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A B S T R A C T

For accomplishing a variety of challenging tasks, multi-robot systems perform better than single robots because
they have certain properties that a single robot lacks. Target entrapment is one such task; its challenges include
finding ways to adapt to different environments to improve entrapment performance. This paper proposes a
cooperative hierarchical gene regulatory network (CH-GRN) with the aim of enhancing mutual cooperation
between robots neighbours and the utilisation of obstacles to achieve more effective and efficient entrapment.
A target–neighbour–obstacle (TNO) pattern generation method is proposed in the upper layer of the CH-GRN
design; it integrates the information on targets, neighbours, and obstacles in order to generate more accurate
patterns for surrounding the targets. A concentration-vector method is applied in the lower layer of the CH-GRN
to enable the robots to adapt quickly to the pattern and thereby complete the entrapment task. At the same
time, a proposed obstacle avoidance method is incorporated, which leads to more timely obstacle avoidance.
Several simulation experiments are conducted to quantitatively analyse CH-GRN’s performance on the target
entrapment task in a variety of environments consisting of different types of obstacles. In addition, experiments
with Kilobots are conducted to further evaluate CH-GRN’s effectiveness. The results show that the proposed
model can guide a robot swarm to perform target entrapment tasks in challenging environments with a variety
of obstacles, such as various shapes obstacles, narrow channel obstacles, and dynamic obstacles.
1. Introduction

Multi-robot systems (MRSs), which consist of a large number of
small but autonomous robots [1], are widely applied in the perfor-
mance of various tasks. The applications of such robot swarms include
flocking [2], forming shapes [3], transporting a large object to a
goal [4], exploration of unknown environments [5], and autonomous
sequencing of several specific tasks [6]. The interactions of the robots
with each other and with the environment engender many desirable
properties: scalability for different tasks [7,8], adaptability to harsh
environments [9], and robustness to partial damage [10–12]. Collec-
tively, swarm robots exhibit abilities that a single robot lacks [13].
Because of their attractive characteristics and their rapid development,
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swarm robots have been receiving increasing attention. Many theories
about swarm robots have been proposed, which further promote the
development of MRSs [14]. Among their applications, the use of swarm
robots to entrap targets is an emerging focus of research [15]. MRSs
can be more suitable than humans for deployment to achieve target
entrapment in dangerous environments [16,17], especially in applica-
tions such as those related to anti-terrorism, the marking of hazardous
goods in densely populated areas, and isolation of dangerous targets.

With the development of robot technology and increasing user
demands, swarm robot systems are applied to complete more complex
tasks [18]. An example is target entrapment, a challenging task in
which swarm robots are required to surround a target and maintain
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Fig. 1. The pattern of entrapment of a target at [𝑥, 𝑦].

an appropriate distance from it so that the target cannot escape. The
distance is not expected to be too large, because a too large distance
will not cause an effective fire threat from the swarm to the target,
and the target is easy to escape owing to the difficulty of catching
up at a large distance [19]. This distance is also expected not to be
too small because some targets are aggressive in reality, and a too
small distance will increase the damage possibility of the robot swarm.
Therefore, the entrapping robots are expected to be deployed in an
annulus with a suitable distance from the target, which is defined as the
pattern of entrapment. The pattern of entrapment of a target is shown
in Fig. 1. The red ‘‘x’’ represents the target at [𝑥, 𝑦] to be entrapped,
and the values around it represent the entrapping requirement. The
higher the value, the more effective the entrapment when a robot is
in the position. In addition, the appropriate distance between robots
is also important, which needs to improve the efficiency of trapping
while ensuring communication. The robots in the swarm should pay
attention to the cooperation with their neighbours because the task
requires many robots rather than a single robot to encircle the target.

Altan et al. [20] designed a single UAV to track the target ac-
curately. However, it should be noted that when the unit used to
entrap a target is a swarm, the problem becomes complex. As a key
technology, the ability of swarm robots to perform target entrapping
tasks directly affects the real-world functions and applications of swarm
robot systems. Currently, the target entrapment methods are mainly
divided into two categories. One includes improvements to controlling
the hardware. The mechanical control of the robot is realised by
designing the dynamic equation of the robots’ hardware, for example,
to realise the tracking a given path by UAV [21,22]. The other is
swarm collaboration, which concerns the swarm robots’ processing of
environmental information, to find the best action in their current state.
The swarm can be composed of UAVs, unmanned vehicles, or other
robots [23], and their movement mode is ignored. The proposed CH-
GRN model belongs to the second category. It can be applied to any
swarm and has strong practical significance.

For target entrapment, paths are designed for the swarm robots
before the task in many studies [24]. However, the swarms in actual
engineering application often cannot get sufficient information of the
task scene in advance. Inspired by biology, the mechanism in cells
has become effective inspire to solve this problem [25,26]. Using
the gene regulation network model, the robot can select an action
in real-time according to the environmental state, which solves the
simple target entrapment problem [27]. However, scenarios of swarm
robot tasks trend towards increasing diversification and dynamism, as
exemplified by the variety of task scenarios [28] and the motion of task
targets [29]. For the target entrapment task, the targets can usually
have the ability to move. Therefore, it is difficult to form a complete
2

and reliable enclosure around the target all the time. In addition, there
are various types of obstacles in the task environment, including some
obstacles with movement ability, which interfere with the completion
of the entrapment task. Among current applications of swarm robots,
the problem of target entrapment has been widely studied, but many
challenges remain to be overcome:

• The exclusive relies on repulsion to complete the enclosure. In
the operation of entrapping a target, the swarm cannot calculate
the key areas of the encirclement, and the individuals in the
swarm rely solely on repulsion; thus, the encirclement formation
is completed slowly and with low efficiency [19].

• The obstacle avoidance strategy is complex and independent.
When swarm robots are avoiding obstacles in the environment,
they cannot execute the entrapping task at the same time [30].

• Adapt passively to your environment. When obstacles appear in
the environment, swarm robots typically only avoid them and
do not make effective use of them. When obstacles approaching
dynamically, swarm robots are damaged because of untimely
obstacle avoidance [29].

• Unable to entrap dynamic targets. Due to the slow speed of robot
pattern generation and pattern adaptation, when the target is
dynamic, it cannot track and surround the dynamic targets in a
short time [31].

In this study, an approach is explored to controlling robot behaviour
that aimed to achieve an efficient and robust entrapment. The pattern
of entrapment is defined as a disk-like shape around the target, com-
posed of a robot swarm, that forms a robust enclosure. The proposed
cooperative hierarchical gene regulatory network (CH-GRN) includes
a mechanism for cooperation among neighbours and the utilisation of
obstacles for target entrapment. Several simulations are designed to in-
vestigate the performance of CH-GRN in terms of the entrapping speed
and quality. Furthermore, an experiment using Kilobots is conducted
to identify the model’s advantages and disadvantages and to ascertain
its potential applicability (in the slightly modified form necessary for
working with Kilobots). Theoretically, the proposed method inspires
many other tasks improvements of swarms by making use of their task
environment. In practice, it effectively improves the performance of the
swarm in the task of target entrapping and the success rate in besieging
dangerous targets and other entrapping tasks.

Our study on the proposed cooperative hierarchical control model
makes several contributions to target entrapment research:

• A target–neighbour–obstacle (TNO) pattern generation method,
embodied in the upper layer of the proposed network, takes into
account interactions with the environment, including the utilisa-
tion of obstacles. By adding the use of obstacles in generating an
entrapping pattern, the swarm can purposefully move to the blank
entrapment areas, resulting in improved efficiency and better
performance.

• When adapting to the generated pattern, obstacles are regarded as
part of the enclosure, which reduces the enclosure area that must
be filled by the swarm and the number of entrapment resources
required.

• A concentration-vector method is applied in the lower layer of the
network. From the current states, the method directly obtains the
optimal direction in which the robots must move leading to faster
pattern adaptation.

• A set of experiments is conducted using Kilobots to determine
whether the proposed model is suitable for implementation with
robots having very limited individual capabilities.

The rest of this paper is structured as follows. Section 2 reviews re-
lated work. Section 3 describes the proposed CH-GRN model (consisting
of a model of protein concentration diffusion, an upper layer for pattern
generation, and a lower layer for robot guidance). Section 4 presents
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the results of several sets of experiments and the performance analysis.
Finally, conclusions are summarised and possibilities for future work
are discussed in Section 5.

2. Related work

Techniques for controlling multi-robot behaviour are inspired pri-
marily by group behaviour in animals. A second source of inspiration is
the phenomenon of clustering at the microcellular level. Other sources
include the spatial distribution of bacterial colonies [32] and patterns
generated in the fur of certain animals [33]. If a robot is regarded as
a cell that cooperates with others to form an adaptive pattern, then
research on MRSs can also be inspired by the mechanism of biological
evolution. Biologists have carried out a substantial amount of research
to understand the mechanisms of embryonic development and cell
growth [34,35], which provides a theoretical basis for research on
swarm robots.

Therefore, the mechanisms of biomode formation, such as mor-
phogen diffusion, chemotaxis, and gene expression and regulation, are
studied to help develop techniques for guiding the MRS. In biology,
the concentration of a morphogen (signal molecules diffused in cells)
decays with the distance from its source, forming a gradient. To ad-
dress the problem of oversensitivity to the disturbance caused by the
exponential expansion of protein concentration, Werfel [36] provided
a solution in which another small diffusion source is placed nearby,
resulting in a linear gradient diffusion of protein concentration. Slavkov
et al. [37] used the diffusion of two morphogens to enable robots to
know their roles within the swarm and simulated the pigmentation on
animal furs. Chemotaxis is a mechanism that guides cell movement by a
process in which some cells release chemicals to the local environment
while other cells react by approaching or avoiding the chemicals [38].
Eyiyurekli et al. [39] used chemotaxis in a simulation to separate a
mixture of two types of agents and cause one type of agent to surround
the other. A problem with this method is that the field function cannot
always generate the patterns desired. Gene regulatory networks (GRNs)
come into play because all of the cells in a multicellular organism share
the same genome, but changes in the arrangement of activated and
silenced genes distinguish the behaviour and function of each cell and
thus regulate gene expression. Just as GRNs control the division and dif-
ferentiation of groups composed of individual cells to form organisms,
they can be constructed to control the behaviour of individual robots in
a robot swarm. Applications of the theory of the evolution of organisms
have been studied in recent years [40], and this paper investigates the
control of the behaviour of individual robots in a swarm by using GRNs.

Wang et al. proposed a robot navigation algorithm by combin-
ing a gene regulatory network (GRN) with a finite state machine
(FSM) [41]. The robots employ FSM mechanism to make behavioural
choices according to their actual environment and current state of the
other robots. However, the limited number of states is hard to meet
the needs of complex tasks. Guo et al. [42] applied a GRN to the
generation of a multi-robot pattern by controlling the 𝑥-direction and
𝑦-direction proteins of the robot, in which the movement of the swarm
is more flexible. But it is difficult for a group of physical robots with
limited capabilities to access the global coordinate system. To solve this
problem, Guo et al. [43] proposed a GRN-based method for multi-robot
pattern generation, in which each robot in the swarm finds its direction
by selecting a reference robot as the origin and establishing a local
coordinate system. Jin et al. [44] introduced a two-layer GRN for multi-
robot pattern generation to entrap targets in a dynamic environment.
Oh and Jin [19] extended this hierarchical GRN (H-GRN) structure to
achieve region coverage rather than boundary coverage. The first layer
of the H-GRN generates the entrapment pattern through gene activation
and protein concentration regulation. As the input of the lower layer,
this pattern regulates the protein concentration, which determines the
positions and internal states of each robot. Meng and Guo [45] studied
3

an evolutionary GRN, in which an evolutionary algorithm determines
the coefficient of the GRN by using a frequently repeated regulation
pattern called a network pattern. In addition, through proposing a
cooperative GRN, the exploration of the problem of target entrapment
has been extended to the field of three-dimensional space with GNSS-
denied environments [46]. The method greatly expands the application
of GRN in three-dimensional space [47]. However, these GRN frame-
works neglect the information in the environment that that may play a
paramount role in the efficient self-organisation of MRSs. In our previ-
ous work [48], cooperation between neighbouring robots is enhanced
by the addition of a diffusion source in a cooperation-based GRN (C-
GRN), but the obstacles in the environment are not fully utilised. In
actual scenarios, neighbours and obstacles can hinder the movement
of not only the robots but also the targets. Therefore, the cooperative
hierarchical gene regulatory network (CH-GRN) is designed to enable
the robot swarm to obtain help from neighbours and take advantage
of obstacles, which is not available in H-GRN and C-GRN, thereby
performing tasks more efficiently and robustly. CH-GRN also enables
the robot swarm to adapt to changes in the environment and the shapes
of obstacles.

To date, most studies on entrapment with a group of robots have
been theoretical, based on simulations rather than actual robot swarms.
Therefore, it is difficult to judge whether the robot control networks
proposed thus far can cross the reality gap and be applied to a large
group of simple robots. Rubenstein et al. [49] made a breakthrough
in the field of swarm robotics by inventing the Kilobot, a minimal,
low-cost robot which is applied to the study of morphogenesis to
generate desired shapes, such as a starfish shape [50]. A Kilobot is
a kind of simple robot; it can move by vibrating two small legs and
can communicate and measure distances by infrared reflection. Each
robot receives message packets composed of nine bytes broadcast twice
per second. However, because of its limited abilities, a Kilobot is not
able to self-localise, nor can it obtain the locations of neighbouring
robots or obstacles. A Kilobot uses LED light to indicate its current type
and state. To date, little work using Kilobots for entrapment has been
reported, with a few exceptions [51]. In this study, several experiments
are conducted using Kilobots in order to ascertain the applicability of
the proposed CH-GRN.

The acronyms and their original phrases are summarised in Table 1.

3. Cooperative hierarchical gene regulatory network

Organisms are made up of cells. In the process of biological growth,
a single cell can get the protein concentration around itself. Depending
on the protein concentration information, cells can judge their posi-
tion and state to complete their tasks of making the whole organism
maintain a stable state. The mechanism is expected to be applied in
the distributed multi-robot systems, so that the information can be
transmitted between agents through the diffusion of protein concen-
tration. Thus, it is helpful for the swarm to efficiently calculate its
proper position in the enclosure, so as to achieve efficient entrapment.
In addition, depending on the immune system of organisms, when there
is an invasion, cells can locate the invader through the concentration of
protein diffused and take countermeasures including tracking, entrap-
ping, and phagocytosis. The mechanism of biological immune systems
can be applied to multi-robot systems, which enlightens the method of
target entrapment and obstacle avoidance. In an organism, the change
in protein concentration depends on the control of gene regulatory
networks. Therefore, a gene regulatory network is designed for the
swarm to entrap the targets in the paper.

In this section, the two-layer model of the cooperative hierarchical
gene regulatory network (CH-GRN) is introduced. The CH-GRN model
which is based on the mechanism of cell growth in organisms [52] is
shown in Fig. 2. In the biological model, there is a series of proteins
in a cell, along with multiple gene segments inside to control its
growth. Some factors in the external environment (such as, the protein
concentration) will activate certain gene segments, leading to a change
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Fig. 2. Cooperative hierarchical gene regulatory network (CH-GRN) model. The internal structure of a robot is represented by a blue rectangle that also represents a cell, in
which the dark blue circle represents the protein concentration, the white box is the gene segment, and the ‘Y’ structure at the cell’s edge is a receptor used to detect the protein
concentration around the cell.
Table 1
Acronyms and the original phrases.

Acronyms The original phrases

CH-GRN Cooperative hierarchical gene regulatory network
TNO Target–neighbour–obstacle
MRSs Multi-robot systems
UAV Unmanned Aerial Vehicle
GRNs Gene regulatory networks
C-GRN Cooperation-based GRN
H-GRN Hierarchical GRN

in the protein concentration inside the cell and ultimately controlling
its growth and development. Correspondingly, there are many ‘gene
segments’ in a robot swarm to control changes in its internal ‘protein
concentration’ in conjunction with its environment and ultimately con-
trol the robots’ entrapment behaviour. A robot swarm is composed of
multiple robots with the same structure, and amy single robot 𝑅𝑖 in the
swarm has nine gene segments (gene 1 to gene 9). The distribution of
gene segments is shown in Fig. 2. The internal structure of a robot is
represented by a blue rectangle that also represents a cell, in which
the dark blue circle represents the protein concentration, the white
box is the gene segment, and the ‘Y’ structure at the cell’s edge is a
receptor used to detect the protein concentration around the cell. In
the following sections, the model’s specifics are given in detail. Firstly,
to make the concentration value calculation more accurate and robust,
the protein concentration diffusion model in biology is improved in
Section 3.1. Then, the details of the upper and lower layers of the
proposed gene regulatory network are shown in Sections 3.2 and 3.3,
respectively.
4

3.1. Protein concentration diffusion model

CH-GRN is established as an imitation of the structure of a biological
cell, and cells communicate with each other through protein concen-
trations. Analogously, the way for robots to obtain information about
the local environment can be seen as the diffusion and perception of
protein concentrations in multicellular organisms.

A common phenomenon in biology is that each cell is a source of
protein concentration diffusion, and the protein concentration diffuses
exponentially, as shown in Fig. 3(a), where the height of the polygon
indicates the protein concentration. However, because the low-slope
part of the diffusion process is sensitive to noise and interference, the
exponential diffusion will affect the accuracy of robot judgement. In our
previous work [48], the protein concentration is observed to expand
nearly linearly after the addition of a diffusion source. Similarly, by
the placement of an auxiliary factor that is allowed to interact with the
original protein, the gradient of the protein concentration diffusion will
become nearly linear, as shown in Fig. 3(b).

It is assumed that the auxiliary factor 𝐹𝑖 is activated when robot
𝑅𝑖 diffuses the location information via the protein concentration.
The concentration of positional protein 𝐺𝑖 traditionally diffuses expo-
nentially, but the auxiliary factor 𝐹𝑖 diffuses non-exponentially. The
concentration diffusion modes of 𝐺𝑖 and 𝐹𝑖 are respectively defined by
Eqs. (1) and (2), respectively.
𝑑𝑝𝐺𝑖

𝑑𝑡
= −𝑝𝐺𝑖

+ 𝑘1𝑒
−𝜎𝑖 , (1)

𝑑𝑝𝐹𝑖 = −𝑝 + 𝑘
[

−
(

1 − sig
(

𝜎 , 𝑧 , 𝛼
))

− sig
(

𝜎 , 𝑧 , 𝛼
)]

, (2)

𝑑𝑡 𝐹𝑖 2 𝑖 1 1 𝑖 2 2
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Fig. 3. Comparison of different modes of protein concentration diffusion. The protein
concentration decreases as the distance from the diffusion source increases. (a)
Exponential concentration gradient. (b) Linear concentration gradient.

Fig. 4. Two modes of protein concentration diffusion with a robot in the centre position
(10,10). (a) Exponential concentration gradient. (b) Linear concentration gradient.

where,

sig (𝜎, 𝑧, 𝛼) = 1
1 + 𝑒−𝛼(𝜎−𝑧)

, (3)

and 𝑝𝐹 and 𝑝𝐺 are the concentrations of proteins 𝐹𝑖 and 𝐺𝑖, respec-
tively, at the location that is a distance of 𝜎𝑖 from the diffusion source.
The ratio of the concentrations of proteins 𝐹𝑖 and 𝐺𝑖 is determined by 𝑘1
and 𝑘2. 𝛼 and 𝑧 are positive constants which determine the slope and
deviation, respectively, of the sigmoid function, which is represented
by ‘𝑠𝑖𝑔’ in Eq. (3). As for robot 𝑅𝑖, the diffusion mode of its protein
concentration 𝑝𝑖 after the protein concentration 𝐺𝑖 and auxiliary factor
𝐹𝑖 interact can be expressed as follows:

𝑑𝑝𝑖
𝑑𝑡

= −𝑝𝑖 + 𝑝𝐺𝑖
+ 𝑝𝐹𝑖 (4)

Through the combination of the two proteins, the protein concen-
tration becomes more robust to environmental changes. In Fig. 4, the
concentration diffusions of a robot from the central position (10,10) in
two ways are shown. It can be clearly seen that the protein concen-
tration follows almost linear diffusion when the auxiliary factor 𝐹𝑖 is
added. The protein concentration diffusion with the robot in the centre
changes from exponential diffusion to approximate linear diffusion,
which is highly similar to the curve in Fig. 3. The influence of noise
and interference on the protein concentration can thus be reduced.

3.2. CH-GRN upper layer: the TNO pattern generation method

In the proposed model, each robot in the swarm obtains the relative
positions of the targets, its neighbours, and the obstacle boundary
through position sensors. In the upper layer of CH-GRN, the entrapment
pattern is generated to guide the robots’ movements. For improved
accuracy over that of the previous generated pattern, a new pat-
tern generation method is proposed, named target–neighbour–obstacle
(TNO), which integrates the information on targets, neighbours, and
obstacles.
5

3.2.1. Target
The receptors receive the protein concentration information repre-

senting the targets’ locations and input it into CH-GRN, where it is
represented as the protein concentration 𝑝𝑡1, calculated as the sum of
protein concentrations diffused by targets within the range of detection:

𝑑𝑝𝑗
𝑑𝑡

= −𝑝𝑗 + ∇2𝑝𝑗 + 𝜎𝑡𝑗 , (5)

𝑝𝑡1 =
𝑛𝑡
∑

𝑗=1
𝑝𝑗 . (6)

In these equations, the target information (obtained by a robot
through its sensor or by local simple communication with other robots)
is denoted as 𝜎𝑗 , which is a positive constant value when the 𝑗th target
exist in the environment. 𝑝𝑗 represents the protein concentration gener-
ated by the 𝑗th target, and 𝑝 is the sum of the protein concentrations for
all of the detected targets. ∇ is the gradient operator. This integrated
protein concentration 𝑝 actives the internal genes 𝑔1–𝑔3 of robot 𝑅𝑖
resulting in changes in protein concentrations 𝑝𝑡2, 𝑝

𝑡
3, and 𝑝𝑡, where 𝑝𝑡

defines the entrapment pattern determined by the information from the
targets. 𝑔1–𝑔3 are calculated as Eq. (7)–(9): 𝑔1 ∶

𝑑𝑝𝑡2
𝑑𝑡

= −𝑝𝑡2 + sig
(

𝑝𝑡1, 𝑧𝑡1, 𝛼𝑡1
)

. (7)

𝑔2 ∶

𝑑𝑝𝑡3
𝑑𝑡

= −𝑝𝑡3 +
[

1 − sig
(

𝑝𝑡1, 𝑧𝑡2, 𝛼𝑡2
)]

. (8)

𝑔3 ∶

𝑑𝑝𝑡

𝑑𝑡
= −𝑝𝑡 + sig

(

𝑝𝑡2 + 𝑝𝑡3, 𝑧𝑡3, 𝛼𝑡3
)

. (9)

Note that the protein concentration 𝑝𝑡 is regulated by both 𝑝𝑡2 and
𝑝𝑡3, whereas 𝑝𝑡2 and 𝑝𝑡3 are regulated only by 𝑝𝑡1 within the specified con-
centration range. According to the sigmoid function and the specified
thresholds 𝑧𝑡1, 𝑧𝑡2, and 𝑧𝑡3, the encirclements will be generated around
the targets.

3.2.2. Neighbour
The receptor of a robot can receive information on the protein

concentration diffused by neighbours. Similarly, 𝑝𝑛 is the sum of the
protein concentrations diffused by all neighbours within the range of
detection:
𝑑𝑝𝑗
𝑑𝑡

= −𝑝𝑗 + ∇2𝑝𝑗 + 𝜎𝑛𝑗 , (10)

𝑝𝑛1 =
𝑛𝑟
∑

𝑗=1
𝑝𝑗 , (11)

where 𝑛𝑟 is the number of neighbouring robots within the detection
range. 𝑝𝑛1, 𝑝

𝑛
2, and 𝑝𝑛3 are temporary variables used to calculate protein

concentration 𝑝𝑛. By activating 𝑔4 and 𝑔5, the protein concentrations
𝑝𝑛2 and 𝑝𝑛3 will be changed. Both of them change the protein concen-
tration 𝑝𝑛, affected by the locations of the neighbours through simple
superposition. 𝑔4 and 𝑔5 are calculated as follows:
𝑔4 ∶

𝑑𝑝𝑛2
𝑑𝑡

= −𝑝𝑛2 + sig
(

𝑝𝑛1, 𝑧𝑛1, 𝛼𝑛1
)

. (12)

𝑔5 ∶

𝑑𝑝𝑛3
𝑑𝑡

= −𝑝𝑛3 +
[

1 − sig
(

𝑝𝑛1, 𝑧𝑛2, 𝛼𝑛2
)]

. (13)

Their superposition affects protein concentration 𝑝𝑛:
𝑑𝑝𝑛

𝑑𝑡
= −𝑝𝑛 + 𝛿𝑛1𝑝

𝑛
2 + 𝛿𝑛2𝑝

𝑛
3. (14)

The relationship between the protein concentration 𝑝𝑛 and the dis-
tance to the robot’s neighbour is shown in Fig. 5. In Fig. 5, the protein
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Fig. 5. Relationship between protein concentration 𝑝𝑛 and distance to the robot’s
neighbour.

concentration 𝑝𝑛 is low near the robot’s neighbours. Because the robot
can protect its immediate surroundings, the area around the robot does
not need reinforcement from other robots. Instead, those robots will be
more inclined to move to a position outside the neighbour-protected
area to cooperate with their neighbours. Of course, robots are expected
to be deployed to a location not too distant from their neighbours;
this expectation can be met by adjusting 𝑧𝑛1, 𝑧𝑛2, 𝛿𝑛1, and 𝛿𝑛2 are
proportional coefficients according to the task and the environment.

3.2.3. Obstacle
Leveraging the realisation that obstacles can be another tool for

restricting targets when entrapping a target, the proposed CH-GRN
model in this study simulates obstacles as a special kind of robot, called
virtual robots. With the help of virtual robots, it is possible to achieve
firm encirclement of the targets while consuming less resource, for
example by using fewer robots.

Because obstacles can have a wide range of shapes and sizes, it
is nearly impossible for robots to obtain complete information on the
obstacle shapes through sensors alone. It is assumed that the sensor of
a robot can only detect the surfaces of obstacles, each of which can be
expressed as a one-dimensional curve in two-dimensional coordinates.
A circle is used to simulate the collision region of a virtual robot, and
the protein diffuses from the centre of the circle. Therefore, a line is
drawn in the area with a radius apart from the boundary, and sampling
points are taken as the centres of the virtual robots. In this way, an
obstacle boundary composed of virtual robots is generated. Fig. 6 shows
the arrangements of virtual robots when typical shapes of a detected
obstacle surface are given.

A robot obtains the boundary information of obstacles around it and
then uses that information as input to generate the pattern of obstacles
in its environment:
𝑑𝑝𝑗
𝑑𝑡

= −𝑝𝑗 + ∇2𝑝𝑗 + 𝜎𝑛𝑗 , (15)

𝑝𝑣1 =
𝑛𝑣
∑

𝑗=1
𝑝𝑗 , (16)

where 𝑗 ∈ 1, 2,… , 𝑛𝑣 is the sequence number of the virtual robot. By
simulating obstacles as a series of virtual robots similar to real robots,
obstacles can be used to entrap targets. 𝑝𝑣1, 𝑝

𝑣
2, and 𝑝𝑣3 are temporary

variables used to calculate protein concentration 𝑝𝑣. 𝑝𝑣 is the sum of the
protein concentrations diffused by all virtual robots within the range
of detection. Because the virtual robots are similar to real robots in
structure, 𝑔 and 𝑔 can also affect their concentrations:
6

4 5
𝑔4 ∶
𝑑𝑝𝑣2
𝑑𝑡

= −𝑝𝑣2 + sig
(

𝑝𝑣1, 𝑧𝑣1, 𝛼𝑣1
)

. (17)

𝑔5 ∶
𝑑𝑝𝑣3
𝑑𝑡

= −𝑝𝑣3 +
[

1 − sig
(

𝑝𝑣1, 𝑧𝑣2, 𝛼𝑣2
)]

. (18)

Their superposition affects protein concentration 𝑝𝑣:
𝑑𝑝𝑣

𝑑𝑡
= −𝑝𝑣 + 𝛿𝑣1𝑝

𝑣
2 + 𝛿𝑣2𝑝

𝑣
3. (19)

Considering the effects of targets, neighbours, and obstacles on
pattern generation, the protein concentration 𝑃 is obtained after 𝑔6 is
activated in the upper layer; it also represents the target entrapment
pattern that will be transferred to the lower layer:
𝑔6 ∶

𝑃 = 𝑝𝑡 + 𝑝𝑛 + 𝑝𝑣. (20)

Specifically, when a swarm surrounds a target in a scene with
obstacles, the target entrapment patterns during and after the target
entrapment operation are as shown in the thermodynamic diagram in
Fig. 7. The task is to entrap the target next to an obstacle with a swarm
of robots. The white dots indicate the swarm, and the white ‘x’ indicates
the entrapped target. The obstacles are shown as green rectangles, and
the entrapment pattern generated by the robots is represented by the
thermodynamic diagram.

The pattern generation for target entrapment is obviously affected
by the existence of obstacles, and the area of incomplete entrapment
is represented by a lighter colour. It can be seen that the protein
concentration in the area around the obstacle is low. In Fig. 7(a), the
entrapment operation is in progress, and the robots are approaching
the target near the obstacle. At this time, the high-concentration area
is to the right of the target because there are no obstacles or robots
there, and the target can easily escape in this direction. In Fig. 7(b), the
robots have successfully entrapped the target by taking advantage of
the obstacles. It can be seen that because of the restriction imposed by
the obstacles on the movement of the target, the number of robots near
the obstacles is much less than that on the side away from the obstacles.
Therefore, robots will be deployed away from obstacles to strengthen
the defence and prevent targets from escaping. The generated pattern
can guide the robots to complete the encirclement more quickly.

3.3. CH-GRN lower layer: the concentration-vector method

In the proposed CH-GRN model, the upper layer is responsible
mainly for generating an adaptive pattern, and the lower layer is
responsible for guiding robot behaviour according to the pattern gen-
erated by the upper layer. In the lower layer, a concentration-vector
method is applied to enable the robot swarm to adapt to the pattern
more quickly:
𝑔7 ∶
𝑑𝑺𝒊
𝑑𝑡

= −𝑺𝒊 + 𝑟1𝒕𝒊 + 𝑟2𝒅𝒊 + 𝑟3𝒄𝒊 + 𝑟4𝒏𝒊, (21)

where 𝑖 ∈ 1, 2,… , 𝑁 is the robot index, and the protein concentration
𝑺𝒊 is the internal position vector of robot 𝑅𝑖. 𝑟1, 𝑟2, 𝑟3, and 𝑟4 are
parameters that need to be optimised according to the targets; each
represents the weight of the corresponding vector. 𝒕𝒊 is the protein
concentration vector of robot 𝑅𝑖, which depends on its target; 𝒅𝒊 is the
sum of the location protein vectors diffused by the neighbours around
the robot; 𝒄𝒊 is the core vector of the internal state; 𝒏𝒊 is the sum of
direction vectors to avoid collisions between neighbours of robot 𝑅𝑖.

𝒕𝒊 is a unit vector, which points to the target and guides robot 𝑅𝑖 to
approach or avoid the target:

𝒕𝒊 =

⎧

⎪

⎪

⎨

⎪

⎪

𝐺𝑖 − 𝐺𝑛𝑡
|

|

𝐺𝑖 − 𝐺𝑛𝑡
|

|

, |
|

𝐺𝑖 − 𝐺𝑛𝑡
|

|

≥ 𝑅target,

−
𝐺𝑖 − 𝐺𝑛𝑡
|𝐺 − 𝐺 |

, |
|

𝐺𝑖 − 𝐺𝑛𝑡
|

|

< 𝑅target,
(22)
⎩

| 𝑖 𝑛𝑡|
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Fig. 6. Arrangements of virtual robots when a detected obstacle surface has a typical shape. (a) Arc. (b) Right angle. (c) Acute angle.
Fig. 7. Target entrapment patterns considering the influence of obstacles. (a) The
entrapment task is in progress. (b) The entrapment task is completed.

where 𝑛𝑡 is the target of robot 𝑅𝑖; 𝐺𝑖 and 𝐺𝑛𝑡 are the location proteins
of robot 𝑅𝑖 and the task target diffusion, respectively; and 𝒕𝒊 is a unit
vector. Generally, if robot 𝑅𝑖 is far from the task targets, then 𝒕𝒊 guides
it to move closer to the task targets. However, it is worth noting that if a
target is dangerous, the swarm may be damaged if a robot approaches
it too closely. As the task of the swarm is to entrap the targets, the
robots are required to keep a safe distance 𝑅target away from any target.
When they become too close to a target, they will move in the opposite
direction from it.

𝒅𝒊 guides the robot to move to a low-density area of the swarm
within its range:

𝒅𝒊 =
1
𝑛𝑏𝑖

𝑛𝑏𝑖
∑

𝑗=1

𝐺𝑖 − 𝐺𝑗
|

|

|

𝐺𝑖 − 𝐺𝑗
|

|

|

, (23)

where 𝑛𝑏𝑖 denotes the number of neighbours of robot 𝑅𝑖.
Robot 𝑅𝑗 is considered a neighbour of robot 𝑅𝑖 only when the

distance between them is shorter than a threshold 𝑅probe
𝑖 .

𝒄𝒊 is determined by the information output by the upper layer of
CH-GRN. It guides the robot to the highest concentration point in its
domain by activating 𝑔8, which is calculated as 𝑔8 ∶

𝒄𝒊 =
𝐺∗ − 𝐺𝑖
|

|

𝐺∗ − 𝐺𝑖
|

|

, (24)

where 𝐺∗ is the maximum value of the positional protein in the
entrapment pattern. That is,

𝐺∗ = argmax (𝑃 (𝐺)) 𝐺 ∈
{

𝐺|

|

|

𝐺 − 𝐺𝑖
|

|

< 𝑅probe
𝑖

}

, (25)

where 𝐺 is the collection of protein concentrations at all positions in
the domain of robot 𝑅𝑖 that can be detected.

In order to avoid physical collisions between robots, a safe distance
𝑅safety is set for the robots, whose value is determined by the environ-
ment and the size of the entrapping robots. When other robots are less
than the safe distance away from robot 𝑅 , they will immediately move
7

𝑖

in the direction away from robot 𝑅𝑖:

𝒏𝒊 =
⎧

⎪

⎨

⎪

⎩

1
𝑛𝑠𝑖

𝑛𝑠𝑖
∑

𝑗=1

𝐺𝑖 − 𝐺𝑗
|

|

|

𝐺𝑖 − 𝐺𝑗
|

|

|

, 𝑛𝑠𝑖 > 0

𝟎 , 𝑛𝑠𝑖 = 0

, (26)

where 𝑛𝑠𝑖 is the set of neighbours within the security range of robot 𝑅𝑖.
This process is only activated when the distance from robot 𝑅𝑖 to its
nearest neighbour is less than the threshold 𝑅safety, i.e. when 𝑛𝑠𝑖 > 0.
Otherwise, the vector is set to zero.

The internal state protein 𝑺𝒊 of a robot is the weighted average of
the concentrations of these proteins. After the protein concentration
and the obstacles interact through the self-organisation mechanism, the
location protein 𝐺𝑖 of robot 𝑅𝑖 can be updated by activating 𝑔9: 𝑔9 ∶
𝑑𝐺𝑖
𝑑𝑡

= −𝐺𝑖 + 𝑟5𝑺𝒊 + 𝑟6𝒛𝒊, (27)

where 𝒛𝒊 is a vector obtained from interacting with obstacles by using
an obstacle avoidance mechanism.

In the conventional obstacle avoidance method, robots need in-
formation about the boundaries of obstacles in order to avoid them;
they then perform some complex processing and calculate the best
direction to move in order to avoid the obstacles. However, in a
complex and dynamic environment with obstacles, the robots may not
be able to obtain the information on the obstacle boundaries in time.
Therefore, an obstacle avoidance mechanism is proposed to deal with
sudden changes in the obstacle environment and to respond to sudden
emergencies and changes in obstacle locations.

The main principle of the obstacle avoidance mechanism is to
enable the robot to determine the direction in which it should move
next after calculating the robot’s current direction of motion based on
the existing model. If an obstacle is detected, left and right deflections
are used to avoid the obstacle based on the initial direction of motion
obtained prior. The next direction of motion is recorded when the
direction is detected with no obstacle and with minimal deflection.

In Fig. 8(a), the polygon indicates an obstacle in the environment,
the initial direction of motion of the robot is represented as a solid
arrow, and the dotted circle around the robot shows the single-step
displacement of the robot. It can be seen that according to the predicted
direction of the robot’s movement, its next position will coincide with
that of the obstacle. Therefore, according to the obstacle avoidance
mechanism, the robot will test the left and right deflections and choose
the smaller one by comparing the two directions. The robot’s final
direction of motion is shown in Fig. 8(b); in this scene, 𝒛𝒊 is the vector
from the initial direction of motion to the final direction of motion of
robot 𝑅𝑖.

4. Experimental results

In order to test the performance of the proposed model, three sets of
computer simulations and a set of physical experiments with Kilobots
are conducted.



Swarm and Evolutionary Computation 80 (2023) 101310M. Wu et al.
Table 2
Notation used for simulations.

Parameters Description Values

𝑘1 , 𝑘2 The diffusion strength of 𝑝𝐺 , 𝑝𝐹 2,4
𝛼1 , 𝛼2 The slope of sigmoid function in protein diffusion 20,20
𝑧1 , 𝑧2 The bias of sigmoid function in protein diffusion 0,2
𝛼𝑡1 , 𝛼𝑡2 , 𝛼𝑡3 The slope of sigmoid function in 𝑔1−3 20,20,20
𝑧𝑡1 , 𝑧𝑡2 , 𝑧𝑡3 The bias of sigmoid function in 𝑔1−3 0.25,0.3,1.2
𝛼𝑛1 , 𝛼𝑛2 The slope of sigmoid function in 𝑔4−5 20,20
𝑧𝑛1 , 𝑧𝑛2 The bias of sigmoid function in 𝑔4−5 0.95,1
𝑟1 , 𝑟2 , 𝑟3 , 𝑟4 Weight of internal state protein 𝑺𝒊 0.4,0.2,0.2,0.2
𝑅target The safe distance the robot needs to keep from the targets 1
𝑅safety The safe distance the robot needs to keep from the neighbours 0.15
𝑅probe

𝑖 Detection distance of robot 𝑅𝑖 0.5
𝑟5 , 𝑟6 Weight of location protein 𝑮𝒊 0.5,0.5
4.1. Simulations

4.1.1. Setup and evaluation metrics
In the simulation studies, an agent represents a robot used to

entrap targets. The three simulations are used three different types of
obstacles in the task scene. In the first simulation, entrapment with
single obstacles, a single specific scenario is analysed, in which the
swarm size is set to 40 and the agents are required to entrap three
targets next to the three single obstacles. In the second simulation,
entrapment with special obstacles, two long obstacles forms a narrow
channel. In the third simulation, entrapment with dynamic obstacles,
the obstacles have the ability to move.

In these simulations, all agents move in a two-dimensional space,
and a square with a side of length 20 m is the region under consider-
ation. There are several green polygon obstacles distributed within the
region. Agents are represented by blue dots, and they aim to entrap
the targets, each represented by a red ‘x’. The generated pattern is
represented as a closed red shape. The time interval in the simulations
is 1 s, and the total duration 𝑇 of one simulation run is 50 s. The speed
of the agents’ motion is 0.25 m/s, and the speed of motion of the targets
and obstacles is 0.1 m/s. Other parameter settings are summarised in
Table 2.

In addition, two methods are set up to compare with the proposed
CH-GRN to demonstrate the advantages of CH-GRN in entrapping per-
formance. It is worth noting that CH-GRN improves pattern generation
by the upper layer, pattern adaptation by the lower layer, and the ob-
stacle avoidance mechanism based on H-GRN [44]. The first method for
comparison is CH-GRN without the cooperation mechanism. Compared
with H-GRN, CH-GRN without the cooperation improves the pattern
adaptation and obstacle avoidance mechanism in the lower layer, while
the upper structure is the same as H-GRN. The second method for
comparison is H-GRN without improvement [44], which is a classic
method in this field and can be applied to target entrapment task. In
the simulation experiments, the entrapping performances of the three
methods are compared.

To evaluate the effectiveness of entrapment by a swarm of agents,
two metrics are used: entrapment strength and enclosure occupancy
rate.

The first of these, entrapment strength, can be conceptualised for
each target as follows. Both the agents and the obstacles can effectively
limit the targets’ motion. For the agents to entrap the targets, it is nec-
essary for them to maintain an appropriate distance from the targets.
Therefore, the area around each target is divided into three levels as
shown in Fig. 9. The enclosure around the best entrapment distance to
the target is Region I. The two areas that are too close to or too far from
the target constitute Region II. Otherwise, when the distance between
the agents and the target exceeds a certain threshold, the agents no
longer have an entrapment effect on the target; this area is marked as
Region III. 𝜇 is the weight set according to the importance of different
8

Fig. 8. Obstacle avoidance mechanism for a robot. The polygon indicates an obstacle
in the environment, the initial direction of motion of the robot is represented as a solid
arrow, and the dotted circle around the robot shows the single-step displacement of
the robot. (a) Initial direction of motion. (b) Final direction of motion.

Fig. 9. Division of area around a target.

regions; 𝜇1 is the weight of Region 1 and 𝜇2 is the weight of Region II,
respectively. In the simulation, 𝜇1 = 2 and 𝜇2 = 1.

𝜇 =

⎧

⎪

⎨

⎪

⎩

𝜇1, 𝑝(𝑖, 𝑗) ∈ 𝐼
𝜇2, 𝑝(𝑖, 𝑗) ∈ 𝐼𝐼
0, 𝑝(𝑖, 𝑗) ∈ 𝐼𝐼𝐼

, (𝜇1 > 𝜇2) (28)

The calculation of the entrapment strength is based on the grid.
According to the location coordinates of the agents and obstacles in the
scene, each grid cell has an attribute: obstacle, agent, or blank, which
are assigned values of 1.5, 1, and 0, respectively. The obstacle cells are
set to a larger value because they are assumed to be more solid than
agents.

For each target that needs to be entrapped, the attributes of its
surrounding cells and calculate the entrapment strength 𝐹𝑠 can be
quantified by using the following equation:

𝐹𝑠 =
∑

𝑖
∑

𝑗 𝜇 ∗ 𝑇
. (29)
𝐹𝑠max
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Fig. 10. Area within which the movement of the central target is restricted by five
agents.

where 𝑖 and 𝑗 are the coordinate positions of the grids around the
target, respectively. And 𝐹𝑠max is the entrapment strength when 𝜇 and
𝑇 for each grid are the maximum values.

The second evaluation metric is the enclosure occupancy rate; this
is used to evaluate the integrity of the target enclosure. Within the
threshold of effective entrapment distance, agents will restrict the
direction of movement by the targets. This restriction can be measured
in angular terms. It is assumed that an agent can restrict the movement
of a target within a certain angle determined according to the agent’s
size and movement capability. As shown in Fig. 10, the area within
which the movement of the central target is restricted (marked as
shaded) depends on the five agents surrounding it. 𝜃restrict is the angle
at which the movement of a target is restricted by a single agent. The
integrity of the target’s enclosure is the ratio of the shaded area to that
of the entire enclosure. It should be noted that the overlapping parts of
any two agents’ restricted areas are counted only once.

Thus, the occupancy rate 𝐹𝑜 of a single target’s enclosure can be
calculated using the following equation:

𝐹𝑜 =
∑

𝑁 𝜃restrict
360

× 100%, (30)

where 𝑁 is the number of agents within the threshold of the effective
bounding distance, and 𝜃restrict is the angle that the entrapment agents
can effectively surround.

4.1.2. Entrapping with single obstacles
In order to assess the effect of the cooperation mechanism in the

CH-GRN model on entrapment performance, several simulation exper-
iments are designed with typical scenes. Forty agents are allocated
equidistantly on a circle having a diameter of 20 m. Three obstacles
of various shapes are placed in the scene, and a target is positioned
next to each one. As is often the case in the real world, targets may
have some ability to escape from entrapment. Therefore, in the scene,
the targets are allowed to move back and forth on the black track lines.
The speed of target motion is set to 0.20 m/s, which is slightly less than
the speed of agent motion so that the agents would not lose information
because of movement by the targets.

In Fig. 11, snapshots of the simulation at times 𝑡 = 1 s, 30 s, and 50 s
are shown, respectively. The results of applying the CH-GRN model, the
CH-GRN model without the cooperation mechanism, and the H-GRN
model to guide the agents to entrap the targets can be seen on (a)(b)(c)
in the first line, (d)(e)(f) in the second line, and (g)(h)(i) in the last line
of Fig. 11, respectively.

As shown in the figure, at 𝑡 = 1 s, the task configurations are
identical, including the initial positioning of the agent swarm or the
positions of the targets and obstacles. However, with consideration of
9

the assistance by obstacles in the CH-GRN, the generated patterns dif-
fer. Those generated by the model without the cooperation mechanism
are a number of circles around the targets because they are determined
only by the targets when obstacle information is not considered. This
can be seen in Fig. 11(d) and (g), which is the initial state of entrapment
under CH-GRN without cooperation and H-GRN. With the full version
of CH-GRN, however, the areas covered by obstacles are utilised to
restrict target movement; the patterns generated take advantage of
the obstacles to encircle the targets. At 𝑡 = 30 s, the entrapment is
in progress. Some details are shown magnified at the top right of
Fig. 11(b)(e)(h). Compared with the model without cooperation, the
complete CH-GRN model produces a higher degree of completion of
target encirclement. It can be seen that the patterns generated by the
CH-GRN model evolve with changes in the local environment. As the
description in Section 3.2, the patterns consistently highlight the weak
part of the enclosure. In contrast, the patterns generated by the model
without cooperation mechanism do not change. Compared with (e) and
(h), under the control of H-GRN model without the improved of the
lower layer, there are significantly fewer robots deployed on the encir-
cles, and the coverage area is also smaller, because the improvement
of the lower layer and obstacle avoidance mechanism makes the robots
move more accurately and effectively. At 𝑡 = 50 s, under the H-GRN and
the CH-GRN model not making use of obstacle information, the agents
are not well deployed to encircle the targets, whereas the entrapment
under the complete CH-GRN model avoids this problem. The agents
are evenly distributed around the targets, forming stable and solid
enclosures with the help of the obstacles. The robots controlled by H-
GRN are more likely to drift away due to the loss of target information
and are more likely to accumulate in the same area of the encirclement,
which is difficult to achieve well-distributed entrapment.

Then, the encirclement effectiveness is evaluated using the proposed
two quantitative metrics. The lines in Fig. 12(a) and Fig. 12(b) show
the values of the entrapment strength and enclosure occupancy rate for
the targets, respectively, over time. There are slight fluctuations in the
curves because the agents need to adjust their positions according to
the local environment for better entrapment. It can be observed that
the three models are able to guide the agents to entrap the targets. In
the early stages, there is almost no difference in performance between
the three models because they have the same initial positions and
distances to the targets. In the later stages, however, the complete
version of CH-GRN performs markedly better than the model that
does not use the obstacle information, in terms of both entrapment
strength and enclosure occupancy rate. Compared with CH-GRN with
and without cooperation, H-GRN shows obvious disadvantages. The
speed of entrapment under H-GRN is slower, the entrapment strength
is lower, and the encirclement is incomplete than under CH-GRN.

4.1.3. Entrapping with special obstacles
Special obstacles are an important part of the task environment

of a swarm. As the CH-GRN model is committed to cooperating with
obstacles, it is expected to perform better than the model without co-
operation in task scenes having special obstacles. To assess this, a scene
having a narrow channel composed of two long obstacles is created.
The target is initially located in the centre of the narrow channel and
then moved vertically downward along a specified trajectory during
the simulation, shown by the black dotted line in Fig. 13. At initiation,
the swarm agents are randomly deployed in the rear of the target’s
movement, with the aim of simulating a swarm’s pursuit of a target.

An experiment is designed to simulate the entrapment process as
the target escapes from the narrow channel. The channel restricts the
movement of the swarm and prevents the swarm from reaching the
front of the target to complete the entrapment task, but CH-GRN solves
this problem well. Fig. 13 shows snapshots of the simulation at 𝑡 =
30 s, in which the black hollow circles and the black ‘x’ indicate
the initial positions of the swarm agents and target, respectively. At
this moment, the ordinate of the target is equal to the bottom of the
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Fig. 11. Snapshots of simulation applying the CH-GRN model with and without the cooperation mechanism and the H-GRN model to guide the agents to entrap the targets. Forty
agents in a swarm aim to entrap three targets in the same environment. (a)(b)(c) Entrapment under CH-GRN model at times 𝑡 = 1 s, 30 s, and 50 s. (d)(e)(f) Entrapment under
CH-GRN model without cooperation mechanism at times 𝑡 = 1 s, 30 s, and 50 s. (g)(h)(i) Entrapment under H-GRN model at times 𝑡 = 1 s, 30 s, and 50 s.
Fig. 12. Effect of cooperation mechanism in CH-GRN when entrapping targets using
single obstacles. (a) Entrapment strength. (b) Enclosure occupancy rate.

obstacles, and the target is about to exit the channel. It can be seen that
under the control of the model without the cooperation mechanism,
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the swarm is concentrated behind the target in spite of its efforts to
surround the target. In contrast, under the control of the complete CH-
GRN model, the empty space in front of the target is determined as
a location needing swarm reinforcement, and so the swarm is more
inclined to fortify this empty space to complete the entrapment task.
The result is that before the target exits the channel, an almost complete
encirclement is formed under the control of the complete CH-GRN
model, but not under the version without the cooperation mechanism.
The robot under the H-GRN shows the inadaptability of entrapping
dynamic targets in the narrow channel. Compared with CH-GRN, robots
are hard to catch up with the target and pile up next to the obstacles
so that they cannot entrap the dynamic target effectively.

The lines in Fig. 14 show the results of the quantitative evaluation.
During the entrapment operation, the target escapes from the inside of
the channel to the outside. The initial states under the three methods
are the same, and so the main task of the swarm agents in the initial
stage is to avoid each other and find suitable positions in the swarm.
Therefore, the performance of the three models is similar at this stage.
In the stage when the target is in the channel, the agents under the
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Fig. 13. Snapshots of simulation at 𝑡 = 1 s and 𝑡 = 30 s applying the CH-GRN model
with and without the cooperation mechanism and the H-GRN model to guide the agents
to entrap the target in a channel. (a) Initial setting of entrapment. (b) Entrapment under
CH-GRN at 𝑡 = 30 s. (c) Entrapment under CH-GRN without cooperation at 𝑡 = 30 s.
(d) Entrapment under H-GRN at 𝑡 = 30 s.

control of the complete CH-GRN model are deployed below the target,
whereas the other swarm is blocked above the target. During this stage,
therefore, the performance of the model without the cooperation mech-
anism and H-GRN gradually becomes increasingly lower than that of
the complete CH-GRN. At 𝑡 = 30 s, the target escapes from the channel;
the details are shown in Fig. 13. After that point, the target remains
outside the channel, and the swarm controlled by the complete CH-
GRN continues surrounding the target, whereas the swarm controlled
by the model without the cooperation mechanism is just beginning to
complete the entrapment task. Throughout the operation, the enclosure
occupancy rate under the complete CH-GRN fluctuates around 0.75
because of the completion of the encirclement in the channel. However,
because the entrapment strength of the obstacle is set to a value higher
than that of the agents, the entrapment strength of the target decreases
slightly as the target escapes from within the obstacle. Throughout the
operation, the complete CH-GRN model maintains better performance
than the version without the cooperation mechanism and H-GRN. The
comparison can also be seen from the snapshots at 𝑡 = 20 s and 𝑡 = 40 s
in Fig. 13. The enclosure integrity of H-GRN is significantly lower than
that of the other two models during the entrapment, because they are
limited by the channel and difficult to find the optimal motion direction
to entrap the target.

4.1.4. Entrapping with dynamic obstacles
To evaluate the adaptability of CH-GRN to a complex environment,

this simulation is performed with the assumption that obstacles in the
task environment have the ability to move, which leads to continuous
change in the motion areas of target and swarm. Fig. 15 shows the
changes in the task environment and the swarm under the control of
CH-GRN throughout the simulation. In the task environment, obstacles
are arranged to form a narrow channel and allowed to move left
and right, and the target moves vertically downward following the
trajectory.

In Fig. 15(a), the black circles indicate the initial positions of the
target, obstacles, and agents at 𝑡 = 1 s, and the circles are filled with
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colour at 𝑡 = 20 s. As 𝑡 changes from 1 to 20, the obstacles move closer
to the centre and compress the space available for agents to move.
During this time, the target remains in motion, and the agents do their
best to surround it. At 𝑡 = 20 s, the space available for agent motion
become very small, but it can be seen that some agents have already
reached the space below the target. Fig. 15(b) shows the entrapment
task status at 𝑡 = 20 s and 𝑡 = 50 s. As 𝑡 changes from 20 to 50, the
obstacles separate to the different sides, and the agents can return to
their normal states with less influence from the obstacles. As a result,
the agents complete the entrapment task before 𝑡 = 50 s.

The lines in Fig. 16 show the results of the quantitative evalua-
tion. During the stage before the change in the direction of obstacle
movement, both the enclosure occupancy rate and the entrapment
strength are increasing, and after that, they decrease substantially. The
reason is that the obstacles can effectively assist in the entrapment of
the target. When the direction of the obstacle changes, the obstacles
around the target almost fill the whole enclosure, resulting in high
enclosure occupancy rate and strength of the encirclement. It can be
seen that throughout the operation, the entrapment strength of the
agents controlled by the complete CH-GRN is better than that of the
model without the cooperation mechanism; this is because the CH-
GRN is more effective in driving the agents to reach the space below
the target and thereby complete the encirclement. The relative advan-
tage of entrapment strength is smaller than the enclosure occupancy
rate because obstacles near the target have a greater effect on the
entrapment strength than on the enclosure occupancy rate. In fact,
CH-GRN shows its advantages in the later stage of the target entrap-
ment when the obstacles gradually separate. As for CH-GRN without
cooperation mechanism, the concentration-vector method realises the
accurate motion direction selection of the swarm robots. In addition,
the cooperation mechanism allows swarm robots to find the empty area
of the enclosure, so as to complete the enclosure faster than under the
model without the cooperation mechanism and H-GRN.

The decision-making times of each agent in the swarm within 50
simulation steps are summarised in Fig. 17. It can be seen that the
decision times are around 0.64s, and there is a slight fluctuation due
to the different amounts of information obtained. Since the computing
power of each agent is set to be the same, the fluctuation is slight.
In summary, The experimental results on the entrapment strength and
enclosure occupancy rate show that the decision-making time is short
enough to enable the swarm to complete the entrapping task efficiently.
Thus the proposed method is helpful to the real-time decision-making
of the swarm to cope with the changing task environment.

4.2. Experiments on Kilobots

To validate the results on an actual robotic platform, a set of
comparative experiments are designed to test the proposed model with
Kilobots. The task area is 65 cm × 50 cm; a number of robots are placed
at the boundary to prevent the entrapping robots from going outside
this area. The experimental video showing the entrapment process with
Kilobots can be downloaded from OneDrive1.

Twelve Kilobots are used for entrapping three targets. The entrap-
ping robots emit blue light, and the target robots emit red light. As
a robot’s perception of its surroundings is received only via infrared
rays, it is unable to perceive ordinary physical obstacles. Thus, in this
experiment, five Kilobots are used to simulate a trapezoidal obstacle,
following the analogous concept of utilising virtual robots to represent
obstacles in the CH-GRN. These obstacle robots, which emit black light,
form the obstacle boundary. Targets are given the capability of simple
mobility; they will move towards areas without robots to attempt to
escape entrapment.

1 https://1drv.ms/f/s!ArltQV6iuxl0hGuH9ILJ0UMR2k-V

https://1drv.ms/f/s!ArltQV6iuxl0hGuH9ILJ0UMR2k-V
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Fig. 14. Variation in enclosure occupancy rate and entrapment strength of the swarm under the complete CH-GRN model and the version without the cooperation mechanism,
uring the target’s escape from the channel. The snapshots show the positions of a target and agents under the complete CH-GRN model, CH-GRN without the cooperation
echanism, and the H-GRN model, respectively. Corresponding to the curves, the more agents around the target, the higher the enclosure occupancy rate, and the better the

ntrapping performance.
Fig. 15. Changes in task environment and swarm under control of CH-GRN. (a) Task
tate changes from 𝑡 = 1 s to 𝑡 = 20 s. (b) Task state changes from 𝑡 = 20 s to 𝑡 =
0 s.

Fig. 16. Effect of cooperation mechanism in CH-GRN during entrapment of a target
using dynamic obstacles. (a) Entrapment strength. (b) Enclosure occupancy rate.

A Kilobot can only process the local concentration information.
Because a Kilobot has no sense of direction, the vector-concentration
method cannot be implemented. Therefore, a simplified version of the
lower layer of CH-GRN is used here, i.e. the robots simply approach the
high-concentration area to entrap the targets.

In the first run, the CH-GRN programme is uploaded to the Kilobots.
The robots are initialised to be deployed along the boundary of the
area. Fig. 18(a) shows photographs of the entrapment task operation,
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where it can be observed that the three targets have been successfully
Fig. 17. The decision-making times of each agent.

surrounded. In addition, obstacles play a role in the target entrapment
operation, reducing the number of entrapment robots needed.

For comparison, the cooperation mechanism is removed from the
pattern generation process. Specifically, under the model without the
cooperation mechanism, the protein concentration around the target
will not be affected by surrounding neighbours or obstacles. This trial
is performed in the same task environment; the results are shown in
Fig. 18(b). It took 82 s and 121 s for the Kilobots to reach the final state
with and without the cooperation mechanism, respectively. Without the
cooperation mechanism, the Kilobots will not actively move towards
areas of weakness in the encirclement, and the time required to achieve
entrapment is obviously longer (compare Fig. 18(a)). In addition, the
entrapment outcome is not good even using the same number of robots
because of the obvious gaps in the encirclement. Specifically, there is a
large gap to the right of the target nearest the obstacle, and it will be
easy for the target at the bottom to escape the encirclement.

4.3. Discussion

One impact of this work is to take a step towards the transforma-
tion of the entrapment task completion mechanism of swarm robots.
The relationship between swarm robots and the task environment has
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Fig. 18. Process using Kilobots in a target entrapment task. Twelve Kilobots are used
for entrapping three targets. The entrapping robots emit blue light, and the target robots
emit red light. (a) Entrapment under adjusted version of CH-GRN. (b) Entrapment under
adjusted version of CH-GRN without the cooperation mechanism.

changed from being passively limited to active utilisation and coop-
eration. Our previous positive results show that target entrapment by
swarm robots can indeed be improved with the cooperation mecha-
nism. In particular, the work presented in this paper contributes by
determining that performance (1) can improve if the swarm robots
cooperate with obstacles and (2) is still generally positive even if the
obstacles in the task scene are complex and dynamic.

The swarm robots’ analysis of the encirclement state will affect
their next movement direction, thus affecting the speed of entrapment
completion. In the simulation experiments, the targets in the scene
are dynamic, which increases the difficulty of the target entrapment
task. When the targets are dynamic and there are obstacles around, it
should be known that moving in the direction of the target moving
and without obstacles will be a good choice. Under the proposed CH-
GRN, the robots can generate the entrapment pattern by processing the
input information, which indicates the best position for the status of the
current encirclement. Then the robots quickly adapt to the pattern and
complete the target entrapment task. However, robots under H-GRN do
not know the best direction and they are only satisfied with being in
the encirclement. They spend a lot of time completing the encirclement
by mutual repulsion.

Of course, the proposed CH-GRN model cannot be applicable if the
performance of the robots makes it unable to obtain and analyse the
information of obstacles. The improvements of the CH-GRN model hint
that it may perform well in the task scenes in which obstacles have a
great impact on robots’ behaviour. In order to improve the applicability
of this method for simple robots, we leave the task of implementing a
more efficient or simple pattern generation approach for future work.
13
5. Conclusion and future work

In this paper, a cooperative hierarchical gene regulatory network
(CH-GRN) has been proposed for the entrapment of targets. In CH-
GRN’s upper layer, robots enhance their mutual cooperation by us-
ing the proposed target–neighbour–obstacle (TNO) pattern generation
method. The entrapment pattern depends on information not only
about the targets but also about the nearby robots and obstacles. In CH-
GRN’s lower layer, the concentration-vector method is used to drive the
robots to form the pattern and thereby create effective encirclements
around the targets.

To evaluate the model of the network, several experiments are
conducted, including both simulations and physical tests. During the
experiments, to entrap the targets, the swarms are deployed in the
task scene that included obstacles. By adding the proposed cooperation
mechanism, the swarm finds and moves to the blank areas of the
enclosure thus accelerating encirclement. Simultaneously, because the
obstacles are regarded as part of the enclosure in the CH-GRN model,
the area of the surrounding circles that needs to be filled by swarm
robots is reduced. Consequently, the enclosure surrounding the target
is stronger. The results show that the cooperation among robots and
with obstacles, embedded in CH-GRN, can substantially improve the
entrapment performance.

The architecture of the CH-GRN model used in this study is designed
manually. However, it is difficult to adapt manually designed architec-
tures for other tasks of wider variety and greater complexity. Therefore,
algorithms to optimise the design of the model will be investigated in
the future to enhance the adaptability of swarm robots to a broader
spectrum of challenging environments.
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