCMA, MOS, and DE-PSO degenerate dramat-
ically with the increasing of dimension, while OPLCMA
achieves more robust performance. OPLCMA outperforms or
performs comparatively to APOP on the tested dimensions. It
should be noted that OPLCMA solves much more problems
than all the compared algorithms on dimension 40, indicating
that the proposed OPLCMA is more robust with increasing
dimension.

2) ECDF Performance on Subgroups: Fig. 4 presents the
ECDF performance of the compared algorithms for each sub-
group. The test functions of each subgroup are characterized
by different noise strengths and the global structure of the
landscapes. The ECDF performance measures the fraction of
functions of each subgroup that is solved at the different
number of FEs. Generally, the algorithm that solves a larger
fraction of functions with fewer FEs is the more favorable.
Our main observations and discussions are as follows.

1) On the subgroup of functions f101–f106 with moder-
ate noise, OPLCMA successfully finds the solutions
with the target accuracy on all dimensions as shown
in the first column of Fig. 4. OPLCMA outperforms
PSAaLmC, pcCMSA, UHCMA, and DE-PSO in all
dimensions. With the same number of FEs, OPLCMA
solves more functions. The final fractions of solved func-
tions of PSAaLmC, pcCMSA, UHCMA, and MOS drop
from 1.0 on dimension 2 to less than 0.7 on dimension
40. As the dimension increases from 2 to 40, their per-
formances degenerate significantly and the final fractions
of solved functions drop dramatically, while OPLCMA
can solve all the functions successfully. Compared with
APOP and MOS, OPLCMA generally runs faster as it
costs fewer FEs.
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Fig. 3. ERT performance in number of FEs as log10 value divided by dimension for target function value 10−8 versus dimension. Slanted grid lines indicate
quadratic scaling with the dimension. Light symbols give the maximum FEs from the longest trial divided by dimension. Black stars indicate a statistically better
result compared to all other algorithms with p < 0.01 and Bonferroni correction number of dimensions (six). Legend: ◦: OPLCMA, ♦: APOP, 	: PSAaLmC,
�: UHCMA, �: pcCMSA, �: MOS, and �: DE-PSO.

2) On the subgroup of functions f107–f121 with severe
noise, OPLCMA performs competitively to APOP in
low to moderate dimensions and outperforms APOP
significantly in dimension 40. OPLCMA is superior to
PSAaLmC, pcCMSA, UHCMA, MOS, and DE-PSO,
especially as the dimension increases. The final frac-
tion of solved functions by UHCMA drops from 0.84
on dimension 2 to less than 0.4 on dimension 40, indi-
cating that UHCMA performs poorly on problems with
severe noise. We observe the same performance drop
on PSAaLmC, pcCMSA, MOS, and DE-PSO as the
dimension increases.

3) On the subgroup of highly multimodal functions
f122 − f130 with severe noise, OPLCMA outperforms
the compared algorithms in all dimensions, and the

performance gaps enlarge with increasing dimension.
APOP performs well in low to moderate dimensions,
while it can hardly scale up to dimension 40. The per-
formances of PSAaLmC, pcCMSA, UHCMA, MOS,
and DE-PSO degenerate significantly as the dimension
increases, as they can hardly solve the test functions
with strong noise and weak global structure. Moreover,
OPLCMA remarkably outperforms the best 2009 port-
folio in 5-D and provides a significant improvement of
the ECDF for f126 in 5-D (the detailed manner can be
found in the supplementary material).

In summary, OPLCMA achieves superior performance than
the compared algorithm on the BBOB noisy testbed, especially
as the dimension increases. The final fraction of functions
that OPLCMA can solve changes slightly, while that of the
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Fig. 4. ECDF performance for each subgroup in 2-, 5-, 10-, 20-, and 40-D. The light thick line with diamond markers shows the best algorithm from BBOB
2009 as a reference algorithm.

compared algorithms drops sharply. The experimental results
validate the effectiveness of OPLCMA and the good scalability
on dimension.

3) ECDF Performance on All Functions: Fig. 5 shows
the ECDF performance for all functions in all dimensions.
OPLCMA is superior to PSAaLmC, pcCMSA, UHCMA,

MOS, and DE-PSO in all the compared dimensions. OPLCMA
performs comparably to APOP in low to moderate dimensions
and outperforms it significantly in dimension 40. OPLCMA
can successfully solve more than 0.8 functions on dimension
40, while all compared algorithms are less than 0.7. The exper-
imental results validate the effectiveness of the proposed OPL.
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Fig. 5. ECDF performance for all functions in all tested dimensions. The light thick line with diamond markers shows the best algorithm from BBOB 2009
as a reference algorithm.

VI. CONCLUSION AND FUTURE WORK

In this article, we have proposed a new method of OPL
for handling NOPs and incorporated it with the CMA-ES
denoted as OPL-CMA-ES. At each generation, we re-evaluate
a fraction of the candidate solutions and measure the noise
level by the rank changes of the re-evaluated candidate
solutions, and then adapt the population size according to
the noise level. The obtained OPL combines the advan-
tages of both the explicit averaging and implicit averaging
methods and overcomes their limitations. Furthermore, OPL
does not depend on any specific evolutionary operations
and adaptation mechanisms, and hence it represents a gen-
eral framework for handling NOPs. It can be well suited
for any ranking-based EAs without any modification of the
algorithms.

We have conducted extensive experiments to evaluate
the performance and behavior of OPL-CMA-ES. The
experimental results show that OPL-CMA-ES is highly com-
petitive on NOPs, especially when the noise level is strong.
The experimental results validate the effectiveness of the
proposed mechanism of OPL-CMA-ES. We further compared
OPL-CMA-ES with some state-of-the-art variants on BBOB
noisy testbed and showed the remarkable performance of
OPL-CMA-ES.

In the future, we will investigate using OPL on the robust
optimization with noise on the decision variable, and uncer-
tainty in both the objective value and the decision variable.
Furthermore, ESs have been successfully applied in solv-
ing deep reinforcement learning (DRL) problems [42]–[44].
The DRL problems are highly noisy in practice, yet the
noise-handling techniques are rarely taken into account. The
UH technique [45] and restart [46] are used to improve the
performance of ESs. We will extend the proposed algorithm
to large-scale variants [47], [48] and evaluate the performance
on DRL problems in future work.
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