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Abstract—When planning the Tracking Areas (TAs) for a 
Long Term Evolution (LTE) network, the main concern of 
mobile operators is to achieve the minimization of both 
location update cost and paging cost. This paper proposes a 
new green field TA planning model using multi-objective 
optimization with constraints, aiming at finding a better 
trade-off between the two conflicting objectives. This new 
model integrates the network geographical information, 
therefore making it more realistic. Considering the impact of 
constraints, we design an evolutionary multi-objective algo-
rithm based on a population decomposition strategy for the 
proposed model. Information about infeasible solutions can 
be fully utilized by population decomposition and thus the 
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algorithmic efficiency can be greatly improved. A new cod-
ing scheme inspired by the famous four-color theorem is 
specially designed for this multi-objective TA planning 
model. Computer simulations are conducted and the quality 
of the new model is confirmed by comparing the results of 
the multi-objective model with those of a single-objective 
model. The essential role of the population decomposition 
strategy has also been identified by comparing the proposed 
algorithm with the Multi-objective Evolutionary Algorithm 
based on Decomposition (MOEA/D).

I. Introduction

ith the development of mobile communication 
networks, the LTE network has become ever 

more popular around the world. The study of 
LTE networks has become a hot issue in the theo-

ry and practice of contemporary mobile communication net-
works [1]. Location management is an essential task in LTE 
networks, and it can directly affect the stability, security and 
performance of the networks. Location management in LTE 
networks aims at quickly tracking where the users are, and this 
tracking makes it possible to deliver calls, short message services 
and other mobile phone services to the users in a timely way.

In the management of an LTE network, cells are bound 
together to form a series of TAs, and then the TAs are further 
grouped into TA lists (TALs). The main function of TALs is to 
track the locations of a user equipment (UE). Each TAL has an 
identifier known as its Tracking Area Identity (TAI), which is 
used for the location update of UEs. All the Base Stations (BSs) 
in the same TAL broadcast the same TAI regularly through a 
broadcast control channel. UEs can recognize the TAI and store 
it in the subscriber identity module (SIM) when registering 
with the network. If the registered TAI of a UE is found differ-
ent from the current broadcast TAI, location update is triggered. 
Thus, when a user enters a different TAL, the UE’s location 
needs to be updated. Obviously, the more the TAL boundary 
crossings is, the more location updates the network performs. In 
the process of location update, UE updates its location and noti-
fies its current location to the network [2]. When there is a 
phone call for a UE, the network will search for this UE. This 
search is known as paging. The most simple and intuitive way of 
paging is to check each cell one by one, which is called the 
blanket polling paging. This registered TAL information can nar-
row the search into a certain TAL, because only the cells belong-
ing to the TAL where the UE is registered need to be paged.

Paging and location update lead to two different kinds of 
costs which are termed as location management cost. If we 
enlarge the TAL to the extreme situation, namely, making all 
the cells into one TAL, we can eliminate the location update 
cost completely. However, the large size of the TAL leads to the 
need to search more cells to ensure a successful paging, which 
means more resources need to be expended. In addition, the 
load of every single cell increases because of frequent paging. 
In the limit, the paging success rate decreases so that the entire 
network becomes unstable and its service quality cannot be 

guaranteed. At the other extreme, by making each cell an inde-
pendent TAL, we can minimize the paging cost of the entire 
network, but we also maximize the location update cost. In 
fact, the two objectives are conflicting: having TALs with few 
cells means a larger location update cost but a smaller paging 
cost, while having TALs with many cells means a smaller loca-
tion update cost but a larger paging cost.

Although the TAL scheme can make TA planning more 
flexible, it may increase the network complexity and bring 
some adverse effects [3]. Since a simple and stable LTE network 
is more desirable in the early stage of network construction, we 
consider TA planning in a green field, where each TAL has 
only one TA in this paper. It is actually a multi-objective opti-
mization problem aiming at finding a rational trade-off 
between the paging cost and the location update cost. 
Although the two objectives are clear, the details can be very 
complicated. TA planning is affected by many other factors, 
such as the paging capacity of the mobility management entity 
(MME) and geographical features. The first contribution of this 
paper is that we build a multi-objective TA planning model by 
integrating the network area geographic information. A new 
constraint of adjacent cells with no shared boundary crossing 
should be assigned to different TAs, is introduced based on the 
assumption that each cell must have at least one connected 
road to the others. This multi-objective model can provide a set 
of trade-off solutions for TA planning, and thus give the deci-
sion makers more options, especially taking the anticipated 
growth trajectories and technology changes into account.

Evolutionary Multi-objective Optimization (EMO) algo-
rithms are a type of population-based heuristic algorithms, 
which use a set of individuals (called population) to search the 
Pareto optimal solutions of a multi-objective optimization prob-
lem. The main advantage of EMO algorithms over classical 
approaches in solving multi-objective optimization problems is 
that many trade-off solutions can be obtained in a single run. 
Recently, decomposition based EMO algorithms, such as 
MOEA/D [28] were reported to achieve good performance in 
various application domains [29]. Article with Liu et al. [30] 
proposed a new version of MOEA/D by decomposing a multi-
objective optimization problem to a number of multi-objective 
subproblems (M2M). By M2M decomposition, the population 
is decomposed into a number of subpopulations and similar 
resources are assigned to optimize each multi-objective subprob-
lem. The second contribution of this paper is the design of a 
new M2M-based EMO algorithm for the proposed TA plan-
ning model, which lies in two aspects. Firstly, a novel coding 
scheme based on the famous four-color theorem [33] is 
designed to encode the solutions. A two-step decoding method 
based on the coding scheme is designed to decode the solutions. 
The first step of decoding tends to merge several small TAs into 
a big one while the second step tends to split a big TA into sev-
eral small ones. The new coding scheme can be beneficial to 
balance the two objectives and help to find better trade-off solu-
tions for the multi-objective TA planning model. Secondly, an 
M2M decomposition [30] based constraint handling strategy is 
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designed to make better use of the information 
about both feasible and infeasible solutions. In 
general, feasibility rules [34] based constraint 
handling methods place a higher value on feasi-
ble solutions, which tend to ignore the impor-
tant function that infeasible solutions perform in 
searching. However, study with Deb [35] has 
shown that, if properly used, the information 
about infeasible solutions can effectively 
enhance the search efficiency. Due to this fact, we apply the 
M2M decomposition strategy [30] to make better use of infeasi-
ble solutions. The population is decomposed into a number of 
subpopulations in M2M framework, and every individual mere-
ly competes with its counterparts belonging to the same sub-
population so that the infeasible solutions are more likely to 
survive than they would be in a single-population EMO algo-
rithm, because of less selection pressure. In this way, a certain 
number of promising infeasible solutions will be kept in the 
evolutionary process to guide the population search. The M2M 
decomposition strategy can also be beneficial in maintaining the 
population diversity [30].

Three generated networks are used to simulate the real situ-
ation of user movements and geographic information. Com-
parison experiments are conducted to investigate the 
effectiveness and efficiency of the proposed multi-objective TA 
planning model and the M2M decomposition strategy for solv-
ing this model. The results obtained by solving this new model 
are compared with those of a single-objective TA planning 
model proposed by Subrata and Zomaya [8]. The simulation 
results show that the proposed multi-objective model can 
achieve better trade-offs between the location update cost and 
paging cost. We also compare the results obtained by optimiz-
ing the proposed model using M2M and MOEA/D. The main 
difference between the two algorithms is that M2M utilizes the 
population decomposition strategy, while MOEA/D does not. 
Simulation results show that M2M achieves both better con-
vergence and diversity than MOEA/D.

The remainder of this paper is organized as follows: Sec-
tion II explains the related work. Section III describes the 
formulation of the TA planning problem and the multi-
objective model proposed in this paper. Section IV presents 
the design of the EMO algorithm based on the M2M 
decomposition to solve the proposed model. In Section V, 
simulation experiments of three generated networks are con-
ducted, and experimental results are shown and analyzed. 
Finally, we conclude the paper in Section VI.

II. Related Work
A TA is similar to the concept of a Location Area (LA) in the 
GSM network, and LA planning has been extensively studied. 
These models and methods for LA planning apply to TA plan-
ning in LTE networks as well [24]. Thus we also review some 
of the relevant work about LA planning.

Most LA planning models consider only one objective, 
either in the form of paging cost, location update cost or a 

linear combination of the two costs. For instance, the paging 
cost was ignored [4] or considered as a constraint [5], [6] by the 
authors. They claimed that minimizing the location update cost 
was advantageous since paging capacity can be easier to quanti-
fy as a constraint. The authors in [7] treated bandwidth as a 
scarce resource and tried to minimize the paging cost. A weight 
factor should be provided when combining paging cost and 
location update cost together using the weighted sum approach 
[8], [9], [22]. The solutions obtained in this way are sensitive to 
the weight used in forming the objective function. Tcha et al. 
proposed a cutting plane algorithm for an integer program-
ming model of LA planning problem [10]. Since LA planning is 
an NP-hard problem [10], many heuristic algorithms, such as 
Artificial Neural Network (ANN) [11], Simulated Annealing 
(SA) [5], [6], [12], Evolutionary Algorithm (EA) [13]–[16] and 
Greed Search (GS) [17] have been used to address this problem. 
Computational complexity of heuristic algorithms for LA 
planning is also concerned by researchers. Gondim et al. intro-
duced the elitist individuals preserving based crossover and 
edge-based mutation to accelerate the convergence of their 
new EA for LA partitioning [16]. The computational efficiency 
of SA, taboo search, and genetic algorithm for the LA planning 
problem was studied and compared in [18].

Meanwhile, some researchers studied the TA/LA planning 
problem from different aspects, and a lot of beneficial achieve-
ments have been made. Toril et al. proposed a automatic meth-
od for TA replanning by analyzing the frequency of user 
movements and change of traffic trends in an LTE network 
[19]. A new TAL configuration method was introduced by 
Ikeda et al. to detect the burst of location updates from the 
location update records [20]. Lee et al. [21] proposed an integer 
programming model for graph partitioning. Cayirci and Aky-
ildiz used the number of LA boundary crossings as the measure 
of location update cost, and proved that the location update 
cost can be minimized by minimizing the inter-LA traffic flow 
in the network [22]. Krichen et al. extended the classical LA 
planning problem by including additional objectives and con-
straints [23]. An integer programming model was developed to 
achieve better trade-offs between the network performance 
and TA reconfiguration cost in [24]. A multi-layer LA design 
model, which allows an LA paging several areas, was studied 
and analyzed by Park and Soni [25].

EMO algorithms are powerful tools for solving complex 
optimization problems. The applications of EMO algorithms 
in engineering have been becoming increasingly popular and 
perfect. Dorn et al. applied NSGA-II (a fast and elitist 

Location management in LTE networks aims at quickly 
tracking where the users are, and this tracking makes 
it possible to deliver calls, short message services  
and other mobile phone services to the users in a 
timely way.
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multi-objective genetic algorithm proposed by Deb et al. 
[26]) to manage the watershed water quality [27]. Feng et al. 
studied MOEA/D and its application in control-structure 
integrated multi-objective design for flexible spacecrafts [29]. 
Liu et al. proposed an iterative power control scheme to plan 
WCDMA networks by an EMO algorithm [31]. Ishibuchi et 
al. investigated the performance of three EMO algorithms in 
optimizing many-objective knapsack problems [32]. More ref-
erences about EMO algorithms and their applications can be 
found in [35].

III. The TA Planning Problem

A. Problem Statement
The geographical coverage area of an LTE 
network is partitioned into cells, where each 
cell is served by a single BS and managed by a 
single MME. The MME is used to record the 
TA where the UE is registered. The essential 
task of TA planning is to group cells to form a 

set of TAs that can give the network relatively low location 
update cost and paging cost under the condition of guaranteeing 
the service quality. Every BS and MME can only process a limit-
ed number of paging requests per second, which means their 
capacities must not be exceeded in TA planning (so are con-
straints). According to the analysis, a location update occurs only 
when a mobile user crosses the TA boundary. So it is reasonable 
to take the number of TA boundary crossings as the measure of 
location update cost. The user movements among TAs weigh 
heavily in the process of TA planning, while the geographic 
environment can directly affect user movements. For instance, 
regions with many roads tend to have more user mobility than 
regions cut off by high mountains or similar obstacles. Therefore, 
the influence of geographic environment is considered when we 
undertake TA planning. On the one hand, we try to avoid situa-
tions in which groups of cells with no roads connecting them 
are assigned to the same TA. On the other hand, the TA bound-
ary should avoid crossing roads or paralleling roads in order to 
reduce the so-called Ping-Pong effect.

B. Multi-objective TA Planning Model
In general, most mobile users move on roads and thus the 
number of mobile users on the roads can give a good approxi-
mation to that of all mobile users in the network. Considering 
this, we assume that user movements are confined to the roads 
and only consider the traffic movement on the roads. It means 
that the TA boundary causes no location updates if there is no 
road connecting the adjacent cells separated by the boundary. 
Fig. 1 illustrates an instance of this situation in part of an LTE 
network. There is a river between cell 1 and cell 2, which hin-
ders user movements between them. The result is that no loca-
tion update occurs at the boundary between cell 1 and cell 2 if 
it is also set as a boundary between two TAs, according to our 
hypothesis. Geographic information can be directly ref lected 
by the traffic f low on each grade (traffic carrying capacity) of 
road of the network, and the exact traffic f low data on each 
road can be obtained by using statistical method. Roads in an 
LTE network can be classified into different types according 
to their traffic f low in a realistic TA planning scenario. The 
straightforward process of modeling TA planning problem in 
this paper is illustrated in Fig. 2.

In our study, roads are roughly divided into three different 
types: main roads, streets, and alleys. The main notations used in 
the following equations are listed as follows:

❏❏ , , ...,N1 2" ,: the corresponding cell index set, where N is 
the total number of cells in the network.

Cell 3

Cell 2

Cell1

The River

Figure 1 An example of location update between cells.
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Figure 2 The main flowchart of TA planning.

Every BS and MME can only process a limited number 
of paging requests per second, which means their 
capacities must not be exceeded in TA planning  
(so are constraints).
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❏❏ , , ...,R R Rk k kS1 2 k" ,: the indexes of roads of 
type k ( , , ...,k K1 2= ), where K is the 
total number of road types and Sk  is the 
total number of roads of type k.

❏❏ , , ...,k k ks s sN1 2 ks" , : the indexes of cells 
passed by road s of type ( ,k k 1=
, ..., , , , ..., ),K s S2 1 2 k=  w h e r e  Nks

( )N Nks #  is the total number of cells 
passed by this road.
Since it is very common that a lot of roads need to be con-

structed in cities with a high population density, we also assume 
that each cell has at least one road passing through. As we have 
explained, boundary crossings can be used as a measure of loca-
tion update cost, and the total location update cost in a network 
can be measured by the total number of mobile user TA bound-
ary crossings. In this paper, we develop this idea and use the aver-
age road traffic flow as the measure of location update cost. The 
average road traffic flow can be used to estimate TA boundary 
crossings according to the hypothesis. The calculation of location 
update cost between different TAs is therefore transformed into 
counting the average traffic flow on each grade of road crossing 
the TA boundaries. The first objective of the proposed model is 
to minimize location update cost, which can be expressed as:
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where ksn  and ksn 1+  represent the indexes of two cells. If cell i 
and cell j are assigned to the same TA, dij = 0, otherwise dij = 1. 
k ks sn n 1m +  represents the traffic flow between cell ksn  and cell ksn 1+  

on type k roads. The average traffic flow on each road can be 
estimated by statistical methods in real situations. User traffic 
flow on each road for rush hour would normally be used to 
obtain results compatible with good quality of service. In our 
simulations, we assume that average user traffic flow on each 
type of road over rush hour is subject to uniform distributions 
over certain intervals. Other distributions can also be easily 
applied to simulate the traffic flow on each type of road with-
out disturbing the applicability of the proposed model and 
optimization procedures.

The second objective of the model is to minimize the paging 
cost. When the network search for a UE, it pages the TA where 
the UE is registered. The paging cost of cell i can be measured 
by its paging load pi) , which is determined not only by the cost 
of paging the mobile users in cell i, but also the cost of paging 
the other users belonging to the TA where cell i is contained. pi)  
can be calculated by ( )p p p d1

j
i i j ij= + -) / , where pi and pj 

represent the paging load generated by the UEs in cell i and cell j,  
respectively. dij has the same meaning with above description. 
Generally speaking, it is independent of whether a UE is called, 
and the paging cost generated by each cell is also independent. 
Thus, the total paging cost of the whole network should be the 
summation of the total paging costs of the N cells:
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In addition to the two objectives, there are also many con-
straints that the model should satisfy, as described here. For the 
sake of readability of the section, the following notations 
are used:
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More explicitly, our multi-objective TA planning model is:
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subject to the following constraints:
1)	Each cell must be assigned to exactly one MME.
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q

6=/ � (4)

2)	Each cell must be assigned to exactly one TA.
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3)	Each MME must be assigned to the TA to which its cor-
responding cell is assigned.
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4)	The paging capacity of each BS must not be exceeded.

	 , ,p P ii
BS 61) � (7)

where p)  is the total paging load in TA i.
5)	The paging traffic capacity of each MME must not be 

exceeded.

	 , ,x p T qMME
iq

i
i 61/ � (8)

where pi represents the traffic load in cell i.	

The calculation of location update cost between 
different TAs is therefore transformed into counting 
the average traffic flow on each grade of road crossing 
the TA boundaries.
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6)	Adjacent cells not sharing a boundary crossing should be 
assigned to different TAs.
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where ijm  is the traffic flow between cell i and cell j. It is worth 
noting that rationality of this constraint is based on the assump-
tion that each cell has at least one road connected to other cells.

IV. An EMO Algorithm Based on the M2M 
Decomposition for the Multi-objective  
TA Planning Model

A. Encoding Method
When applying an EMO algorithm to the proposed model, we 
first need to properly encode the solutions (TA configurations). 
The encoding scheme (or representation) is an important 
aspect of an EMO algorithm, especially for a discrete optimiza-
tion problem. The crossover, mutation and selection of the 
individuals are realized in terms of representations. In this 
paper, a new encoding scheme inspired by the four-color theo-
rem is designed to encode and decode the solutions. In mathe-

matics, the four-color theorem can be stated as: no more than 
four colors are needed to color all the regions of the plane so 
that no two adjacent regions have the same color for any given 
contiguous regions [33]. According to this theorem, a fixed 
length representation vector, which is encoded by only four 
numbers { , , , }1 2 3 4 , with a size equal to the number of cells in 
the network, are used to encode the solutions. The ith code in 
the representation represents the ith cell in the network. Cells 
with the same code should be grouped together when decod-
ing the representations. Fig. 3 gives an example of the repre-
sentation for a network with ten cells.

This representation corresponds to a rough TA configura-
tion in an LTE network without considering any constraints. It 
means that cells 1, 2, 10, cells 3, 5, 7, cells 4, 6, and cells 8, 9 
should be grouped respectively, to form four different TAs.

B. Decoding Method
To support the consideration of the trade-off between location 
update cost and paging cost in the multi-objective TA planning 
model, a two-step decoding method is designed to decode the 
representations. First, the cells are roughly grouped according 
to their codes. To be specific, cells with the same code are 
assigned into the same TA without considering any other con-
straints. This step is called merging, which tends to merge sev-
eral small TAs into a big one. The second step is splitting. In this 
step, we check for situations in which TAs contain cells that are 
separated from others. If there are any, the group should be 
split. This process will continue until this situation no longer 
exists. As we can see, the first step tends to increase the size of a 
TA, while the second step tends to decrease the size of a TA. 
An example of merging and splitting is shown in Figs. 4 and 5 
respectively. In Fig. 4, cell 5, 10, 14, 15 and cell 19, 20, 24 do 
not belong to the same TA at first and are marked by two 
different colors, but after crossover and mutation they have the 
same code and are merged to form a bigger TA marked by the 
same color. In Fig. 5, cell 6, 7, 11, 16 and cell 20, 24, 25 are 
assigned into the same TA by the first step of decoding, but 
there are two separated parts in this TA. Therefore, the splitting 
process is conducted and the TA is divided into two TAs 
marked by two different colors.

C. Initialization Based on Fuzzy Clustering
The initialization of an EMO algorithm plays an important 
role in finding the optimal solutions effectively. This paper inte-
grates fuzzy clustering into the initialization process. The fuzzy 
clustering algorithm is very simple and easy to implement [36]. 
First, the fuzzy similarity matrix is defined; second, the fuzzy 
equivalence matrix is calculated; and finally, a threshold for the 
fuzzy equivalence matrix is set to get the partition. In fuzzy 
clustering, the similarity matrix is used to measure the similari-
ty of different terms. The more similar two terms are, the more 
likely they are to be assigned to the same cluster. In this paper, 
we try to assign cells with large traffic flows between them into 
the same TA. Therefore, it is reasonable to use the traffic flow as 
the measure of ‘similarity’ among cells. The element rij of the 

Before Splitting After Splitting

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 5 Illustration of the splitting process.

Before Merging After Merging

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 4 Illustration of the merging process.

Cell Number 1 2 3 4 5 6 7 8 9 10

Code 1 1 3 4 3 4 3 2 2 1

Figure 3 An example of the representation.
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fuzzy similarity matrix R can be obtained by normalizing the 
traffic flow between cell i and cell j:

	 ( )

.

maxr
i j

i j1
, ,...,ij j N

ij

ij

1 2

!
m

m

=

=
=* �

The fuzzy equivalence matrix R)  can be obtained by the tran-
sitive closure method [36] from the fuzzy similarity matrix R. 
The element rij)  of the fuzzy matrix R)  can tell the degree to 
which cell i and cell j belong to the same TA. The fuzzy clus-
tering based initialization tends to divide cells among TAs such 
that the traffic flow is maximal among the cells within the same 
TA. If two adjacent cells such as cell i and cell j have no shared 
boundary crossing, then Rij

)  should be reset to zero. In this way, 
we can avoid the situation that two cells are assigned to the 
same TA when they should not be. It works as follows:

Step 1: Generate a random sequence LN including the N 
elements of { , , ..., }N1 2 ;

Step 2: Find pairs of cells that should not be assigned into 
the same TA according to Eq. (9), and store them in the matrix 
D d2# . To be specific, for any { , , ..., }j d1 2!  cell D j1  and cell 
D j2  cannot be assigned to the same TA. Here, d is the total 
member of cells that cannot be assigned into the same TA;

Step 3: Calculate the equivalence matrix R*  from the sim-
ilarity matrix RNN, and let i = 1;

Step 4: If i > N, stop; or, for all { , , ..., }j d1 2! , compare 
the element of matrix R)  in row Li column D j1  with the ele-
ment in row Li column D j2 , and the element with the smaller 
value is reset to zero. Check the cells one by one, and assign the 
cells having a relatively large but not zero value with cell Li 
into the same TA as much as possible, i i 1" + .

D. Crossover and Mutation
Good crossover and mutation operators can enhance the perfor-
mance of EMO algorithms, especially in complex combinatorial 
optimization problems. Both of them play an important role in 
exploring the Pareto optimal solutions in the searching space. 
The parental individuals for crossover are selected based on the 
M2M framework to make best use of its advantages in local 
search. Suppose one individual for crossover is x1 , the other 
individual x2  is randomly selected with probability 0.7 from its 
own subpopulation, otherwise from other subpopulations. The 
crossover operation is then processed as follows: randomly gen-
erate a number r in [ , ]0 1 , if r > 0.5, an intermediate offspring is 
generated from the two given solutions x1  and x2  by a single-
point crossover; otherwise, the intermediate offspring is generat-
ed by multi-point crossover [37]. After crossover, the new 
individual is modified by randomly mutating one code of the 
representation, according to the mutation probability /N1 .

E. Constraint Handling and Repair Strategy
In this paper, every cell belongs to a single TA, and MMEs are 
assigned based on the TA configuration. Therefore the con-
straints presented in Eqs. (4)-(6) are necessarily met. Those 

constraints presented in Eqs. (7) and (8) are relevant to paging 
capacity, and the constraints violation value of individual m will 
be calculated by (V maxmax mm m= / ) ( / )t tp p + , where pm =

( , , ,max maxt p T 0MME
cell MMEi

BS
i

H
m h

H
i1 1 i h

= -)

!= =
, )p P 0- ` j/ / /  

H is the total number of TAs, and pmax, tmax is the maximal 
value of pm and tm in the whole population. V 0m =  means that 
all the constraints are satisfied, while V 0m !  means that at least 
one of the constraints is voilated.

If the newly generated solution violates the constraint pre-
sented by Eq. (9), a code repair process must be conducted. 
The violation can be expressed as that cell i and cell j have the 
same code but allow no user boundary crossing. This kind of 
violation includes three situations:
1)	Both cell i and cell j have the same code as their adjacent 

cells. Then we split the TA into two new TAs according 
to the fuzzy equivalence matrix. The cells having larger 
traffic flow with cell i are divided into one TA, and the 
cells having larger traffic flow with cell j into another TA.

2)	Only one of them such as cell i has adjacent cells with a dif-
ferent code. Check all the adjacent TAs of cell i, and assign 
cell i into the TA which has the largest traffic flow with it.

3)	Both of them only have adjacent cells with different 
codes. Calculate the sum of the traffic flow of the two 
cells with their adjacent cells in the TA. The cell with the 
larger traffic flow is kept in the TA while the cell with the 
smaller traffic flow is assigned to a new TA using the 
method described in 2).

According to the feasibility rules [34], feasible solutions are 
firstly selected for the next generation population based on the 
Tchebycheff method. If the number of feasible solutions pro-
duced is not enough for the next generation, infeasible solu-
tions will be selected based on minimal constraint violations.

F. MOEA/D and M2M Decomposition Strategy
MOEA/D [28] is a decomposition based EMO algorithm, and 
various decomposition methods, such as Tchebycheff, weighted 
sum, and boundary intersection, can be used for decomposi-
tion. MOEA/D can decompose a multi-objective optimization 
problem into a number of single-objective subproblems. In our 
study, the Tchebycheff method is used for decomposition in 
MOEA/D. Let ( , , )w w w 0m1 f $=  ( w 1ii

m

1
=

=
/ ) be a weight 

vector, and the Tchebycheff method can be expressed as:

	 imize ( | ) { | ( ) |},x w xmin maxg w f z
, ,

te

i m
i i i

1
= -

f=
� (10)

where zi is the minimum value of the ith objective. Except for 
a set of weight vectors, a niching parameter T that is used to 
define the neighboring weight vectors for crossover and muta-
tion also needs to be predefined in MOEA/D.

M2M [30] is a particular population decomposition frame-
work for EMO algorithms. Unlike MOEA/D [28], M2M can 
decompose a multi-objective optimization problem into a set 
of multi-objective optimization subproblems. Each subproblem 
in M2M has its own subpopulation, and these subproblems can 
be solved collaboratively. The selection in each subpopulation is 
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independent, which means that each individual needs to only 
compete with its counterparts located in the same subpopula-
tion in the process of selection. Therefore, infeasible solutions 
are more likely to survive than they would be in a 

single-population algorithm because of less selection pressure. 
In this way, a certain number of good infeasible solutions will 
be kept to make the population search more effective. What is 
more, M2M has a strong capability to maintain the population 
diversity, which is desirable in multi-objective optimization.

Considering the complex constraints of the proposed 
model, we design an EMO algorithm based on the M2M 
decomposition. First, K unit vectors , ,v vK1 f  in Rm

+  are gen-
erated in the first quadrant. The Rm

+  is then divided into K 
subregions , ,Ω ΩK1 f , where Ωk  ( , ,k K1 f= ) is:

	 { | , , , , },u R u v u v j K1for anyΩk
m k j f! #G H G H= =+ � (11)

where ,u v jG H is the acute angle between u and v j . Accord-
ingly, we obtain K subpopulations, and those subpopulations 
are used to optimize the problem collaboratively.

Fig. 6 shows an illustration of the M2M decomposition 
strategy. There are four subregions (K = 4) in the two-dimen-
sional objective space (m = 2), and the four direction vectors 
, , ,v v v v1 2 3 4  are evenly distributed in the first quadrant. Each 

vector represents a center of a subregion and the dash-dots 
lines represent the boundaries of these subregions. Then the 
population is divided into four subpopulations according to the 
acute angle with the direction vectors.

G. Main Framework of the M2M-based EMO Algorithm  
for Multi-objective TA Planning
In this section, the main framework of the proposed EMO 
algorithm based on the M2M decomposition for multi-objec-
tive TA planning is given by Algorithm 1 and Algorithm 2 
in detail.

V. Computational Experiments and Analysis
In this section, three different test networks are generated for 
computational simulation. Although realistic instances are not 
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Figure 6 An illustration of the M2M decomposition strategy.

Algorithm 1 M2M-Based EMO Algorithm for the Multi-objective  

TA Planning Problem.

      Input:

        •  the maximum number of function evaluations;
        •  K: the number of subproblems;
        •  K unit direction vectors: v v, , K1 f ;
        •  S: the subpopulation size.

      Output: a set of nondominated solutions in Pk
K

k1, = .

  1  �Initialization: Initialize *S K  solutions, calculate their 
objective values and constraint violation value, and then 
use them to set P P, , K1 f .

  2 � while the maximum number of function evaluations is 
not reached do

  3      Set r Q= ;
  4      for k 1!  to K do
  5          foreach x Pk!  do
  6       �       Choose y  and apply genetic operators on 

x  and y  to generate a new solution z ;
  7              If z  violates constraint (6), repair it;
  8       �       calculate the objective values and constraint 

violation value of z ;
  9              R R z: { },= ;
10          end
11          Q R P: ( )k

K
k1, ,= = ;

12          use Q  to set P P, , K1 f .
13      end
14      Output the solutions in Pk

K
k1, = .

15  end

Algorithm 2 Allocation of Individuals to Subpopulations.

    Input: Q : a set of individual solutions.

    Output: P P, , K1 f .

1.   for k 1!  to K do
2.   �   Initialize Pk  as the solutions in Q  whose objective val-

ues are in kX ;
3.      if P| | Sk 1  then
4.    �    randomly select P| |S k-  solutions from Q  and add 

them to Pk .
5.      end
6.      if P| | Sk 2  then
7.    �    rank the solutions in Pk  using the selection method 

based on the feasibility rules [34] and remove from 
Pk  the P| | Sk -  lowest ranked solutions.

8.      end
9.  end



February 2017 | IEEE Computational intelligence magazine    37

studied, the general principles of this study 
can provide useful reference to the realistic 
TA planning. The three test networks are all 
generated based on the principles which can 
reflect the true nature of realistic TA planning 
instances. Fig. 4 shows the network with a 
total of 25 cells (network 1), and the net-
works with 30 cells (network 2) and 81 cells (network 3) have 
a similar structure to network 1. The numerical experiments 
conducted mainly have two goals:

❏❏ Identify the effectiveness and rationality of the proposed 
multi-objective TA planning model.

❏❏ Show the effectiveness of the M2M-based EMO algorithm 
to solve the proposed model.
For the first goal, a single-objective model proposed by 

Subrata and Zomaya [8] is used as a comparison. The same 
assumptions and parameters of the three networks are used to 
ensure fair comparisons. The single-objective model established 
in [8] combines location update cost and paging cost to form a 
single-objective by the weighted sum method, where the cost 
of a location update is considered to be ten times more than 
that of a paging. Three artificial intelligence techniques: SA, TS 
and EA are developed and applied in [8]. In our study, the EA 
is applied to their model and serves as a contrast. As is well 
known, the quality of solutions found by an EA can be highly 
related to the number of iterations (function evaluations) that 
the algorithm uses. To be fair, the algorithms for the two mod-
els were both executed until the same maximum number of 
function evaluations are reached. For the second goal, we com-
pare the results obtained by solving the proposed TA planning 
model using M2M to MOEA/D.

A. The Parameters of the Networks
In our model, the road traffic density distributions of the three 
networks are known in advance. We generate the traffic flow of 
each road according to its type by sampling from uniform dis-
tributions for the three networks to simulate the real situation. 
The cells crossed by each road and the limits of the traffic dis-
tributions for each type of roads are shown in Tables 1, 2 and 3.

The other control parameters are defined as follows:
❏❏ The paging capacity of each cell: /P s28BS = .
❏❏ The telephone traffic load capacity of each MME: 

/P s1500MME = .
❏❏ The total paging pi of cell i is generated from a Poisson dis-
tribution with rate parameter 6m = .

❏❏ The population size is M = 100; the maximum number of 
function evaluations is M500 )  for the 5 × 5 and 5 × 6 
networks; maximum function evaluations is , M1 000 )  for 
the 9 × 9 network.

❏❏ The number of the subproblems is K = 10, and the size of 
each subpopulation is S = 10.

B. Experimental Results and Analysis
Ten different groups of parameters for each network are gen-
erated for simulation to show the universality of the proposed 
model. For direct comparison, the weighted sum of the 

Table 2 The road traffic density distributions  
in the 5 × 6 network.

Road 
type 

Number Traffic 
flow

Cells crossed by 
roads 

1. �main 
road

4 [200, 400] {3, 8, 13, 18, 22, 23, 24, 29, 30}

{26, 21, 16, 17, 18, 19, 20, 25}

{5, 10, 14, 19, 23, 28} 

{3, 4, 10, 15} 

2. street 7 [100, 250] {8, 3, 4, 5} 

{3, 8, 12, 11} 

{5, 10, 15} 

{11, 12, 18, 23, 28} 

{6, 21, 16, 11} 

{16, 17, 12} 

{26, 27} 

3. alley 4 [50, 150] {8, 13, 19, 23, 28, 27} 

{1, 2, 3, 8, 9} 

{7, 4, 5, 9} 

{11, 12, 13} 

Table 1 The road traffic density distributions  
in the 5 × 5 network.

Road 
type 

Number Traffic 
flow

Cells crossed by 
roads 

1. �main 
road

4 [200, 400] {11, 12, 17, 22, 23, 24, 25}

{21, 22, 18, 14, 15} 

{5, 9, 13, 18, 23} 

{3, 8, 9, 10} 

2. street 7 [100, 250] {2, 3, 4, 5} 

{3, 8, 13, 18} 

{4, 8, 12} 

{9, 10, 15, 20, 24} 

{17, 13, 14, 10} 

{18, 19, 15} 

{19, 23} 

3. alley 4 [50, 150] {6, 11, 16, 21, 22} 

{2, 7} 

{8, 4, 5} 

{11, 12, 13} 

The three test networks are all generated based on the 
principles which can reflect the true nature of realistic 
TA planning instances.
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solutions obtained by solving the multi-objective model is 
calculated using the same weights of the single-objective 
model. The solution with the minimal weighted sum value is 
compared with the best solution found by the single-objec-

tive model. Tables 4, 5 and 6 present their location update 
cost, paging cost and their weighted sum cost for the ten dif-
ferent groups of parameters. The results show that the multi-
objective model can significantly outperform the 
single-objective model in terms of the weighted sum. It lives 
up to our expectation that multi-objective formulations for 
the TA planning problem are more effective than the sin-
gle-objective model.

A multi-objective optimization problem has a set of Pareto 
optimal solutions, and their images in the objective space are 
called Pareto Front (PF). The convergence of an EMO algo-
rithm can be measured by the closeness of its obtained solu-
tions to the PF. Since each element of PF represents a trade-off 
among the objectives, the diversity along the PF is also impor-
tant when measuring the quality of obtained solutions. In our 
experiments, the quality of obtained solutions by EMO algo-
rithms is measured by the HyperVolume (HV)-metric which 
can measure the convergence to the PF and the diversity along 
the PF at the same time [38]. Let ( , , )y yy m1 f=) ) )  be a refer-
ence point in the objective space which is dominated by any 
point in the PF, and S be a set of obtained approximation to 
the PF. Then the HV-metric value of S (with regard to the ref-
erence point )y)  is the volume of the region which is domi-
nated by S and dominates .y)  The reference point 

( , )8 10 3 10y 4 5) )=)  is used in our study. The larger the HV-
metric is, the better the algorithm performance is. Consider-
ing the randomness of EMO algor ithms, M2M and 
MOEA/D both run 15 times for each test network. The best, 
worst, median, mean and standard deviation of HV-metric val-
ues in the 15 independent runs for each network are shown in 
Table 7. It indicates that the solutions obtained by M2M have 
both better convergence and diversity than MOEA/D in 
terms of the HV-metric. To investigate the sensitivity of solu-
tions quality to the setting of maximum number of genera-
tions, we plot the HV-metric of solutions obtained by the 
proposed algorithm with different number of generations for 
network 1 in Fig. 7.

Table 4 The Location Update Cost (LUC), Paging Cost (PC) and Weight Sum Cost (WSC) of network  
1 for 10 groups of test parameters.

Network 1 Multi-objective Model Single-objective Model

Group LUC PC WSC LUC PC WSC 

1 6550 16996 82496 6680 23579 90379

2 6220 19569 81769 5958 22583 82163

3 5526 25999 81259 8114 17573 98713

4 5682 21991 78811 6656 17112 83672

5 5024 21272 71512 5730 24587 81887

6 6004 18638 78678 7736 16697 94057

7 6214 23456 85596 5862 24360 82980

8 5462 22799 77419 6904 18388 87428

9 4802 26519 74539 5968 24574 84254

10 5554 19359 74899 6120 25043 86243

Table 3 The road traffic density distributions  
in the 9 × 9 network.

Road 
type 

Number Traffic 
flow

Cells crossed by roads 

1. �main 
road

4 [200, 400] {10, 11, 12, 21, 22, 23,  

24, 25, 26, 35, 44, 54, 63}

{9, 8, 17, 25, 24, 34, 51, 

59, 68, 76, 75, 74, 73} 

{5, 14, 22, 31, 40, 

41, 42, 51, 60, 70, 71, 80} 

{3, 13, 21, 30, 39, 38, 47, 55, 64}

2. street 7 [100, 250] {2, 3, 4, 5, 6, 7, 8, 9} 

{3, 12, 20, 19, 28, 29,  

37, 46} 

{6, 15, 23, 32, 40, 41} 

{33, 34, 35, 44, 53, 61, 62} 

{59, 51, 42, 34, 35, 36, 27, 18} 

{77, 69, 60, 61, 53, 43, 44, 45} 

{50, 49, 57, 66, 74, 75} 

3. alley 7 [50, 150] {28, 37, 46, 47, 48, 56, 55,  

64, 73}

{1, 2, 3, 12, 20, 30, 31, 32} 

{16, 7, 8, 9} 

{55, 56, 57, 58, 59, 60, 52} 

{65, 66, 67, 76} 

{78, 70, 71, 72} 

{79, 80, 81} 
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It is clear that the proposed algorithm is not very sensitive 
to the setting of maximum number of generations since its 
HV-metric is very stable after 300 generations of evolution.

Figs. 8-10 plot the distributions of the solutions with the 
median HV-metric obtained by M2M versus MOEA/D (not 
using the M2M decomposition strategy) for the three networks. 
From these figures, we can compare the convergence and diversi-
ty of the solutions obtained by M2M and MOEA/D in an intui-
tive way. Obviously, M2M using the population decomposition 

strategy outperforms MOEA/D both in convergence and diver-
sity. It is because of the M2M population strategy that the infor-
mation of infeasible solutions can be fully utilized to guide the 
population search. Since the TA planning problem has a lot of 
complex constraints, some infeasible solutions can be very crucial 
during the evolutionary process. In the M2M framework, the 
selection operator is conduced independently in each subpopula-
tion, and those infeasible but crucial solutions are more likely to 
survive. The algorithm without the M2M population strategy 

Table 7 Best, worst, median, mean, and standard deviation of HV-metric values obtained by M2M and MOEA/D  
in 15 independent runs for each network.

Network Algorithm Best Worst Median Mean Std 

1 M2M 22.0228 21.3033 21.69178 21.68115 0.194377

MOEA/D 21.6442 21.0631 21.33346 21.33535 0.210806

2 M2M 21.6862 21.1803 21.41088 21.39275 0.188406

MOEA/D 21.3409 20.5926 20.93512 20.9217 0.272798

3 M2M 18.4156 17.7834 18.10996 18.14175 0.194861

MOEA/D 17.6228 17.0018 17.32225 17.3455 0.204509

Table 5 The Location Update Cost (LUC), Paging Cost (PC) and Weight Sum Cost (WSC) of network 2 for 10 groups of test parameters.

Network 2 Multi-objective Model Single-objective Model

Group LUC PC WSC LUC PC WSC 

1 5994 26235 86175 5994 26235 86175 

2 6372 21159 84879 7648 18019 94499

3 6258 24310 86890 9086 17267 108127

4 6576 24512 90272 7566 19440 95100

5 6816 23519 91679 6928 23736 93016 

6 6410 23014 87114 6992 25375 95295 

7 7212 21704 93824 6934 21210 90550 

8 5762 26430 84050 7868 18321 97001 

9 7090 21038 91938 8338 21322 104702

10 7346 21217 94677 10080 15132 115932

Table 6 The Location Update Cost (LUC), Paging Cost (PC) and Weight Sum Cost (WSC) of network 3 for 10 groups of test parameters.

Network 3 Multi-objective Model Single-objective Model

Group LUC PC WSC LUC PC WSC 

1 16148 70297 231777 18210 57814 239914

2 15274 50119 202859 18738 55787 243167

3 14238 54597 196977 17596 54089 230049

4 14490 60501 205401 19330 60836 254136

5 15114 54757 205897 18288 60033 242913

6 13762 50298 187918 18576 60557 246317

7 13872 57336 196056 18572 54191 239911

8 15274 50119 202859 18378 60369 244149

9 14238 54597 196977 17776 61728 239488

10 14490 60501 205401 17446 63466 237926
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fails to maintain the population diversity in the evolutionary pro-
cess because of the overemphasis on feasible solutions. The final 
solutions tend to be clustered and the convergence of the popu-
lation also decreases for the same reason.

C. Computational Complexity
The fuzzy initialization and selection in each subpopulation are 
the major costs of the proposed algorithm. The computational 

complexity of calculating the fuzzy similarity 
matrix is ( )O N2  (N is the number of cells in 
a network), and calculating the fuzzy equiva-
lence matrix by the transitive closure method 
is ( ( ))logO N N23  [36]. That is, the computa-
tional complexity of fuzzy initialization  
is ( ( ))logO N N23 . M2M decomposition 
requires ( )O K S2  operators for a two-objec-

tive optimization problem, while computation of the gte values 
of 2KS solutions and updating of the KS solutions in each sub-
population require ( )O KS KS2 2 2+  operators. Therefore, the 
computational complexity of the proposed algorithm for the 
two-objective TA planning is ( (logO N N23 2 2) KS K S+ + ). As 
we can see, the fuzzy clustering costs a lot. Thus, we are plan-
ning to introduce more effective fuzzy clustering algorithms 
for initialization in our future work.
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Figure 7 Variation of HV-metric for the proposed EMO algorithm with 
different number of generations for multi-objective TA planning in 
network 1.
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Figure 8 Plot of the solutions with median HV-metric value obtained 
by M2M and MOEA/D for the 5 × 5 network.
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Figure 9 Plot of the solutions with median HV-metric value obtained 
by M2M and MOEA/D for the 5 × 6 network.
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Figure 10 Plot of the solutions with median HV-metric value 
obtained by M2M and MOEA/D for the 9 × 9 network.

In the M2M framework, the selection operator is 
conduced independently in each subpopulation, and 
those infeasible but crucial solutions are more likely 
to survive.
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VI. Conclusion
In this paper, a novel constrained multi-objective model for TA 
planning is proposed. The geographic information-based multi-
objective model has demonstrated its potential to significantly 
reduce both the location update cost and paging cost in com-
parison with the results of a single-objective TA planning 
model. Moreover, it can also provide a set of solutions for deci-
sion makers to select from, so as to make the TA planning more 
flexible and adaptable to real-world circumstances. An EMO 
algorithm based on the M2M decomposition strategy is 
designed to solve the model. Fuzzy clustering based on the 
geographic information is applied for initialization to enhance 
the exploration. A specially designed coding method based on 
the four-color theorem is utilized to encode and decode the 
solutions. The experimental results have shown not only the 
validity of the proposed multi-objective model, but also the 
effectiveness of the M2M decomposition strategy to solve this 
multi-objective constrained optimization model.
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