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A B S T R A C T   

Image dehazing can improve image clarity and visual effect, which plays a pivotal role in many computer vision 
tasks. Existing dehazing methods are mostly based on a single feature stream and tend to ignore the low- 
frequency characteristics of haze. In this paper, we propose a dual stream network for image dehazing. To 
enhance the edge information and texture detail of the image, we construct a frequency stream based on 
attention octave convolution. We decompose the features into high and low-frequency branches in the frequency 
stream to obtain different structural information. By adding a residual channel attention block, the attention 
octave convolution can extract frequency features more efficiently and effectively. Due to the lower resolution of 
low-frequency features in the frequency stream, the frequency stream features alone are insufficient for recov
ering the overall content of the image. Therefore, a content stream was added to compensate for the information 
lost in the frequency stream. By fusing the outputs of two feature streams, the network achieves an enhanced 
dehazing performance. The results show that our method is superior to other state-of-the-art algorithms in 
quantitative evaluation and visual impact.   

1. Introduction 

Adverse weather conditions such as haze and dust can affect image 
quality, causing loss of contrast and color distortion. Advanced vision 
tasks, such as object detection [1,2] and image segmentation [3], are 
prone to degrade significantly when the input image has severe haze. 
Therefore, dehazing technology is critical in image processing and ma
chine vision. 

Physical model-based approaches [4–7] try to remove haze with the 
help of intermediate variables in the physical models. For example, the 
classical atmospheric scattering model [8] can be used to recover clean 
images, including key parameters such as the transmission map and 
atmospheric light intensity. However, the physical model and prior in
formation can not always reflect the inherent properties of hazy images. 

Due to the success of deep learning in various tasks, early non-end-to- 
end dehazing approaches [9–11] use deep convolutional neural net
works to estimate the transmission map and atmospheric light intensity, 
then dehaze according to the atmospheric scattering model. However, it 
is challenging to obtain ground truth data of transmission maps. On the 
other hand, the quality of the dehazed image heavily relies on estimating 
the intermediate variables. 

In recent years, the end-to-end dehazing approaches [12–17] have 
achieved improved performance. Instead of estimating transmission 
maps and atmospheric light intensities, these approaches recover clear 
image directly through powerful feature representation and mapping 
capabilities of deep convolutional neural networks. Nevertheless, these 
approaches mainly adopt generic network structures (e.g., GAN [18,19], 
DenseNet [20], GridNet [21], encoder-decoder networks [22,23]), 
which limit their dehazing performance due to the fact that they usually 
extract features in the spatial domain, without taking advantage of 
features in the frequency domain. 

The frequency features of the image contain comprehensive infor
mation. High-frequency features correspond to sharp edges and impor
tant details of objects, while low-frequency features correspond to 
information such as overall content and color [24]. Recently, some 
dehazing methods have also used frequency information to restore haze- 
free images. Liu et al. [25] used Wavelet Transform to decompose the 
hazy image into high and low-frequency components, and processed the 
high and low-frequency components separately to obtain a haze-free 
image. Xu et al. [26] used the Laplace Operator to obtain high- 
frequency information of images to improve the quality of dehazed 
images. These methods requires physical processes to obtain the 
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frequency information of the image in advance. In this process, the size 
of the high-pass and low-pass filters is a crucial parameter that de
termines the quality of the extracted features. However, for images of 
different sizes, the filter sizes need to be adjusted accordingly. As a 
result, using traditional physics-based methods to extract high- 
frequency and low-frequency features can be highly inefficient in 
practical applications. 

Yu et al. [27] constructed a dual-guided dehazing network based on 
both frequency and spatial guidance (FSDGN). They obtained the 
amplitude spectrum and phase spectrum of images through Fourier 
transformation. After comparing, they found that hazy images and clear 
images have significant differences in the amplitude spectrum, while the 
phase spectrum shows minor differences. 

Compared with FSDGN, we further analyze the amplitude spectrum 
of both hazy and clear images. Specifically, we performed a Fourier 
transform on the hazy image and filtered it using a high-pass filter and a 
low-pass filter, respectively. The results are shown in Fig. 1. The low- 
pass filter allows low-frequency information to pass through. After the 
low-pass filter, the hazy image still has a noticeable haze residue. The 
results indicate that haze is closer to low-frequency information. The 
physical distinction between hazy and clear image pairs in the frequency 
domain is more pronounced than in the spatial domain. Therefore, 
exploring the correlation between haze degradation and frequency be
comes crucial for understanding the dehazing problem. To address the 
differences between high-frequency and low-frequency images in prior 
information, we decompose the spatial domain features into high- 
frequency and low-frequency features in the frequency domain. Our 
method could extract the high and low frequency features accurately 
and repair the image with the help of high and low frequency features. 

Based on the above analysis, this paper proposes a frequency and 
content dual stream network for image dehazing. The network learns 
richer features by building a dual stream network with content and 
frequency streams. We design a content stream based on a nested re
sidual structure to preserve the overall content of the dehazed image. 
The frequency stream is decomposed into high and low-frequency 
branches to provide different structure information. We add residual 
channel attention to the original octave convolution called attention 
octave convolution to extract frequency features more accurately. In the 
skip connections of the frequency stream, we design a dual self-attention 

(DSA) mechanism to enhance feature communication between high and 
low-frequency branches. The results demonstrate that our method out
performs other state-of-the-art dehazing algorithms. 

The contributions of the paper can be summarized as follows:  

1) We propose a frequency and content dual stream network for image 
dehazing, which learns richer features than single feature stream and 
restores hazy images from different perspectives.  

2) We design a frequency stream to extract the frequency features of 
hazy images, which we further use attention octave convolution to 
decompose features into high and low-frequency branches. DSA is 
proposed to enhance feature communication between high and low- 
frequency branches. The proposed method uses structural informa
tion provided by frequency features to recover details.  

3) To compensate for the information lost in the frequency stream, we 
design a content stream to preserve the overall content of the image. 
In the content stream, we use the residual channel attention to 
adaptively adjust the weight of each channel and combine the nested 
residual structure to filter out the redundant low-frequency 
information. 

2. Related works 

2.1. Image dehazing 

Image dehazing methods can be divided into physical model-based 
and deep learning-based methods. The deep learning-based methods 
can be divided into non-end-to-end methods and end-to-end methods. 

Physical model-based methods use prior information to estimate 
critical parameters in the model. He et al. [4] proposed the dark channel 
prior algorithm to get the transmission map through the dark channel 
map, which achieved a pronounced dehazing effect. Zhu et al. [28] 
proposed the color attenuation prior algorithm to restore the depth map 
of the image and then estimate the transmission map. Berman et al. [5] 
proposed the non-local prior algorithm to estimate the transmission map 
through the haze-lines. Since prior information is not universally 
applicable, the application scenarios of these algorithms are limited. 

With the rise of deep learning, early non-end-to-end dehazing 
methods used deep convolutional neural networks to estimate the 

Fig. 1. Hazy/clear image frequency decomposed results. No significant difference exists between the hazy and clear images after the high-pass filter. After the low 
pass filter, the difference is noticeable. 
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intermediate variables. Cai et al. [29] proposed DehazeNet, which built 
a network based on prior information in traditional dehazing methods to 
estimate the transmission map. Ren et al. [9] proposed a multi-scale 
strategy. They first used a coarse-scale network to estimate the trans
mission map and then used a fine-scale network to refine the estimation 
results. Li et al. [10] reconstructed the atmospheric scattering model, 
integrated the transmission map and atmospheric light intensity into a 
parameter K, and proposed AODNet to estimate this parameter. Zhang 
et al. [11] proposed a densely connected pyramid network (DCPDN), 
which used two sub-networks to estimate transmission map and atmo
spheric light intensity, respectively, and adopted the discriminator loss 
of Generative Adversarial Network [30]. However, these non-end-to-end 
methods are constrained by a simplified physical model. Inaccurate 
estimation of the transmission map or atmospheric light intensity can 
have a significant impact on the dehazing results. 

Unlike non-end-to-end dehazing methods, end-to-end dehazing 
methods can directly restore haze-free scenes. Ren et al. [12] proposed a 
gated fusion network (GFN) based on image fusion, which used a weight 
map to obtain a weighted fusion of the output images corresponding to 
the three input images. Zhang et al. [20] proposed a perceptual pyramid 
deep dehazing network based on dense blocks and residual blocks, and 
adopted perceptual loss [31] to learn network weights. Liu et al. [21] 
proposed an attention-based multi-scale network (GDN). The backbone 
module of GDN is based on attention mechanism, which can effectively 
exchange information of different scales. Zhao et al. [32] proposed a 
pyramid global context network (PGC-DN), which learns point-wise 
long-range dependencies and patch-wise long-range dependencies of 
hazy images. Dong et al. [33] proposed a multi-scale boosted network 
with dense feature fusion (MSBDN), which can correct the missing 
spatial information in high-resolution features. Chen et al. [34] pro
posed a principled synthetic-to-real dehazing guided by physical priors 
(PSD), which is fine-tuned in an unsupervised way by using a dehazing 
network pre-trained on synthetic data as the backbone network. Guo 
et al. [35] proposed a transformer model (Dehamer) with transmission- 
aware 3D position embedding and introduced prior information related 
to haze density. The end-to-end methods have made significant progress 
in dealing with dehazing problems. However, these methods tend to 
focus on the global content or local information of hazy images, without 
fully utilizing the low-frequency characteristics of the haze itself to aid 
in image restoration. The frequency features of hazy images contains 
rich information, which helps improve the quality of dehazed image and 
deserves to be investigated. 

2.2. Octave convolution 

The image can be decomposed into high and low-frequency com
ponents, and the feature maps of convolution layer also have high and 
low-frequency features. The high-frequency features correspond to the 
area where the intensity values change rapidly, such as the boundaries, 
edges, and other detailed information. The low-frequency features refer 
to the area where the intensity values change smoothly, such as the 
background with the same color and almost the same intensity. In a 
recent study [36], octave convolution (OctConv) was proposed to pro
cess high and low-frequency features separately. OctConv uses a multi- 
frequency feature representation method that stores and processes low- 
frequency features by mapping them to low-resolution tensors to reduce 
redundancy. Unlike the traditional method of separating different fre
quencies, the high and low-frequency feature maps refer to feature maps 
with different resolutions. With the intra-frequency update and inter- 
frequency communication, OctConv separates two kinds of features 
into two groups of feature maps. 

OctConv can also improve the performance of many computer vision 
tasks by replacing traditional convolution [37–40]. On the image seg
mentation task, Fan et al. [41] built an accurate retinal vessel segmen
tation neural network using OctConv and achieved comparable 
performance to other state-of-the-art methods with a faster processing 

speed. On the image classification task, Xu et al. [42] proposed a multi- 
scale octave 3D CNN for hyperspectral image classification, which out
performed many state-of-the-art methods. Up to now, OctConv is rarely 
used for image dehazing. The purpose of image dehazing is to restore a 
clean scene and preserve the overall content and textural details. 
Therefore, we construct a dual stream network, combining a content 
stream based on traditional convolution and a frequency stream based 
on OctConv. Our method achieves evaluation results comparable to the 
latest algorithms, effectively dehazing by leveraging frequency features 
while preserving the content and detail information of the images. 

3. Method 

The overall structure of the network is shown in Fig. 2, which con
tains a content stream and a frequency stream. After a 3 × 3 convolu
tional layer, the features will serve as the input for two feature streams. 
The outputs of the two streams are fused to obtain the final dehazed 
image. 

3.1. Content stream based on nested residual structure 

Fig. 1 shows that haze is closer to low-frequency information. There 
is redundant low-frequency information in the hazy image. In addition, 
frequency stream features will lose a lot of information due to contin
uous downsampling operations, especially low-frequency features. The 
frequency stream features alone are insufficient for recovering the 
overall content of the image. Therefore, we design a content stream 
based on nested residual structure. 

The nested residual structure contains a number of residual groups 
with long residual connections, with each residual group consisting of a 
number of residual channel attention blocks with short residual con
nections. Residual connections allows rich information to be propagated 
backwards directly through constant mapping, which helps maintain the 
overall content of the dehazed image. When information is propagated 
backwards, the network should have the feature discrimination ability 
to filter out redundant low-frequency information. Therefore, we add 
the residual channel attention blocks in the nested residual structure. In 
residual channel attention block, global average pooling and maximal 
pooling are used to capture global common and distinctive information, 
respectively. Compared to SENet [43], we use depthwise separable 
convolution to predict the weight of each channel independently, 
allowing the channel to use the weight directly and avoiding the 
dimensionality reduction caused by the fully connected layer. The 
structure of the residual channel attention block is shown in Fig. 3. It can 
be described as: 

Fc = RCA(F) = F +Mc
*(W2(W1F) ) (1)  

where F and Fc represent input and output features, respectively. Mc ∈

RC×1×1 is the channel attention map. W1 and W2 represent the convo
lution weights of the first two layers, respectively. 

Mc = σ
(
Wp

(
WdFap

)
+Wp

(
WdFmp

) )
(2)  

where σ denotes the sigmoid function. Wd and Wp represent the weights 
of depthwise convolution and pointwise convolution, respectively. Fap 

and Fmp denote the average-pooled features and maximal-pooled fea
tures, respectively. 

3.2. Feature extraction based on attention Octconv 

Through Fourier spectrum analysis, we observed significant differ
ences between hazy images and clear images after low-pass filtering, 
while the differences became minimal after high-pass filtering. In the 
frequency stream, we decompose the spatial domain features into high- 
frequency and low-frequency features in the frequency domain. 
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Fig. 2. The structure of frequency and content dual stream network.  

Fig. 3. The structure of Residual Channel Attention Block (RCAB).  

Fig. 4. Frequency stream feature visualization based on OctConv. (b) and (f) represent the visualization results of the high-frequency and low-frequency features, 
respectively. (c)-(e) and (g)-(i) respectively show the visualization results of single channel feature map. For instance, Encoder 1 means the output features of the first 
encoder, and Encoder 1 C 2 means the features of the second channel in the output features of the first encoder. 
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OctConv [36] divides features into high and low-frequency branches by 
channels. It uses feature maps with different resolutions to represent 
high and low-frequency features. Particularly, OctConv is able to adjust 
the ratio of high and low-frequency components. For the redundant low- 
frequency information, we set the ratio of low-frequency components in 
the frequency stream to 0.25 and the ratio of high-frequency compo
nents to 0.75. As the low-frequency information contains more haze 
characteristics, reducing the proportion of low-frequency information in 
the frequency stream can directly and effectively dehaze the image. At 
the same time, the network will focus more on high-frequency infor
mation, leading to a restored image that closely resembles the clear 
image. 

However, OctConv is not entirely accurate in extracting frequency 
features. As shown in Fig. 4, we performed feature visualization on the 
OctConv-based frequency stream. Taking the high-frequency branch as 
an example, (b) represents the overall feature visualization result of all 
channels, (c)-(e) represent the feature visualization results of different 
channels. We can see that different channels contain different infor
mation. For instance, high-frequency information (d), noises (c), and 
irrelevant information (e). These noises and irrelevant information will 
affect the extraction of frequency features in the frequency stream. 

To reduce the interference of noises and irrelevant information, we 
propose an Attention OctConv based on residual channel attention, as 
shown in Fig. 5. The Attention OctConv adds residual channel attention 
before performing feature exchange and update between high and low- 
frequency branches. By adjusting each channel’s weight, the network 
will focus more on frequency features, thus achieving more accurate 
feature extraction. The Attention OctConv can be expressed as: 
{

YH = YH→H + YL→H

YL = YL→L + YH→L (3)  

where YH and YL represent the high and low-frequency branches of the 
output, respectively. YH→H indicates the mapping between the high- 
frequency and high-frequency branches. YL→H indicates the mapping 
between the low-frequency and high-frequency branches. YL→L indicates 
the mapping between the low-frequency and low-frequency branches. 
YH→L indicates the mapping between the high-frequency and low- 
frequency branches. 
{

YH→H = f
(
RCA

(
XH) ;WH→H)

YL→H = Upsampling
(
f
(
RCA

(
XL) ;WL→H) , 2

) (4)  

where XH and XL represent the high and low-frequency branches of the 
input, respectively. RCA(⋅) represents residual channel attention oper
ation. f(X;W) represents the convolution operation with input X and 
convolution kernel W. WH→H denotes the convolution kernel from high- 
frequency branch to the high-frequency branch. WL→H denotes the 
convolution kernel from low-frequency branch to the high-frequency 
branch. Upsampling(X, 2) denotes the upsampling operation with input 

X and the sampling factor is 2. 
{

YL→L = f
(
RCA

(
XL) ;WL→L)

YH→L = f
(
Pooling

(
RCA

(
XH) , 2

)
;WH→L) (5)  

where WL→L denotes the convolution kernel from low-frequency branch 
to low-frequency branch. WH→L denotes the convolution kernel from 
high-frequency branch to low-frequency branch. Pooling(X, 2) denotes 
the pooling operation with input X and the stride is 2. 

To decompose the features extracted by traditional convolution in 
the initial stage and fuse the features extracted by Attention OctConv in 
the final stage, we design a decomposition block and a fusion block, as 
shown in Fig. 6. Unlike CBAM [44], we use depthwise separable 
convolution to generate the spatial attention map that preserves location 
information and avoids information loss caused by the pooling layer. 
The decomposition block preliminarily divides features into high and 
low-frequency branches, which helps the frequency stream to extract 
frequency features. The fusion block fuses the frequency features of the 
high and low-frequency branches, which helps to enhance the details of 
the dehazed image. 

3.3. Dual self-attention 

The frequency stream is designed with a U-Net structure, which may 
result in a loss of substantial spatial information during the encoding 
stage. To supplement the information and enhance image recovery 
during the decoding phase, we have incorporated the dual self-attention 
(DSA) module into the skip connections of the same-level features. DSA 
module enhances the high and low-frequency features from the encod
ing stage and plays a guiding and complementary role during the 
decoding stage, as shown in Fig. 7. 

We upsample the features of the low-frequency branch to the same 
resolution as the high-frequency branch and then perform unified pro
cessing to enhance the feature communication. Inspired by self-attention 
in transformer [49,50], we apply the self-attention mechanism to the 
frequency features. 
⎧
⎪⎪⎨

⎪⎪⎩

Q = WQ
2 WQ

1 X
K = WK

2 WK
1 X

V = WV
2 WV

1 X
(6)  

where X represents the frequency features after concatenation. W(⋅)
1 and 

W(⋅)
2 denote 1 × 1 convolution and 3 × 3 convolution, respectively. Q, K, 

and V represent the projections of Query, Key, and Value, respectively. 
Finally, DSA generates spatial attention maps with two channels. The 

spatial attention maps are split by channel and multiplied with the 
features of high and low-frequency branches separately. 

X̂ = σW1(Attention(Q,K,V)+X ) (7) 

Fig. 5. The structure of Attention OctConv. Here, we set αin = αout = 0.25.  
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Attention(Q,K,V) = Softmax
(
QKT)V (8)  

where X̂ represents the spatial attention maps. σ denotes the sigmoid 
function. 

In the process described above, DSA captures the internal associa
tions between high and low frequency features, and plays a role in 
feature enhancement. The high and low-frequency features generated by 
each encoder layer are then fused with the corresponding decoder fea
tures after being enhanced by DSA. 

4. Experiment 

To verify the superiority of the proposed method, we compared our 
method with other methods on both synthetic and real-world hazy 
datasets, as well as some locally obtained images. Then, we conducted 
an ablation analysis to demonstrate the effectiveness of the core modules 
used in the proposed method. 

4.1. Training settings 

The method was based on the PyTorch framework, and all experi
ments were performed on a single NVIDIA GeForce RTX 3090 GPU. We 
use ADAM with β1 = 0.9, β2 = 0.999 for optimization. The initial 
learning rate is 0.0001, and the learning rate is adjusted by the cosine 
annealing strategy. The batch and total number of iterations are 16 and 
400 k, respectively. We use synthetic indoor dataset ITS and outdoor 

dataset OTS as the training set and SOTS [51] as the testing set. We also 
train and test on real-world datasets I-HAZE [52], O-HAZE [53], and 
DENSE-HAZE [54]. Furthermore, we test some real-world hazy images 
using the model trained on the OTS dataset. In the training phase, 256 ×
256 patches are cropped randomly from the hazy images and randomly 
flipped horizontally after normalization. 

We compare our method with the SOTA methods, including DCP [4] 
(TPIMA’2010), AOD-Net [10] (ICCV’2017), GDN [21] (ICCV’2019), 
PGC-DN [32] (TCSVT’2020), FFA-Net [15] (AAAI’2020), MSBDN [33] 
(CVPR’2020), AECR-Net [45] (CVPR’2021), Dehamer [35] 
(CVPR’2022), MAXIM-2S [46] (CVPR’2022), FSDGN [27] 
(ECCV’2022), CARL-Net [47] (IJCAI’2022), TUSR-Net [48] (TIP’2023). 
We employ commonly-used PSNR (dB) and SSIM to quantify the 
dehazing performance of different methods. 

4.2. Evaluation 

Table 1 shows the quantitative results of all the methods in the above 
five datasets. We have obtained 36.39 dB PSNR and 0.9871 SSIM on 
SOTS (Indoor) dataset, 34.45 dB PSNR and 0.9851 SSIM on SOTS 
(Outdoor) dataset. Although the performance of our method is not 
outstanding on the SOTS (Indoor) dataset, it excels on the SOTS (Out
door) dataset, achieving the second-best results. Our proposed method 
achieves 26.76 dB PSNR and 0.8670 SSIM on I-HAZE, 24.19 dB PSNR 
and 0.8639 SSIM on O-HAZE, 16.85 dB PSNR and 0.5201 SSIM on 
DENSE-HAZE. In particular, our method achieves much higher SSIM 

Fig. 6. The structure of decomposition block and fusion block. (a) is the decomposition block and (b) is the fusion block.  

Fig. 7. The structure of dual self-attention block. The white dashed box shows the self-attention mechanism.  
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value on the real-world dataset O-HAZE than the other algorithms. The 
results show that our method has comparable dehazing performance to 
state-of-the-art algorithms. 

Fig. 8 shows the dehazed visual comparison of the synthetic datasets 
SOTS (Indoor) and SOTS (Outdoor). DCP have problem with color 
distortion in indoor and outdoor dehazed images. AOD-Net does not 
remove the haze completely, and there is still a lot of haze in the last row 
of dehazed results. GDN, FFA-Net and MSBDN show comparable 
dehazing performance to our method on synthetic datasets. The restored 
images all have normal color and no obvious haze residue. 

Fig. 9 shows the dehazed results of the real-world datasets I-HAZE, 
O-HAZE and DENSE-HAZE. DCP has noticeable dehazing effects in the 
indoor dehazed image, but the outdoor dehazed image appears to have 
severe color distortion. The dehazed images of AOD-Net have noticeable 
haze residue. GDN and MSBDN perform well on synthetic datasets. 
However, their performance on real datasets is inferior to our method. 
The dehazed results of GDN have noticeable artifacts. The enlarged 
details of MSBDN show apparent color deviation compared to our 
method. Our method performs better in haze removal and color recovery 
than other methods. 

Fig. 10 shows the visual comparison of real-world hazy images. DCP 
have problem with color distortion in the dehazed images. The enlarged 
details of GDN, FFA-Net and MSBDN in the first row have noticeable 

haze residue. In the last row, the dehazed results from AOD-Net, GDN, 
and MSBDN show an unnatural color for the sky. Compared with other 
methods, our method has an apparent dehazing effect while preserving 
the original color. 

4.3. Ablation experiment 

We perform ablation experiments to verify the effectiveness of 
Attention OctConv, Content Stream and DSA in the model. After 
removing and replacing the corresponding modules, the ablation models 
are obtained using the same training strategy. We used ITS as the 
training set and SOTS (Indoor) as the testing set. Table 2 shows the re
sults of the ablation experiment. 

M0 is the base model, using Original OctConv, no Content Stream, 
and no DSA. M1 uses only Attention OctConv to extract frequency fea
tures, no Content Stream, and no DSA. From the results of M0 and M1, 
we can see that Attention OctConv performs better than the original 
OctConv. M2 uses original OctConv to extract frequency features and 
adds DSA for feature enhancement of high and low-frequency branches. 
Due to the lack of the content stream to supplement the global content 
information, the performances of M1 and M2 are not so satisfactory. M3 
adds the content stream, which forms a dual stream network with the 
frequency stream. By combining the two feature streams, M3 learns 

Table 1 
Comparison of performance on public datasets. Red texts and blue texts indicate the best and the second-best performance respectively.  

Method SOTS (Indoor) SOTS (Outdoor) I-HAZE O-HAZE DENSE-HAZE  

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ 

DCP [4] (TPIMA’2010) 16.62 0.8179 19.13 0.8148 14.43 0.7520 16.78 0.6530 10.06 0.3856 
AOD-Net [10] (ICCV’2017) 20.51 0.8162 24.14 0.9198 13.98 0.7320 17.56 0.6500 11.57 0.3959 

GDN [21] (ICCV’2019) 32.16 0.9836 30.86 0.9819 16.62 0.7870 18.92 0.6720 13.31 0.3681 
PGC-DN [32] (TCSVT’2020) – – 28.61 0.9510 26.99 0.8890 24.91 0.7730 – – 
FFA-Net [15] (AAAI’2020) 36.39 0.9886 33.57 0.9840 – – – – 14.39 0.4524 
MSBDN [33] (CVPR’2020) 32.77 0.9813 34.29 0.9850 23.93 0.8910 24.36 0.7490 15.37 0.4858 

AECR-Net [45] (CVPR’2021) 37.17 0.9901 – – – – – – 15.80 0.4660 
Dehamer [35] (CVPR’2022) 36.63 0.9881 35.18 0.9860 – – – – 16.62 0.5602 

MAXIM-2S [46] (CVPR’2022) 38.11 0.9910 34.19 0.9850 – – – – – – 
FSDGN [27] (ECCV’2022) 38.63 0.9903 – – – – – – 16.91 0.5806 

CARL-Net [47] (IJCAI’2022) 41.92 0.9954 33.26 0.9849 25.43 0.8807 25.83 0.8078 15.47 0.5482 
TUSR-Net [48] (TIP’2023) 38.67 0.9911 – – – – 25.34 0.7656 18.62 0.5606 

Ours 36.39 0.9871 34.45 0.9851 26.76 0.8670 24.19 0.8639 16.85 0.5201  

Fig. 8. Comparison of dehazing results on SOTS (Indoor) and SOTS (Outdoor) datasets. The first two rows of hazy images are from SOTS (Indoor), and the last two 
rows are from SOTS (Outdoor). 
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richer features and significantly improves performance. Compared with 
M1, M4 further improves the dehazing performance due to DSA. DSA 
effectively enhances the feature communication between the high and 
low-frequency branches. Compared with M1, M5 significantly improves 
its dehazing performance after integrating supplementary information 
from the content stream. Due to the lack of Attention OctConv to extract 
high and low-frequency branches more accurately, the performance of 
the M6 still has room to be improved. M7 integrates all modules and 

achieves the best dehazing performance. The results of the ablation 
experiments show that each module plays an irreplaceable role in the 
network. 

Furthermore, we compared RCAB with the channel attention in the 
classical SENet, and the results are shown in Table 3. The results indicate 
a clear advantage of RCAB over the channel attention in SENet. RCAB is 
used in both the content stream and the frequency stream. On the one 
hand, the RCAB module reduces the influence of noise and irrelevant 

Fig. 9. Comparison of dehazing results on I-HAZE, O-HAZE and DENSE-HAZE datasets. The first row is from I-HAZE, the second row is from O-HAZE, and the last 
row is from DENSE-HAZE. 

Fig. 10. Comparison of dehazing results on real-world hazy images. Note that these hazy images are from the Unannotated Real-World Hazy Images in RESIDE and 
have no ground truth. 

Table 2 
Ablation experiment results on SOTS (Indoor) dataset. M0-M7 total 8 different conbinations.  

Module M0 M1 M2 M3 M4 M5 M6 M7(ours) 

Attention OctConv ✘ ✓ ✘ ✘ ✓ ✓ ✘ ✓ 
DSA ✘ ✘ ✓ ✘ ✓ ✘ ✓ ✓ 

Content Stream ✘ ✘ ✘ ✓ ✘ ✓ ✓ ✓ 
PSNR ↑ 34.72 35.19 35.08 35.36 35.70 35.96 35.84 36.39 
SSIM ↑ 0.9778 0.9804 0.9792 0.9811 0.9832 0.9850 0.9843 0.9871 

Parameters 8.95 M 13.28 M 10.01 M 8.98 M 14.35 M 13.31 M 10.04 M 14.38 M  
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information by adjusting the channel weights, which helps the fre
quency stream to extract frequency features more accurately. On the 
other hand, the content stream uses RCAB to filter out redundant in
formation, helping to dehaze while preserving content information. 

4.3.1. Effectiveness of the attention OctConv 
We show that Attention OctConv can extract frequency features 

more accurately than original OctConv. We respectively visualized the 
frequency stream features of M6 and M7 in the ablation experiment, as 
shown in Fig. 12. Both M6 and M7 contain the content stream and DSA. 
The difference is that M6 uses original OctConv, while M7 uses Attention 
OctConv. As shown in Fig. 12, the high-frequency features of the desk 
edge and the sofa texture are more precise on the right (after Attention 
OctCov) than on the left (after original OctCov). In addition, we visu
alized the features of each stage of the frequency stream in M6 and M7, 
as shown in Fig. 11. Taking high-frequency features as an example, the 
results of Attention OctConv are more accurate on the edges and con
tours of the desk. The feature visualization results show that Attention 
OctConv can extract frequency features more accurately than the orig
inal OctConv. 

4.3.2. Effectiveness of the content stream 
We also show that the content stream and frequency stream focus on 

different features. Fig. 13 shows the output comparison of the content 
stream and frequency stream. The output of the content stream removes 
some of the haze while preserving the overall content of the image. 
However, the edges and details are unclear. Unlike the content stream, 
the frequency stream learns more frequency features, and the edges and 
contours in the image are more clearly identified. Our method maintains 
the overall content through the content stream and enhances the edges 

and details through the frequency stream. The final output is closer to 
the ground truth image by fusing the features of the two streams. 

4.4. Underwater image restoration 

The hazy image is affected by particles suspended in the air. The 
underwater image restoration problem resembles the image dehazing 
problem. Due to the scattering and absorption of light by water, the 
underwater image appears to have color deviation. Therefore, many 
dehazing algorithms are used for underwater image restoration, such as 
the Retinex and DCP algorithms. We apply the proposed method to 
underwater image restoration and compare it with other algorithms. 

We select the dataset EUVP [55] widely used in underwater image 
restoration. The EUVP contains 2185 images. We make the first 2000 
images as the training set and the last 185 images as the testing set. The 
training settings are as previously described. We also use PSNR and SSIM 
to evaluate the restored images quantitatively. Table 4 shows the 
quantitative results. Fig. 14 shows the qualitative results. 

We have selected several dehazing algorithms for comparison. In 

Table 3 
The comparison of different channel attention module.  

Settings SOTS (Indoor)  

PSNR ↑ SSIM ↑ 

Ours + SE Attention 35.94 0.9847 
Ours + RCAB 36.39 0.9871  

Fig. 11. Visual comparison of frequency stream features at different stages. The first two rows are the high-frequency features visualization results extracted by 
Attention OctConv and OctConv, respectively. The last two rows are the low-frequency features visualization results extracted by Attention OctConv and OctConv, 
respectively. 

Fig. 12. Comparison of feature visualization between Attention OctConv 
and OctConv. 
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addition, U-shape [56] and WaveNet [57] are the latest algorithms in 
underwater image restoration. Table 4 shows our method performs best 
on the EUVP dataset. In Fig. 14, the results of PGC-DN and MSBDN show 
apparent color deviation. The results of U-shape and WaveNet have 
better color recovery, but the quality and detail of the images are poorer. 
In the last row, the texture details of the U-shape result are unclear, and 
the color of the WaveNet result is dark. Compared with other methods, 
our method achieves the best visual performance. Because the overall 
color of the underwater images is green or blue, the color deviation is 
closer to low-frequency information. Our method has specially designed 

mechanisms of extracting frequency features, which can better repair 
color deviation. The results show that our method not only produces 
better dehazed images, but also performs well in underwater image 
restoration. 

5. Conclusion 

In this paper, we propose a frequency and content dual stream 
network for single image dehazing. By introducing a dual stream 
structure, the network can learn richer features and restore images from 
different perspectives. In the frequency stream, we use attention octave 
convolution to extract frequency features more accurately. In addition, 
DSA is designed to enhance the feature communication of high and low- 
frequency branches. To compensate for the content information lost in 
the frequency stream, we add the content stream to preserve the overall 
content of the image. The dual stream network effectively fuses features 
from two streams to improve the quality of dehazed images. The abla
tion experiments show that the proposed modules are effective in image 
dehazing. Comprehensive experiments show that the proposed model 
outperforms other state-of-the-art methods in image dehazing and un
derwater image enhancement. 

In future work, we will strive to improve the generality of the model 

Fig. 13. Comparison of content stream and frequency stream outputs.  

Fig. 14. Visual comparison of underwater image enhancement dataset.  

Table 4 
Results on underwater image enhancement dataset.  

Method Test-E185  

PSNR ↑ SSIM ↑ 

PGC-DN [32] (TCSVT’2020) 22.83 0.8304 
MSBDN [33] (CVPR’2020) 27.91 0.8666 

Dehamer [35] (CVPR’2022) 28.50 0.8906 
U-shape [56] (TIP’2023) 28.75 0.8825 

WaveNet [57] (TOMM’2023) 28.62 0.8391 
Ours 28.81 0.8911  
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for image restoration in other adversarial weather conditions. 
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