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CrackCLF: Automatic Pavement Crack Detection
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Abstract— Automatic pavement crack detection is an impor-
tant task to ensure the functional performances of pavements
during their service life. Inspired by deep learning (DL), the
encoder-decoder framework is a powerful tool for crack detec-
tion. However, these models are usually open-loop (OL) systems
that tend to treat thin cracks as the background. Meanwhile,
these models can not automatically correct errors in the pre-
diction, nor can it adapt to the changes of the environment
to automatically extract and detect thin cracks. To tackle this
problem, we embed closed-loop feedback (CLF) into the neural
network so that the model could learn to correct errors on its own,
based on generative adversarial networks (GAN). The resulting
model is called CrackCLF and includes the front and back
ends, i.e. segmentation and adversarial network. The front end
with U-shape framework is employed to generate crack maps,
and the back end with a multi-scale loss function is used to
correct higher-order inconsistencies between labels and crack
maps (generated by the front end) to address open-loop system
issues. Empirical results show that the proposed CrackCLF
outperforms others methods on three public datasets. Moreover,
the proposed CLF can be defined as a plug and play module,
which can be embedded into different neural network models to
improve their performances.

Index Terms— Automatic pavement crack detection, generative
adversarial network, encoder-decoder, deep learning, closed-loop
feedback.
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I. INTRODUCTION

PAVEMENT crack is a common road distress, mainly
caused by temperature, materials aging, fatigue, and traf-

fic loads [1]. They often start from the bottom of the upper
layers and propagate to surfaces [2]. These discontinuities
affect the structures and functional performances of the pave-
ment and shorten its service life, causing discomfort for road
users and costs for road managers [3]. Moreover, there are
potential threats to road safety with social costs [4]: cracks
may be penetrated by rain, forming potholes, which can cause
accidents [5]. Crack detection is a necessary step for road man-
agement to repair them, prevent their diffusion, and maintain
structural and functional conditions of the pavement [6].

In the past few decades, many structural health monitoring
research were reported [7], [8]. The development and applica-
tion of intelligent robotic systems for defect detection in civil
infrastructure is advancing rapidly. Oh et al. proposed a bridge
detection system, including a specially designed car, a robot
mechanism, and a machine vision system [9]. Lim et al. [10]
proposed a crack detection system that uses a camera to collect
images. Laplacian of Gaussian was employed to inspect crack
information, while camera calibration and robot localization
were applied to obtain a global crack map. Zalama et al. [11]
proposed a Gabor filter to detect crack types. Prasanna et al.
[12] presented spatially tuned robust multi-feature (STRUM)
classifier for crack detection.

In early years, crack detection methods are mainly based
on traditional image processing algorithms, which are divided
into three steps: preprocessing, preliminary detection, and
refinement of cracks. Kaul et al. [13] applied Minimal Path
Selection algorithm without any prior knowledge to detect
cracks within gray pavement images, which can extract the
continuous cracks. Lim et al. [10] used edge detection method
for crack detection based on robotic crack inspection system.
However, traditional methods for crack detection are time-
consuming and expensive.

In recent years, automatic methods were applied to accel-
erate crack detection and reduce costs for road managers and
users. With the development of computer vision, deep learning
has entered the field of vision of researchers. Convolutional
neural networks (CNNs) have achieved state-of-the-art perfor-
mance in various computer vision applications.

Encoder-decoder framework with an U-shape is a typical
backbone for segmentation tasks [4]. Fan et al. [14] pro-
posed a U-HDN method based on encoder-decode architecture,
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including the proposed Multi-Dilation Module and Hierarchi-
cal Feature Module. These modules can obtain rich global
context information and integrate multi-scale feature infor-
mation, which can improve crack detection accuracy. Liu
et al. [15] proposed the DeepCrack for crack detection, which
adopted the VGG16 neural network and hierarchical feature
learning to improve neural network performance. However,
it may fail to extract very thin cracks with complex topology.

Although many methods adopt the encoder-decoder frame-
work to detect cracks and obtain satisfactory results
[4,24,27,35,36], these models are usually open-loop (OL)
systems that fail to detect the thin cracks, and tend to treat
them as the background with a good loss.

In 2014, Goodfellow et al. [16] proposed the generative
adversarial networks (GAN), which is widely used in machine
learning and image generation tasks. GAN consists of two
parts: a generative and an adversarial network. The gener-
ative one is used to generate fake images, and the latter
distinguishes between real and generated results. After an
alternative training, the generative network produces an image
that resembles a real image, which can hardly be distinguished
by the adversarial network. Inspired by this method, Zhang
et al. [17] proposed CrackGAN model to synthesise truth
crack image, which uses crack patch supervised GAN and
U-shape architecture to detect cracks. However, this method
ignores the global feature of crack image, and could fail
to detect complex road textures and obtain a relatively low
accuracy for CFD dataset. Zhou et al. proposed Unet++

[18] to address the issue of the global feature extraction of
crack image using multiple skip connection operation based
on U-net architecture. Although Unet++ indirectly integrates
the features of different receptive fields, it only integrates
the information of the next layer, and the information of the
upper layer is not integrated. As a result, the granularity of
its decoder part is still not fine enough, resulting in the loss
of edge and position information in the segmentation results.
Gao et al. [19] modified the U-net with a different way of
cross-layer concatenate ways and combined the discriminative
network to perform crack segmentation. However, the output
of the discriminative network adopts the two-class networks,
which may simply divide the output patch image into a fake or
real image, ignore the relationship between pixels, and cannot
extract thin cracks with complex topology.

To tackle above problems, we embed closed-loop feedback
(CLF) into the neural network so that the model could learn to
correct errors on its own, which is called CrackCLF, including
the front and back ends (i.e., segmentation and adversarial
network, respectively). The proposed CrackCLF can perform
end-to-end training based on generative adversarial networks
(GAN) (Figure 1).

The proposed segmentation network (i.e., the front end)
adopts an encoder-decoder architecture to perform crack seg-
mentation (the dashed box on the left in Figure 1). In addition,
we propose an upsampling-convolutional block attention mod-
ule (UCBAM) to replace the convolution operation based on
the decoder part, which can fuse features from the encoder
and decoder parts. An innovative convolutional block attention
module+ (CBAM+) being a lightweight model is embedded

Fig. 1. The proposed CrackCLF framework. The CrackCLF architecture
contains two parts: Segmentation (the front end) and Adversarial network
(the back end).

into UCBAM, which can reduce the number of parameters
and calculations, and accelerate neural network training. Then,
we designed the global attention pooling (GAP) based on
CBAM+, which can assign different weights for the feature
channel to focus on the crack information. We developed a
hierarchical feature learning method to perform deep supervi-
sion of the crack output for accelerating the convergence of
neural network.

The adversarial network (the back end) is employed to
enforce the segmentation and adversarial network to learn
global, local and thin crack information, which can capture
a range of spatial relationships between pixels (the dashed
box on the right in Figure 1). Meanwhile, it can correct
higher-order inconsistencies between labels and crack maps
(generated by the front end) to address open-loop system
issues. In the training process of CrackCLF, the segmentation
and adversarial networks are trained in an alternating manner.
The contributions of CrackCLF are:

1) A new crack detection framework, called CrackCLF, was
proposed with a closed loop feedback, in which the front
end is employed to segment crack, and the back end is
used to distinguish images between the generated ones
by the front end and the real images. To the best of
our knowledge, this is the first time that a closed-loop
system is integrated with a mixed domain attention to
perform crack detection task.

2) An upsampling-convolutional block attention module
(UCBAM) is proposed to construct the decoder part
in the proposed segmentation network (the front end),
which can reduce the number of parameters and cal-
culations costs, accelerating neural network training
speed. In particular, a global attention pooling (GAP)
is designed and embedded into the proposed CBAM+,
which is part of UCBAM and can assign different
weights for the feature channel to focus on the crack
information.

3) A hierarchical feature learning module is carefully
designed and embedded into the segmentation network
to perform deep supervision of the crack output for
accelerating convergence of the neural network.

4) An adversarial network (the back end) is proposed to
perform closed-loop feedback to capture the difference
between the predicted cracks and the ground truth, which
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can better learn features of global and local cracks to
improve the performance of segmentation network.

This study is organized as follows: In section II, we review
the related works on crack detection. We describe the details
of CrackCLF, including the segmentation and adversarial
networks in Section III. Then, we perform comprehensive
experiments to demonstrate the performance of CrackCLF in
Section IV. Finally, Sections V is the conclusion of our study.

II. RELATED WORKS

A. Traditional Methods

In 2006, Subirats et al. [20] adopted a wavelet transform
to detect cracks, based on different frequency sub-bands and
amplitudes, which cannot be adapted to detect various types
of cracks. Other researchers employed the threshold method
to detect pavement cracks from images [21], [22], followed
by morphological operations to refine the cracks. Oliveira
and Correia [23] proposed CrackIT toolbox with threshold
and edge detection methods et al., which is convenient for
workers to detect crack images [24]. However, edge detection,
morphology and thresholding methods are sensitive to the
background noises, such as oil stains, shadows, and leaves,
which reduce the accuracy of crack detection. Minimal path-
based methods consider brightness and connectivity to reduce
noises and improve the accuracy of the continuous crack.
Kaul et al. [13] adopted the minimal path selection (MPS)
method without any prior knowledge, which can extract the
continuous cracks. However, it fails to detect discontinu-
ous cracks. In summary, the traditional methods normally
need to adopt several steps (such as, eliminating noises and
adjusting hyperparameters et al.) to detect cracks. Therefore,
these methods are too computationally intensive for practical
applications.

B. Artificial Intelligence Methods

To address the above issues, some researchers have pro-
posed the use of artificial intelligence [25], [26] to analyze
cracks in road pavements. In particular, machine learning
(ML) and deep learning (DL) have been proposed to perform
semantic segmentation tasks [27]. Shi et al. [28] proposed a
random structured forests method with the designed feature
descriptors and public pavement dataset (CFD) to help road
managers to analyze and evaluate the pavement surfaces.
However, this method heavily relied on the selection of feature
descriptors cannot be generalized for different pavement types.
In general, the ML method cannot deal with and represent the
features of the different pavement types for crack detection
tasks. In recent years, DL is widely used to perform crack
detection tasks.

Zhang et al. [29] used crack patch images to train a con-
volutional neural network (CNN) to detect cracks on road
pavements. However, the patch-based methods are usually
very time-consuming and ignore the global crack information,
resulting in relatively low accuracy. In CrackNet, Zhang et al.
[30], [31] adopted a CNN without pooling layers to avoid
crack information loss, improve the pixel-perfect accuracy,
and achieve a higher speed in crack detection. Fan et al.

developed a structured prediction and an ensemble network
method with the patch-based to extract cracks [32] and make
measurements [33]. However, these methods may ignore the
global crack feature and can fail to extract complex and thin
cracks. Meanwhile when these methods are used to train large-
scale datasets for crack detection, they obtain a lower accuracy
with smaller convolution layers.

Encoder-decoder framework with an U-shape is a typical
backbone for segmentation tasks [4]. Fan et al. proposed a
U-HDN [14] method based on encoder-decode architecture,
including the proposed Multi-Dilation Module and Hierarchi-
cal Feature Module. These modules can obtain rich global
context information and integrate multi-scale feature informa-
tion, which can improve crack detection accuracy. Qu et al.
[34] proposed a new method based on deeply supervised
convolutional neural network for pavement crack detection
with Multi-Scale Features Fusion, which adopted U framework
and hierarchical feature learning to improve neural network
performance. Guo et al. [35] proposed BARNet method,
which includes three modules: Edge Adaptation Module, Base
Predictor Module and Refinement Module. Knig et al. [36]
proposed using the Weakly-supervised method to segmentation
crack image, which can obtain a better accuracy than others.
Sun et al. [37] proposed a DMA (DeepLab With Multi-Scale
Attention) method based on DeepLab, which integrates the
ASPP(Atrous Spatial Pyramid Pooling) and attention mech-
anism. Zhou et al. [38] proposed an Enhanced Convolution
and Dynamic Feature Fusion (ECDFFNet) method, which can
improve its overall performance by focusing on the local
details.

III. METHODS

According to the literature in this study, the segmentation
network is employed to detect cracks, and the adversarial
one is used to perform feedback operation and enforce the
segmentation to learn global, local and thin crack information.

A. Segmentation Network (the Front End)

The encoder-decoder architecture is used in the segmenta-
tion network, which consists of three parts: an encoder part,
a decoder part, and a hierarchical feature learning module.

(1) Encoder Part:
In the encoder part, each encoder structure consists

of two 3 × 3 convolutional layers and activation function
(ReLU) [39]. Meanwhile, the pad operation is embedded
into the 3 × 3 convolution operation to maintain the original
resolution. Then, a pooling layer is adopted to downsampling
operation to reduce the image size. After these operations, the
image size is halved, and the number of channels is doubled,
such as 64, 128, 256, 512, and 1024 (Figure 2).

(2) Decoder Parts:
The decoder part is composed of 4 successive UCBAM

modules to restore the image size. Finally, the number of
channels is gradually reduced to 1 (Figure 2).

1) The Proposed UCBAM: The resolution of the feature
maps was reduced after passing through many downsampling
operations in the final part of the encoder. The feature maps
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Fig. 2. The proposed Segmentation Network framework (the front end). The Segmentation Network contains three parts: encoder part, decoder part and
hierarchical feature learning module.

in the encoder part have more information and are blurred
and discarded after the downsampling operation. If we extract
the crack image with a simple upsampling operation from
the encoder part, the extracted crack results can be rough.
To perform crack segmentation, the size of the final features
may be restored to the original size. The function of the
decoder is to restore the size of the features using transposed
convolution operation. To fuse and incorporate more informa-
tion, the skip connection from the encoder features is used
to connect the decoder part. However, if these two different
feature maps are simply added, the different contributions of
edge and texture cannot be presented in the segmentation
process. Hence, to overcome this issue, restore the image size,
and highlight the important semantic information, UCBAM is
proposed to perform channel and spatial attention mapping
(Figure 3).

The inputs are the features from the encoder part with a skip
connection along with the previous decoder part, and the out-
put features are optimized after weight fusion. UCBAM first
restores the size of the images from the previous decoder part
using transposed convolution (light blue cuboid in Figure 3).
Then, it adds the features (yellow cuboid in Figure 3) from the
encoder part to generate the fused feature maps (pink cuboid
in Figure 3), which can obtain and highlight the important
semantic information, such as edges and textures.

In Figure 3 the yellow cuboid represents the feature maps
from the encoder part by skip connection. The light blue
cuboid is used to restore the image size that is from the

previous decoder part after transpose convolution. Then, these
two types of features perform an addition operation to fuse
feature maps. Finally, the fused feature maps (pink cuboid)
are input into the proposed CBAM+ module to obtain
weighted features. Subsequently, the proposed CBAM+ based
on CBAM [40] is employed to use the fused features to learn
the weights of different features and suppress unnecessary
features. UCBAM can adaptively assign different weights to
the channels which can learn and highlight the different crack
semantic information.

Specifically, the feature maps-based decoder part performs
transposed convolution operations to restore the resolution
and reduce the number of channels. The modified features
are then concatenate to features from encoder to generate
fused features. Finally, the fused features are given as input to
the proposed CBAM+ to generate weight feature maps. The
proposed UCBAM is able to reduce parameters number and
calculations costs and accelerate the neural network training
speed.

2) The Proposed CBAM+: The attention mechanism is
widely embedded into the neural network to enhance the
performance of models, reduce training time, and make the
neural network lightweight. In CBAM [40], channel and
spatial attention are employed to focus on significant features
and ignore redundant features. This combination is superior
to channel attention. Meanwhile, the CBAM is only able to
obtain local features in the convolution process, which cannot
capture and extract long-range dependency.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Pusan National University Library. Downloaded on December 10,2023 at 08:47:44 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: CrackCLF: AUTOMATIC PAVEMENT CRACK DETECTION BASED ON CLOSED-LOOP FEEDBACK 5

Fig. 3. The proposed UCBAM module framework. The number of the feature maps channel, height, and width are [C, H, W], respectively.

To overcome this issue, the CBAM+ module is proposed
to capture the global context and make the neural network
lightweight in this study. It contains channel attention and
spatial attention modules (Figure 4). Specifically, the chan-
nel attention (CA) module extracts long-range dependency,
capture the global edges, patterns, textures and enhance the
performance of the model, and the spatial attention (SA)
module was employed based on CBAM [40]. CBAM+ embed-
ded into the UCBAM can improve calculation speed for the
decoder part.

a) The proposed channel attention module: We propose
a Channel Attention (CA) module to replace the original one
based on CBAM [40]. CA can exploit the inter-channel rela-
tionship of features and focus on the important information,
given an input image. The designed global attention pooling
(GAP) performs pooling operations (Figure 4(a)), which can
generate the attention weights to be assigned to global context
features. Equation 1 gives the output of the GAP (Fgap):

Fgap =

Np∑
j=1

eWk ·x j

Np∑
m=1

eWk ·xm

x j (1)

where x is defined as an input feature, Wk is the linear
transform matrix (1 × 1 convolution operation), Np is the
number of pixels (positions), and x j enumerates all possible
pixels (positions). Fgap is the output of the context modeling.
Meanwhile, α j =

eWk ·x j

N p∑
m=1

eWk ·xm

is defined as the weight of

the global attention pooling. Specifically, the global attention
pooling is passed through a 1 × 1 convolution, followed by
a softmax function to generate attention weights, which can
assign different weights to the features to obtain the context
feature maps and capture long-range dependency.

On the other hand, the max pooling (Fmax ) gives signifi-
cant information about desired features to infer finer channel
attention. Fgap and Fmax are employed to perform the channel
attention feature extraction. Subsequently, the two pooling
results are passed through a shared network to produce the

proposed CA feature maps (Equation 2).

F1 = σ(Conv(G APooling(F)) + Conv(Max Pooling(F)))

= σ(W1(W0(Fgap)) + W1(W0(Fmax ))) (2)

where F1 and σ denote the outputs of the channel attention
maps and sigmoid function, respectively. W0 ∈ RC/r×C , W1 ∈

RC×C/r , and Conv is a 1 × 1 convolution operation.
b) Spatial attention module: In this study, we used the

SA module based on CBAM [40] to produce a spatial attention
map that captures the inter-spatial relationship of features.
Compared with CA, this module focuses on the position of
the region containing important information (Equation 3). The
average and max pooling (Savg and Smax , respectively) are
employed to perform spatial operations to produce the SA
maps with a convolution. The spatial attention module is
represented by equation (3):

S1 = σ(Conv([Avg Pooling(S); Max Pooling(S)]))

= σ(Conv([Savg; Smax ])) (3)

where S is the input feature and AvgPooling and Maxpool-
ing are defined as the average pooling and max pooling,
respectively. Average pooling features: Savg ∈ R1×H×W , max
pooling features: Smax ∈ R1×H×W . Conv is a 3 × 3 convolu-
tion operation.

c) Hierarchical feature-learning module: The different-
level features include the different complex context, patterns,
and textures information. Therefore, we adopted the hierarchi-
cal feature learning module to extract crack for obtaining the
different crack semantic information individually (Figure 5).
The designed hierarchical feature learning module can acceler-
ate the convergence of neural network with deeply supervised
nets (DSN) [41].

Each side output and fused output are supervised by DSN
[41] according to the holistically-nested edge detection net-
work (HED) [42]. A training dataset is defined as S =

(Xn, Yn), n = 1, . . . , N , where Xn and Yn are the raw original
image and ground truth crack map, respectively. Each side
network is followed by a classifier, and the weights for each
side network are denoted as w = (w(1), . . . , w(M)). W and
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Fig. 4. Diagram of the proposed CBAM+ module.

M are the number of network parameters and side networks,
respectively. Equation (4) represents the loss function for the
side networks.

Lside(W, w) =

M∑
m=1

αmlm
side(W, wm) (4)

where lside and αm are the loss function and a weight hyper-
parameter at each side. The lside loss function was applied to
distinguish the non-crack and crack pixels with equation (5):

lside =
1
N

N∑
i=1

{βyi log ŷi + γ (1 − yi ) log(1 − ŷi )} (5)

where β and γ are hyperparameters, and N is defined as the
number of pixels in one image. yi and ŷi are the label and
predicted result, respectively.

The entitle outputs of the side networks are concatenated to
produce fused feature maps (5 channels), and the fused loss
function L f use is equation (6):

L f use =
1
N

N∑
i=1

{βyi log ŷi + γ (1 − yi ) log(1 − ŷi )} (6)

where β and γ have the same meanings as in Equation
(5). Finally, the total loss function is defined according to
equation (7):

L total = Lside + L f use (7)

B. Adversarial Network (the Back End)

Unlike traditional GAN, the adversarial network developed
in this study is based on the multi-scale L1 loss to deal
with mapping relationship between input and generated seg-
mentation images (Figure 6) to perform closed-loop feedback
for correcting high-order inconsistencies between ground truth
and the predicted result and improve the detection accuracy of
unrecognized small cracks in the segmentation network.

The input follows two paths (Figure 6): the former is
the result of the predicted images being multiplied by the
input images and the latter is the result of multiplying the
labelled images by the input images. The multi-scale object
loss function is employed to calculate the mean absolute
error operation for features between two paths (Equation 6)
and transfer to segmentation network with backpropagation
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Fig. 5. The hierarchical feature learning module framework.

operation (Figure 1), which can improve the detection accu-
racy of unrecognized small cracks, and correct high-order
inconsistencies between ground truth and the predicted result
in the training process.

An adversarial network adopts the multi-scale L1 loss func-
tion based on pixels level to solve the mapping relationship
between input images and generated segmentation images. The
multi-scale L1 loss function is demonstrated with equation (8):

min
θS

max
θC

L1(θS, θC )

=
1
N

N∑
n=1

ℓmae( fC (xn ◦ S(xn)), fC (xn ◦ yn)) (8)

where N is the number of images, and xn and yn are the
input image and corresponding label image, respectively. ℓmae
denotes the mean absolute error. xn ◦ S(xn) is defined as
the result of multiplying the predicted image by input image.
xn ◦ yn denotes the results obtained by multiplying the label
image by the input image. fC (x) is a hierarchical feature
extracted from image x by the adversarial network. ℓmae can
be represented by equation (9):

ℓmae( fC (x), fC (x ′)) =
1
N

N∑
i=1

∥ f i
C (x) − f i

C (x ′)∥1 (9)

where N is the number of layers in the adversarial network,
and f i

C (x) is the extracted feature at the i th layer based on
the adversarial network.

The multi-scale L1 loss can capture long- and short- spatial
relations between pixels by using the different level features,

i.e., low-, middle- and high-level features, which can per-
form feedback operation (closed-loop feedback) to enforce
segmentation and capture the difference between the predicted
cracks and the ground truth and improve the accuracy of the
segmentation network.

IV. EXPERIMENTS AND RESULTS

Firstly, we mainly introduce experimental details of the
CrackCLF in this section. Next, we present the evaluation met-
rics and compare them. Finally, we analyze and demonstrate
experimental results.

A. Implementation Details

The proposed CrackCLF method was programmed using
the Pytorch library [43] as the deep learning framework
for training and testing based on the GPU server with four
NVIDIA TITAN Xp GPU, each having 12GB of memory.

1) Crack Dataset: The public databases CFD [28] were
used to evaluate the CrackCLF. The CFD database con-
tains 118 images (resolution 320 × 480). 72 images and
46 images were used to train and test the proposed CrackCLF,
respectively.

The Crack500 dataset [44] contains 500 images of size
about 2000×1500, which were collected by phones in the main
campus of the Temple University. The dataset is cropped into
16 non-overlapping image regions. Finally, training, validation,
and test data contained 1896, 346, and 1124 images. All
images share the same size of 256 × 256 in the training,
validation, and test phases.

The Crack700 dataset was collected from Harbin, China
[45], which contains 776 different types of images, such as
concrete walls and bridge surfaces. The images were taken
at different distances, which led to different resolutions. All
images share the same size of 256 × 256 in the training,
validation, and test processes.

2) Evaluate Metrics: The precision (Pr), recall (Re), and
F1 score (F1) were used to evaluate CrackCLF using the
following equations:

Pr =
T P

T P + F P
(10)

Re =
T P

T P + F N
(11)

F1 =
2 × Pr × Re

Pr + Re
(12)

where T P, F P , and F N are the number of true positives, false
positives, and false negatives, respectively. F1 was employed
to evaluate the overall performance of crack detection. Specifi-
cally, two different metrics based on F1 were adopted: the best
F1 on the public database for a fixed threshold (ODS), and
the aggregate F1 on the public database for the best threshold
in each image (OIS).

ODS and OIS are defined as the max value according to
Equations 13 and 14, respectively.

O DS =
2 × Prt × Ret

Prt + Ret
: t = 0.001, . . . 0.999 (13)
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Fig. 6. An adversarial network framework (the back end). An adversarial network adopts the multi-scale L1 loss to solve the mapping relationship between
input images and generated segmentation images.

O I S =
1

Nimg

Nimg∑
i

max
2 × Pr i

t × Rei
t

Pr i
t + Rei

t
: t = 0.001, . . . 0.999

(14)

where t, i , and Nimg are the threshold, index, and number of
images, respectively. Prt , Ret , Pr i

t , and Rei
t are the precision

and recall based on the threshold t and image i , respectively.
We consider the transitional areas between the non-crack

and crack pixels before computing T P, F P , and F N . 2 pixels
distances are also accepted in this study [1], [32], [33], [46],
[47]. The decision threshold is defined as 0.5. The hyperpa-
rameter contains: batch size (4 images for CFD, 16 images for
Crack 500 and Crack700), selecting adam optimzer, epochs
500, learning rate (0.001).

B. Experimental Results and Analysis

In this section, we mainly compare different algorithms
based on different datasets to demonstrate the performance
of the proposed CrackCLF method.

1) CFD Dataset: Table I lists the results in terms of Pr, Re,
and F1 for different methods on CFD. Bold characters refer
to the highest values of each column. The local thresholding
method [48] is sensitive to noise and unable to inspect cracks
(Pr equals to 0.7727 and F1 equals to 0.7418). The CrackForest
method [28] was able to extract the wider cracks than the
ground truth, which leads to low Pr (0.74466) and high Re
(0.9514) values: it can extract many non-crack areas. As is
shown in Figure 7, it was observed that U-net [49] and SegNet
[50] can extract the crack skeleton, but there are some misiden-
tifications in the images (Pr equals to 0.9119, 0.9325, 0.9256,
0.8876, respectively). U-HDN [14], DeepCrackLiu [15], and
DeepCrackZou [4] adopt the U-shape framework method to
perform crack detection based on hierarchical feature learning,
which can extract the crack skeleton. Although CrackGAN
[17] has a larger recall, it has a lower precision and F1,
which can overestimate the crack regions with lower accuracy
(Figure 7).

TABLE I
CRACK DETECTION EXPERIMENTAL RESULTS ON CFD DATASET

However, traditional methods consider only pixel-to-pixel
comparisons in the prediction phase, while CrackCLF trans-
forms the feedback from the adversarial to the segmentation
network improving the detection accuracy (Pr equals to
0.9451) and ensuring satisfactory performance. The F1 values
demonstrate that CrackCLF gave the best overall performance
of the crack detection (i.e., 0.9406) and the highest Pr value
(i.e., 0.9451).

Table II lists the ODS and OIS values of competing methods
based on CFD. Bold characters refer to the highest values
of each column. Compared with other methods, CrackCLF
gave the best performances in terms of ODS (0.9374) and OIS
(0.9455). So, the CrackCLF can extract cracks information
based on global and local databases (Figure 7).

2) Crack500 Dataset: Figure 8, Table III and Table IV
present some examples of detection on Crack500. Bold char-
acters refer to the highest values of each column. Segnet [50]
and DeepCrackLiu [15] were not able to recognize and detect
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Fig. 7. Experimental results of comparison of the proposed CrackCLF with other methods based on CFD (from left to right: 1) original image, 2) groundTruth,
3) U-net, 4) U-HDN algorithm, 5) Segnet, 6) DeepCrackZou, 7) DeepCrackLiu, 8) CrackCLF).

TABLE II
THE ODS AND OIS OF COMPETING METHODS ON CFD DATASET

thinner cracks (Pr equal to 0.7591 and 0.7661, respectively),
and thereby unable to extract consecutive cracks (F1 equal to
0.7855 and 0.7885, respectively). Based on large Re (0.8632)
and low Pr (0.7526), U-net [49] can not obtain the satisfactory
results because it can overestimate and extract non-crack areas:
it can inspect the thinner cracks, but it overestimates the crack
width, which can lead to lower accuracy (Figure 8).

U-HDN [14] can inspect thinner cracks, but discontinuous
cracks also occur in the image as is showing in Figure 8.
Furthermore, it was observed that some isolated pixels were
recognized as cracks. DeepCrackZou [4] cannot detect thin
cracks and overestimates the crack width, which can cause
high Re (0.9064) and low Pr (0.6655) values. CrackCLF can
recognize and inspect the thinner crack and extract the continu-
ous crack pixels obtaining satisfactory performance: compared
with other methods, CrackCLF gave the best performances in
terms of Pr (0.7793) and OIS (0.8225).

TABLE III
CRACK DETECTION EXPERIMENTAL RESULTS ON CRACK500 DATASET

In summary, it is clear that CrackCLF can obtain two
best performance results (Pr:0.7793, F1:0.7913) than others,
and CrackCLF can obtain satisfactory accuracy. Pr metrics
is higher than second method U-HDN (Pr:0.7744). In term
of ODS and OIS, the proposed method obtain the best OIS
(0.8225) and the fourth ODS (0.8096). It is obvious that the
CrackCLF can get best accuracy in each image for different
threshold value t with the OIS equation. Although the ODS is
not the best result, the CrackCLF can obtain three best results
(Pr, F1, and OIS) in five metrics. Therefore, CrackCLF ensures
satisfactory performances.

3) Crack700 Dataset: Figure 9, Table V and Table VI
list some examples of detection on Crack700. Bold char-
acters refer to the highest values of each column. Under
such conditions, Segnet [50] was able to extract the skeleton
architect of the crack, but there were some isolated holes
pixels of non-crack and crack. U-net [49], DeepCrackLiu [15],
DeepCrackZou [4], and U-HDN [14] algorithms were able
to extract the crack skeleton, but they tend to overestimate
the crack width, which can lead to high Re (0.9760, 0.9677,
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TABLE IV
THE ODS AND OIS OF COMPETING METHODS ON CRACK500 DATASET

TABLE V
CRACK DETECTION EXPERIMENTAL RESULTS

BASED ON CRACK700 DATASET

TABLE VI
THE ODS AND OIS OF COMPETING METHODS ON CRACK700 DATASET

0.9533, and 0.9550, respectively) and low Pr (0.8670, 0.8756,
0.9008, and 0.9040, respectively) values. Compared with other
algorithms, CrackCLF gave low Re (0.9457), the highest Pr
(0.9151) and the highest F1 (0.9237) because it can extract
thin and consecutive crack pixels.

From Table VI, it is clear that the proposed CrackCLF can
obtain the best ODS (0.9181) and the second OIS (0.9364,
only small 0.0004). It presents that CrackCLF can extract
more crack information for different thresholds based on the
global database with equation 13. In short, the CrackCLF get
three best results (Pr:0.9151, F1:0.9237, and ODS:0.9182) than
others based on five metrics.

C. Ablation Study

To demonstrate the superiority of the CrackCLF framework,
ablation study is adopted to verify the performance of the

CrackCLF and the advantages of the different modules from
different crack datasets (Table VII) with the encoder U-net.
CBAM, CBAM+, the adversarial network, and the hierarchal
feature learning modules.

CBAM+ could perform better accuracy (larger Pr, F1, ODS
and OIS for CFD) than CBAM, and CBAM gives a higher
Re than CBAM+. When the adversarial network was embed-
ded into CrackCLF, Pr and F1 were enhanced (Pr equal to
0.9459 for CFD with adversarial network, 0.7793 for Crack500
with adversarial and hierarchical network, and 0.9191 for
Crack700 with adversarial network, showing the adversarial
network can improve the detection accuracy; F1 equal to
0.9604 for CFD with adversarial and hierarchical network,
0.7913 for Crack500 with adversarial and hierarchical net-
work, and 0.9237 for Crack700 with adversarial network),
and Re was reduced (Re equal to 0.9337 for CFD, 0.8346 for
Crack500, and 0.9289 for Crack700 with adversarial network).

The proposed CBAM+ embedded into the UCBAM can
not only exploit the inter-channel relationship of features and
focus on the important information and enhance the accuracy
for different databases from Table VII, but also reduce the
parameters’ number and calculations costs, accelerate the
neural network training speed.

Meanwhile, some metrics values are further to enhancing
and the neural network can extract thinner cracks by the
embedded adversarial network with closed-loop feedback for
correcting high-order inconsistencies between the label and
the predicted image with segmentation network. Finally, the
hierarchical feature module with a deep-supervised network
and fusing feature maps accelerates the convergence speed and
improves model performance.

Figure 10 shows the comparison of the proposed method
with existing methods in terms of detecting thinner cracks.
U-net method can overestimate the crack features, as is shown
in Figure 10, which result in a low accuracy. In this example,
DeepCrack(Liu) cannot extract the continuous shallow cracks
very well, which results in a low precision. U-HDN method
was not able to very well detect continuous shallow cracks
either and fail to extract some thin cracks. DeepCrack(Zou)
method tends to extract the wider cracks and ignore the
continuous thin ones, which can cause the higher recall and
lower accuracy. Figure 10 also shows that the CrackCLF
without the adversarial network cannot extract the thin cracks
well, which leads to lower precision. Meanwhile, it can be seen
that the CrackCLF without adversarial network overestimates
the crack regions, causing larger recall and lower precision,
as showing in Table VII. The proposed CrackCLF with closed-
loop feedback can better extract continuous thin crack features,
which effectively improves the accuracy of crack detection.
Meanwhile, the width for crack feature is better identified by
our method in comparison with other methods. In summary,
the proposed CrackCLF with closed-loop feedback performs
better in extracting shallow cracks.

D. Model Complexity

We utilize the number of the parameters (Params), floating-
point operations per second (FLOPs) and frames per second
(FPS) to evaluate the processing efficiency of CrackCLF
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Fig. 8. Experimental results of comparison of the proposed CrackCLF with other methods based on Crack500 (from left to right: 1) original image, 2)
groundTruth, 3) Segnet, 4) U-net, 5) DeepCrackLiu, 6) U-HDN algorithm, 7) DeepCrackZou, 8) CrackCLF).

TABLE VII
THE COMPARISON OF ABLATION STUDY BASED ON DIFFERENT MODULES

and other models (Table VIII). It can be observed from
the results that compared with other methods, the pro-
posed CrackCLF achieves satisfactory efficiency based on the

experimental results although FLOPs and Params are not the
smallest (Table VIII). However, the costs of calculation for
the proposed CrackCLF only with the segmentation network
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Fig. 9. Experimental results of comparison of the proposed CrackCLF with other methods based on Crack700 (from left to right: 1) original image,
2) groundTruth, 3) Segnet, 4) U-net, 5) DeepCrackLiu, 6) DeepCrackZou, 7) U-HDN, 8) CrackCLF).

Fig. 10. Comparison of the CrackCLF with or without adversarial network (from left to right: 1) original image, 2) Groundtruth, 3) U-net, 4) DeepCrackLiu,
5) U-HDN, 6) DeepCrackZou, 7) CrackCLF without adversarial network, 8) CrackCLF).

(FLOP:17.02G) are smallest among the compared ones, which
can run pretty fast (30FPS) to detect crack images during

the inference stage with relatively small Params (18.84M).
Thanks to the fewest FLOPs and least parameter number,
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Fig. 11. Visualization of feature maps for each UCBAM module. The green, red, and blue pixels represent true positives (TP), false positives (FP), and false
negatives (FN), respectively. (from left to right: 1) Original Image or Groundtruth, 2) Output, 3) UCBAM 1, 4) UCBAM 2, 5) UCBAM 3, 6) UCBAM 4, 7)
Encoder 5).

TABLE VIII
THE COMPARISON OF MODEL COMPLEXITY

DeepCrack(Liu) and HED achieve the fastest inference speed
of 33 FPS (0.03 second per image), and can detect cracks
in real time (normally, 24 FPS for human eye). Our method
obtains a running speed of 30 FPS, exactly 0.033 second per
image, also achieving a real-time detection. This is because
in practice, only the segmentation network (the front end) is
employed at the crack inference stage after training is finished,
and the adversarial network (the back end) is not needed in
real world deployment. In short, the proposed CrackCLF is
able to obtain superior detection accuracy with a satisfactory
detection speed, which can meet the requirements of most real-
world application scenarios.

E. Visualization for UCBAM Modules

The proposed CBAM+ module can exploit the inter-channel
relationship of features and focus on the important informa-
tion, given an input image. It can improve the network ability
to extract high- and low- level semantic information, which is
crucial for accurate crack segmentation. In Figure 11, we visu-
alize the feature maps UCBAM modules and encoder 5,
to intuitively observe the effect of these modules in the
proposed network. After being processed by these modules,
the feature maps are clearly enhanced on the crack areas.
Based on the enhanced processed features, the classifier can
more readily recognize the crack areas and perform an even
more accurate crack segmentation.

Meanwhile, this design enables the module to consider
both high-level and low-level characteristics in determin-
ing the weights of channels and screening channels that

TABLE IX
CRACK DETECTION EXPERIMENTAL RESULTS BASED ON THREE

DATASETS. W/ AND W/O MEAN WITH AND WITHOUT, RESPECTIVELY

better characterize cracks. By visualizing the output of the
UCBAM module, we can clearly observe that the discrimina-
tion between crack and non-crack pixels is greatly facilitated
by focusing on the significantly reduced regions highlighted
by the proposed attention mechanism.

F. Generalization Capability of CLF Module

It is also worthwhile to point out that one of the most
important contributions of this work is that we propose a
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CLF mechanism that can be integrated into almost any current
models as a plug-in module, and further improve their perfor-
mances by introducing a close loop feedback to address the
open-loop issue of existing models.

In order to validate this, we conducted a comprehensive
ablation study, in which we compared many existing models
with and without the CLF mechanism, as shown in Table IX.
It can be observed that the state-of-the-art methods without
CLF tend to have a higher Re, but lower Pr and F1 score
than their counterparts with CLF mechanism, which means
that integrating CLF can effectively improve their perfor-
mances. In particular, the back end (CLF) is used to correct
higher-order inconsistencies between labels and crack maps
(generated by the front end) to address the issue of open-
loop systems, which can help improve the performance of the
networks. In a word, the proposed CLF can be defined as a
plug and play module, which can be embedded into different
neural network models to improve their performances.

V. CONCLUSION

Automatic pavement crack detection is an imperative task
to ensure functional and structural performances of road
pavements. To tackle an open-loop (OL) system with encoder-
decoder framework, we introduce closed-loop feedback (CLF)
in the neural network so that the model could learn to
correct errors on its own, based on generative adversarial
networks (GAN), which is called CrackCLF and includes the
front and back end (segmentation and adversarial network).
The segmentation network contains two parts: encoder and
decoder. In the encoder part, we employ the U-net encoder
pat and we propose the UCBAM module to replace the
convolution operation in the decoder part. Meanwhile, the pro-
posed CBAM+ module is embedded into the UCBAM module,
and the designed hierarchical feature module is employed to
obtain the multiscale feature maps of different decoder parts.
An adversarial network is used to enforce the segmentation
and adversarial networks to learn global and local crack infor-
mation to overcome open-loop system issues. The proposed
framework has been compared with other methods (i.e., Canny
[51], Local thresholding [48], CrackForest [28], MFCD [52],
Structured prediction [32], Ensemble network [33], U-net [49],
U-HDN [14], Segnet [50], DeepCrackZou [4], DeepCrackLiu
[15] using three public datasets (i.e., CFD, Crack500, and
Crack700). CrackCLF can give satisfactory output in terms
of Re, Pr, and F1 (not less than 0.7793, 0.8404, and 0.7913,
respectively). Finally, the ablation study verifies the perfor-
mance of the CrackCLF with different modules based on
different crack datasets. In summary, the proposed CrackCLF
can give satisfactory results on three public datasets. Moreover,
the proposed CLF can be defined as a plug and play module,
which can be embedded into different neural network models
to improve their performances.

In this study, CrackCLF gave promising results. However,
there are still some limitations to be addressed in future work.

• Because the automatic crack detection system is only
used to detect individual images so far. Video streaming
will be tested in future studies.

• Moreover, the artificially designed neural network may
contain redundant feature maps. Designing a neural
network that can automatically optimize and prune its
structure and parameters will be further investigated in
our future work.

• The size of CrackCLF can be further reduced to become
a more lightweight model, so that it can be more easily
deployed in devices with limited computing resources,
or adversary environments where computing capability
of the devices will be largely restrained.

• The mechanisms of CrackCLF may be integrated with
those of SAM to further improve its performance. This
can be a new direction that is worthwhile to be investi-
gated in the future.
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