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Abstract

Cracks are the most common damage type on the pavement surface. Usually,
pavement cracks, especially small cracks, are difficult to be accurately identified
due to background interference. Accurate and fast automatic road crack detec-
tion play a vital role in assessing pavement conditions. Thus, this paper proposes
an efficient lightweight encoder-decoder network for automatically detecting
pavement cracks at the pixel level. Taking advantage of a novel encoder-decoder
architecture integrating a new type of hybrid attention blocks and residual blocks
(RBs), the proposed network can achieve an extremely lightweight model with
more accurate detection of pavement crack pixels. An image dataset consisting
of 789 images of pavement cracks acquired by a self-designed mobile robot is
built and utilized to train and evaluate the proposed network. Comprehensive
experiments demonstrate that the proposed network performs better than the
state-of-the-art methods on the self-built dataset as well as three other public
datasets (CamCrack789, Crack500, CFD, and DeepCrack237), achieving F1 scores
of 94.94%, 82.95%, 95.74%, and 92.51%, respectively. Additionally, ablation stud-
ies validate the effectiveness of integrating the RBs and the proposed hybrid
attention mechanisms. By introducing depth-wise separable convolutions, an
even more lightweight version of the proposed network is created, which has a
comparable performance and achieves the fastest inference speed with a model
parameter size of only 0.57 M. The developed mobile robot system can effectively
detect pavement cracks in real scenarios at a speed of 25 frames per second.
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1 | INTRODUCTION

In civil engineering structures, cracking is the most critical
type of distress, existing in substantial civil infrastruc-
tures such as bridges, roads, buildings, dams, tunnels, and
others. Detecting cracks in time is of great significance
to maintain the safety and serviceability of roads. The
traditional manual-based inspection of pavement cracks
is time-consuming and costly in most cases. In the past
few decades, several image-processing technologies, such
as edge detection (Zhao et al., 2010), thresholding (Peng
et al.,, 2020), and mathematical morphology (Tanaka &
Uematsu, 1998), have been utilized to detect pavement
cracks. However, the performances of these algorithms
are highly susceptible to background noises such as water
stains, oil stains, leaves, branches, pavement markings,
shadows, and maintenance hole covers, partly because
these methods use only relatively simple features. Conse-
quently, accurately and efficiently inspecting cracks on the
surface of pavement is still a challenging task.

Recently, vision-based crack detection methods have
garnered considerable interest from both academia and
industry owing to their advantages of safety, cost, effi-
ciency, and objectivity (Jang et al., 2021; F. Yang et al.,
2020). Deep learning techniques have been successfully
employed in object detection and image classification tasks
with superior experimental results. For example, sliding
window methods based on convolutional neural networks
(CNNs; Cha et al., 2017; 1. Zhang et al., 2016) that can
classify each sliding window as a crack region or non-
crack region have been developed. However, it is difficult
to select an appropriate window size to achieve superior
detection performance. To address this problem, region-
based CNNs (Deng et al., 2020; Kim & Cho, 2019) and “You
Only Look Once”-based (J. Liu et al., 2020; C. Zhang et al.,
2020) methods have been proposed for generating flexible
proposal regions. However, these methods can only iden-
tify approximate crack locations. When the fine details of
cracks need to be known, the cracks must be detected at
the pixel level.

Recently, CNNs have become widely used in the field
of computer vision, and an increasing number of CNNs
have been successfully applied to damage detection in civil
engineering at the pixel level (X. Pan & Yang, 2020; N.
Wang et al., 2018). For example, Fan et al. (2018) proposed a
CNN-based method for learning the different structures of
cracks from images. In addition, Fan, Li, Chen, Di Mascio,
et al. (2020) constructed an ensemble CNN consisting of
three visual geometry group (VGG) nets that vote on crack
detection results. Furthermore, CNN-based approaches
that detect cracks at the pixel level, including CrackNet (A.
Zhang et al., 2017), CrackNet II (A. Zhang et al., 2019), and
CrackNet V (Fei et al., 2020), have been proposed. The lat-
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ter two methods achieved higher accuracy and speed than
the original CrackNet. In addition, Choi and Cha (2019)
utilized a CNN-based method to detect concrete cracks
in images. They implemented both separable and dilated
convolution to design a lightweight crack segmentation
network, which significantly reduced the detection time.

In 2015, fully convolutional network (FCN), a special
kind of CNN, was developed by Long et al. (2015) for image
segmentation at the semantic level. Unlike traditional
CNNs, which have fully connected layers at the output,
FCNs employ fully convolutional layers so that the net-
work has no limit on the input size, which greatly promotes
the development of segmentation tasks and pixel-level
target detection tasks.

Inspired by probabilistic autoencoders, a deep convo-
lutional encoder-decoder network was developed from
the FCN (Ranzato et al., 2007). In recent years, U-Net
(Ronneberger et al., 2015) and its variants based on the
encoder-decoder structure have become extensively uti-
lized for crack detection tasks at the pixel level (T. Chen
et al.,, 2020; W. Wang & Su, 2021; A. A. Zhang et al,,
2022). In the research of Cheng et al. (2018), the skip
connections in U-Net can effectively fuse low-level fea-
tures from the encoder part and high-level features from
the decoder part, helping the network generate accurate
pixel-level semantic segmentation of crack images. A U-
shaped network called CrackU-Net was proposed by Ju
et al. (2020), which performed better than U-Net in pixel-
wise pavement crack detection. Zou et al. (2018) built
DeepCrack, which fuses multi-scale convolutional features
from hierarchical convolutional stages. Fan, Li, Chen, Wei,
et al. (2020) proposed a modified U-Net called U-HDN
for detecting pavement cracks, in which dilated convolu-
tion was integrated into hierarchical feature learning to
improve the model’s performance. F. Yang et al. (2020)
created a crack detection network called FPHBN, which
utilized a feature pyramid and hierarchical boosting mod-
ule to integrate contextual information between the low-
and high-level layers. Unlike networks that classify pix-
els in crack images using only the last layer of feature
maps, DeepCrack, U-HDN, and FPHBN integrate feature
maps at each scale to perform classifications and signifi-
cantly prevent information loss. Although these specially
designed encoder-decoder networks obtain satisfactory
crack detection performance, they still have some draw-
backs, such as a time-consuming training process and
high computational cost, which hinder their application
potential.

In recent years, attention mechanisms have become
prominent in deep learning communities (Y. Pan & Zhang,
2022; Qu, Wang, et al., 2022). Hu et al. (2020) proposed
a squeeze-and-excitation network (SENet) to fully utilize
the information between feature channels, enhancing the
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accuracy of image classification. Woo et al. (2018) pre-
sented a convolutional block attention module (CBAM)
that combines spatial attention and channel attention
mechanisms to improve the performance of the network.
However, the attention mechanism proposed in the above-
mentioned studies was only used to process a single feature
map as the input. Oktay et al. (2018) proposed an Atten-
tion U-Net model that can effectively integrate information
from low- and high-level feature maps. They also embed-
ded attention gate blocks into the U-Net architecture
to improve the representation of features in regions of
interest. Based on these studies, some researchers have
incorporated attention mechanisms into the encoder-
decoder architecture to enhance the performance of the
network for crack detection (Sun et al., 2022; Kang &
Cha, 2022). By integrating multi-feature fusion and atten-
tion mechanisms into an encoder-decoder backbone, Qu,
Chen, et al. (2021) developed a novel variant of U-Net to
detect cracks in pavement images. A global context block
was used as the attention module to capture the global
context information of the crack texture. The fact that the
attention module was embedded only in the encoder intro-
duced challenges to the fusion of multi-scale features and
deep semantic information for identifying detailed infor-
mation associated with cracks. Lin et al. (2021) proposed a
full-attention U-Net for improving the segmentation accu-
racy of crack edges. By integrating the attention gate into
each output of the backbone in the architecture to reduce
noise at the crack edges, the network can improve the
edge detection of steel cracks in large-scale images. To
improve the detection accuracy of road cracks, J. Chen
and He (2022) proposed a novel U-like encoding-decoding
network with an attention gate embedded between the
encoder and decoder. In short, the attention mechanism
can facilitate the fusion of feature information from mul-
tiple layers to improve the crack detection accuracy of
the network. Accordingly, in this work, a novel hybrid
attention block (HAB) that merges channel and spatial
attention was designed to more effectively fuse informa-
tion from low- and high-level feature maps while reducing
the parameter size.

Object detection has been widely investigated as one
of the most important computer vision tasks. In the last
decade, several computer vision-based approaches have
been extensively applied to damage detection in civil struc-
tures such as crack detection (Celik et al., 2022; Kong et al.,
2021; Chao Liu & Xu, 2022), distresses detection (Giglioni
et al., 2023; E. Yang et al., 2022), skid resistance measure-
ment (Chenglong Liu et al., 2023), and corrosion detection
(Xu et al., 2020), and so forth. Among them, the detec-
tion of crack damages has received much attention from
researchers. For example, Choi and Cha (2019) designed
a semantic damage detection network for segmenting con-
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crete cracks in real time. Based on deep learning, a network
designed to detect cracks in underwater metallic surfaces
was developed by F. C. Chen and Jahanshahi (2018). Chao
Liu and Xu (2022) proposed a CNN based on VGGNet for
detecting night pavement cracks. Y. Liu et al. (2019) com-
bined high- and low-level feature maps to improve the
network performance.

While many achievements have been made in proposing
new models with improved accuracy of detecting cracks
in pavements, the real-world deployment of these mod-
els in physical systems such as mobile robot platforms
(J. Chen & He, 2022; Liao et al., 2022) or drones (Chu
et al., 2022; Jang et al., 2021) is also very important. This
calls for a lightweight model with sufficiently high accu-
racy to be designed and implemented. Although several
studies have proposed lightweight models (Meng et al.,
2023; Shim et al., 2021; Zhu et al., 2023), their perfor-
mances generally suffer a deterioration, compared with
their counterparts, or they cannot outperform other state-
of-the-art models. Many other researchers have proposed
numerous deep learning-based models for crack detection.
Most of them contain a large number of model param-
eters, and their deployments heavily rely on expensive
and high-end computing devices like graphics process-
ing units (GPUs). However, the stability and reliability
of these computing devices are only guaranteed in clean
and controllable servers and data centers instead of wide
and outdoor scenes, which are typical for crack detection.
Therefore, although these models have achieved accu-
rate segmentation performance, they are merely applied
in practical on-site applications. To aid practical applica-
tions, edge computing devices (such as NVIDIA Jetson
TX2, Jetson Nano, and Jetson Xavier NX) are widely
used and possess favorable characteristics such as their
small size, low power consumption, and portability. They
can be mounted on unmanned aerial vehicles (UAVs)
or robot platforms to detect cracks in various infrastruc-
tures such as high-rise buildings, bridges, tunnels, and
roads. Recently, several models are proposed specifically
for edge devices deployment. For example, J. Chen et al.
(2023) designed a lightweight model called MCLD with
a parameter size of 0.43 M. Jiang and Zhang (2020) pro-
posed a method that used a wall-climbing UAV system to
acquire crack images and then used a wireless data trans-
mission method to meet real-time detection requirements.
However, even though these models have been specifi-
cally designed for practical crack detection scenarios, they
can only achieve the detection speed of 9.7 and 6 frames
per second (FPS), respectively, which cannot meet the
requirement for real-time applications.

In general, there are two main difficulties for practical
crack detection applications. First, in the case of out-
door deployment scenarios, the crack detection machine
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is usually deployed in wild and outdoor scenes with
unpredictable interference, such as high environmental
temperature and/or humidity, smoke, rain, or fog, which
would significantly reduce the power and other operating
performance of computing devices. Therefore, high-end
devices like GPUs are not suitable, and thus researchers
have started to focus on edge computing devices. Second,
in the case of limited computing capabilities and resources
on edge devices, existing lightweight crack detection mod-
els cannot achieve real-time performance on common edge
devices, such as Jetson Xavier NX. Therefore, in order to
successfully deploy models for real-time crack detection in
extreme environments or in new applications such as robot
platforms and UAVs with resource-constrained embed-
ded devices, it is crucial and may become a trend for the
research community to design models with smaller param-
eter size and faster inference speed while maintaining high
detection accuracy. In this study, a novel model with a
computational cost lower than the published models and
a detection performance better than other state-of-the-art
ones is proposed for automatic pavement crack detection
at the pixel level.

In summary, this work makes three primary contribu-
tions.

1. This study proposes a novel crack detection model
called RHACrackNet, which has the lowest computa-
tional cost that can be deployed in a robot platform
for crack detection and a detection performance that
is superior to other state-of-the-art models. Besides,
RHACTrackNet is specifically designed for deployment
in physical systems like robot platforms and UAVs,
which are merely considered in existing works.

2. A novel HAB is proposed for effective feature extrac-
tion on crack areas, which enables RHACrackNet to
remove redundant feature channels for smaller model
parameters while maintaining high detection accu-
racy. In addition, by adopting depth-wise separable
convolutions (DS_Convs), a lightweight version of the
proposed network, RHACrackNet* was created with a
comparable performance.

3. A robot system with an omnidirectional mobile plat-
form and a six-degree-of-freedom manipulator is
designed and developed for crack detection. A UAV
can be installed on the mobile platform to enable
more advanced applications in the future. The camera
installed at the end effector of the manipulator can
achieve real-time detection of pavement cracks at a
speed of 25 FPS by utilizing the lightweight version of
the proposed RHACrackNet model.

The rest of this paper is organized as follows. In Sec-
tion 2, the architecture and configuration of the proposed
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network are explained. In Section 3, details of the experi-
ments are provided. The experimental results are provided
and analyzed in Section 4. Finally, the contribution and the
limitations of this study are presented in Section 5.

2 | METHODOLOGY

In the down-sampling stage of encoder-decoder struc-
ture, in order to extract more abstract global features, the
image size will be continuously reduced under the effect
of the convolution layer. To prevent the network from los-
ing excessive feature information during this process, the
encoder-decoder network generally sets a large number of
channels. For example, the number of channels in U-Net
is as high as 512, which leads to complex network calcula-
tions and large parameter sizes; thus, it is not suitable for
deployment on small computing devices. To significantly
reduce the parameter size of the network, the proposed
method reduces the number of channels in each layer,
and the maximum number of channels is only a quar-
ter of U-Net. However, this generates two problems: (1)
more detailed information may be lost, and (2) the feature
extraction ability of the network decreases. To remedy this,
the number of network layers can be increased, and the
extraction ability can be improved through additional fea-
ture extractions and fusions. However, this will result in
more parameters and operations. Therefore, a novel net-
work structure is proposed by adding residual blocks (RBs)
to the deepest layer of the encoder and using the learnable
characteristics of the residual structure to avoid the opera-
tion expansion by simply increasing the number of invalid
network layers. As a result, our final parameters are only
1/20 of the number of attention U-Net and even less than
1/40 after using depth-wise convolution. At the same time,
the crack detection performance has reached the state of
the art in both public datasets and our collected dataset.

2.1 | Network architecture
The structure of RHACrackNet is depicted in Figure 1,
which consists primarily of an encoder network, a RBs,
five HABs, a decoder network, and a pixel-wise classifica-
tion layer for generating prediction results. The encoder
network contains an initial convolution block and four
encoder blocks. The input original image is first processed
by the initial convolution block containing a 3 X 3 convolu-
tion operation and a rectified linear unit (ReLU) and then
goes through four encode blocks.

Each encoder block is an operation combination of a
down-sampling procedure, two 3 X 3 convolutions, and a
ReLU in sequence, which will reduce the size of its input
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FIGURE 1 Architecture of the proposed RHACrackNet.

feature map by a quarter and double the channels of the
feature map. In the deepest layer of the RHACrackNet, the
RBs are used to deepen the network, that is, to augment the
number of network layers and avoid network degradation.
The decoder network is designed according to the encoder
network. Each decoder block consists of a combination of
corresponding operations of a bilinear up-sampling and a 3
X 3 convolution operation. Combining the output results of
the decoder and the corresponding encoder can effectively
enhance the ability of the network to characterize image
details. To achieve a better combination, a HAB is carefully
designed by integrating channel and spatial attention. The
HABs are embedded into the encoder-decoder architec-
ture such that the outputs from the corresponding pairs of
the encoder and decoder are combined in an optimal way.
The result of the last decoder block is input to a soft-max
classifier to obtain the prediction result.

2.2 | HAB

Since the encoder—decoder architecture produces hierar-
chical features (i.e., low-level features F; and high-level
features Fj,), HABs are designed by fusing F; (from encoder
blocks), Fj (from RBs or up-sampling operations), and
channel and spatial attention shown in Figure 2.

In general, the information presented in the low-level
features focuses more on the location details of the cracks,
and the high-level features encompass more semantic
information. Inspired by CBAM, the HABs incorporat-
ing channel and spatial attention mechanisms are used
to merge low- and high-level features. Channel attention
tells us which channels’ outputs should be more empha-
sized, while spatial attention specifies which positions’
outputs should be more valued. Specifically, channel atten-
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tion deals with ‘what’ is significant for the input image, and
spatial attention copes with “where” is substantial for the
input image.

On the channel part, inspired by SENet, adaptive aver-
age pooling, full connection layer, and activation function
are utilized to gain the channel attention graph that
enables the network to present the importance of different
channels. In Figure 2, since F; and Fj, have the same size,
their feature maps can be added pixel-by-pixel to obtain
an overlapping map. Thereafter, an adaptive average pool-
ing operation is utilized to squeeze the overlapping map
into a map of the channel weight and apply 1 X 1 convolu-
tion to extract the relationship among different channels.
This operation converts every two-dimensional feature
map of each channel into a weight number with a global
receptive field, which means much channel internal infor-
mation is lost, and this map of the channel weights only
has preliminary channel attention information. Since the
low- and high-level features have different channel atten-
tion information, they are extracted and fused to enhance
the representation of channel information in the prelim-
inary channel attention map M. The low-level features
generated by the encoder block pass through fewer convo-
lution operations, which implies that the low-level feature
map M; squeezed by adaptive average pooling and 1 X 1
convolution operation has less semantic information. In
contrast, the high-level feature map My, obtained by adap-
tive average pooling and 1 X 1 convolution on Fj, contains
more semantic information. Therefore, Mp is multiplied
with M; to downplay insignificant channels and highlight
the important ones, then the result is fused with M}, by
element-wise summation. The above operations enable the
channel information of F; and Fj, to be more fully utilized.
Subsequently, the channel attention map M, is obtained
after average pooling, 1 X 1 convolution, and softmax
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operations in sequence. Briefly, M, is computed as follows:

M, = f.(F}, Fy) = Soft max(c(Avg Pool(c(AAP( F;, & Fy))
® 0(AAP(Fp)) ® oc(AAP(Fy))))

= Soft max(Avg Pool(M, ® M; & Mp,)) 1)

where f.(F}, Fp) is the calculation function of the channel
attention map, o represents a 1 X 1 convolution operation
and a ReLU, AAP represents an adaptive average pooling
operation, AvgPool represents an average pooling oper-
ation, Softmax represents a softmax operation, @ and
® are the element-wise summation and multiplication,
respectively. The final output of the channel part Fl’ is
obtained by multiplying the channel attention map M,
with the low-level features F;.

On the spatial part, extracting the region of interest from
the feature map facilitates filtering out the influence of the
background and improves the spatial representational abil-
ity of the network. Element-wise summation is applied to
fuse the F l’ and Fy, then a 1 X 1 convolution operation
and sigmoid function are used to extract the spatial area of
interest and generate the corresponding spatial attention
map M. In short, My is computed as follows:

M = f5(F}, Fy,) = Sigmoid(c(F)) @ o(F,))  (2)

where fs(Fl’ , Fp) is the calculation function of the spa-
tial attention map, Sigmoid represents a sigmoid function.
Finally, the output of the HAB fusing F; and F is
obtained by multiplying M and F;, which is calculated as
follows:

Element-wise addition
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Schematic of the proposed hybrid attention block (HAB).
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FIGURE 3 Depth-wise separable convolution operation. DWL

and PWL denote the depth-wise convolution layer and point-wise
convolution layer, respectively.

Snybriad(F1, Fp) = fo(F1 ® fo(F1,Fy),Fp) @ F;  (3)

2.3 | Thelightweight version of
RHACrackNet

In this study, the following points need to be considered
when designing a lightweight crack detection model. First,
the lightweight model needs to have a very high inference
speed. Second, it needs to have a high detection accu-
racy. Hence, by reducing the number of model channels
and fusing the RBs and the hybrid attention modules, we
attempt to enhance the inference speed of the model while
improving the detection accuracy of the model. Addition-
ally, to facilitate the deployment of the proposed network
on the embedded platform, all conventional convolutions
are replaced with DS_Convs, which can further improve
the running speed of the network by reducing its param-
eters. Figure 3 illustrates the configuration of DS_Conv
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operation, which contains a depth-wise and point-wise
convolution layer (i.e., DWL and PWL). Specifically, the
DWL is composed of a 3 x 3 depth-wise convolution, batch
normalization (BN), and ReLU in sequence. The PWL con-
tains a 1 X 1 point-wise convolution, BN, and ReLU in
sequence. In conventional convolution, each convolution
kernel has to convolve all channels, while depth-wise con-
volution only allows each convolution kernel to convolve
one channel. This implies that the amount of compu-
tation and parameters of the convolution operations are
significantly reduced.

However, if only depth-wise convolution is used, the
information between channels is not utilized. The PWL
fuses the feature maps of all channels with a 1 x 1
convolution kernel.

2.4 | Loss function

Pixel-wise detection of pavement cracks is a binary clas-
sification task that aims to separate cracked pixels from
non-cracked ones in crack images. Typically, cracked pix-
els represent a smaller proportion of pixels in a crack
image dataset, compared with non-cracked ones, meaning
that the dataset is significantly unbalanced. To solve this
problem, during the training phase, the weighted binary
cross-entropy loss function is employed to train the model
with the following equation:

N
= Y (wpyilog () + (1 = yp)log (1 = 3))

i=

Lypee =
4)

_ (Pc+Py)
P~ o x P,

©)

where N, y, y, and w, denote the total number of sam-
ples, model prediction, ground truth, and balance factor
between crack and non-crack samples, respectively. P.. rep-
resents the number of pixels occupied by the crack area in
each image in the dataset, P, represents the number of pix-
els occupied by the background area in each image in the
dataset, and « is a hyperparameter, representing the mag-
nification of the loss weight of the positive sample used
to alleviate the imbalance of the samples, which in the
experiment is set to 3.

2.5 | EXPERIMENTS

A self-built crack dataset (CamCrack789) and three other
public datasets are first presented in this section. Then
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the experimental settings and evaluation metrics are
explained.

251 | Datasets

In this paper, four datasets, namely, CamCrack789,
Crack500 (F. Yang et al., 2020), Crack Forest Dataset (CFD;
Shi et al., 2016), and DeepCrack237, are used to verify
the effectiveness of the proposed algorithm. As shown in
Table 1, there are five major dimensions to differentiate
them. According to the width of cracks, the crack images
in the four datasets are classified into four types, that
is, thin crack images, medium crack images, thick crack
images, and extremely thick crack ones. Among the four
datasets, it can be seen that CamCrack789 contains mainly
thin and medium crack images; almost all images in CFD
are thin crack images; Crack500 contains four types of
crack images, but the proportion of thick and extremely
thick crack images is larger. DeepCrack237 also contains
four types of crack images, but their proportion is not
significantly different. Figure 4 shows some samples and
corresponding ground truth from the four datasets.

252 | CamCrack789
Figure 5b shows that the images of this dataset are taken
from different locations on the campus of Shantou Uni-
versity. These images are taken by a Microsoft HD camera
mounted on the end of the manipulator of a self-designed
mobile robot (as shown in Figure 5a), capable of working
in various weather situations, such as sunny, cloudy, and
rainy conditions. The camera can record 2304 X 1728 pixels
of video at 30 FPS. In total, 789 images of pavement cracks
are selected to construct a pavement crack dataset named
CamCrack789. They all have a resolution of 640 x 480. The
cracks are classified into four types based on their topol-
ogy: common, intersecting, block, and alligator cracks. The
crack images are collected under different lighting condi-
tions, such as dark and bright environments. Additionally,
they contain various backgrounds, including water stains,
shadows, leaves, pavement markings, oil stains, debris,
and so on. Furthermore, some blurred crack images caused
by the movement of the mobile robot or poor lighting con-
ditions are included. In CamCrack?789, every image has its
ground truth labeled at the pixel level by hand. Figure 6
provides some examples of raw images and their ground
truth. This dataset is randomly separated into 546 training
images and 243 testing ones.

To enhance the generalizability of the model and pre-
vent overfitting, the number and diversity of training
images are increased by using data augmentation. The
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TABLE 1 The major differences of the datasets.
Differences CamCrack789 Crack500
Sample size 789 images 3368 images
Resolution 640 * 480 256 * 256

The way of use
in this work

For training and evaluating
the method

For training and
evaluating the
method

Scenario and The images contain water It contains some

background stains, oil stains, leaves, crack images with
interference branches, pavement shadows,
markings, shadows, occlusions, and
occlusion, soil, and other low contrast
debris. (Some examples of
this dataset are shown in
Figure 6)
The crack Mostly thin and medium Mostly thick and
width extremely thick

Raw image

Ground truth

(a) CamCrack789 (b) Crack500

ZHU ET AL.

CFD
118 images
480 * 320

For training and evaluating
the method

The images have some
complex circumstances,
including shadows, water
leakages, stains, and lane
lines

Mostly thin

(c) CFD

DeepCrack237

237 images

544 * 384

To prove the generalization of
the methods, this dataset is
only used for evaluating the
method

It contains crack images with
multiple textures and
scenes

More diverse including four
major types: thin, medium,
thick, and extremely thick

(d) DeepCrack237

FIGURE 4 Crack samples and their ground truth from the four datasets. The resolution of these images is 512 X 512.

FIGURE 5
detection and (b) concrete crack images collected from different locations.

(b)

Robot and images of pavement cracks taken from different locations. (a) Robot for road crack image acquisition and
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Common cracks
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Intersecting cracks
Raw image

Ground truth

Block cracks
Ground truth  Raw image

Alligator cracks

Under dark light

Under bright light

FIGURE 6 Examples of the CamCrack789 dataset.

crack images are randomly rotated by 180", flipped ver-
tically and horizontally, and have their brightness and
contrast changed.

253 | Crack500

There are 3368 images in the Crack500 dataset from 500
original crack images with around 2000 X 1500 pixels cap-
tured by cell phones. This dataset contains some crack
images with shadows, occlusions, and low contrast. Each
original image is manually labeled at the pixel level. To

With water stains
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With shadows

With leaves

With other backgrounds

prompt the image processing speed and reduce the con-
sumption of computation resources, each image is resized
to 256 X 256 pixels. In Crack500, the images are divided
into three types: training images (1896), validation images
(348), and testing images (1124). This dataset is utilized to
train and evaluate the methods.

254 | CFD

There are 118 RGB images in the CFD with a fixed size
of 480 x 320 pixels. These images were captured by an
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iPhone5 in Beijing, China, under some complex circum-
stances, including shadows, water leakages, stains, and
lane lines. In CFD, all ground truth images are annotated
manually at the pixel level. These images are separated
randomly into training images and test images in the ratio
of 6:4. This dataset is used for training and evaluating the
algorithms.

2.5.5 | DeepCrack237

This dataset is the testing set of the DeepCrack (Y. Liu et al.,
2019) dataset, which contains 237 RGB color images manu-
ally annotated segmentations. The image resolution is 544
X 384 pixels. This dataset contains crack images with mul-
tiple textures, scenes, and scales making the detection task
challenging. In this study, DeepCrack237 is used to evalu-
ate the generalization ability and robustness of the model
trained on the CamCrack789 dataset.

2.6 | Experimental settings

In this work, the PyTorch library is utilized to implement
the proposed method. The specifications of the comput-
ing platform used to conduct training and test the network
are as follows: Intel(R) Xeno(R) Gold 5115 2.40 GHz CPU,
NVIDIA 11G GeForce RTX 2080 Ti. In the training phase,
Adam (Kingma & Ba, 2014) is adopted as an optimizer
assigned to a le-3 learning rate. The batch size is given to
8 for CamCrack789 and Crack500, 12 for CFD, and 4 for
DeepCrack237, and the models are saved every 50 epochs
for a total of 500 training epochs.

2.7 | Evaluation metrics

Detecting pavement cracks at the pixel level is a binary
classification problem, which means that pixels in the
crack image need to be classified as either cracks or
non-cracks. The prediction output of the network is a clas-
sification probability map that assigns a probability for
each pixel to belong to a crack. In this work, the following
three metrics are adopted for evaluating the model: preci-
sion (Pr), recall (Re), and F1 score (F1). Fl1 is the harmonic
average of Pr and Re, which is commonly used for evaluat-
ing a model’s comprehensive performance. The evaluation
metrics are given as follows:

Pr=TP/(TP + FP) (6)

Re =TP/(TP + FN (7

@ ZHU ET AL.

F1=2XxPrxRe/(Pr+Re) 8)

where TP, TN, FP, and FN are the numbers of true positive,
true negative, false positive, and false negative, respec-
tively. For crack detection research, considering the crack
width, a small distance (2 pixels in Amhaz et al., 2016; X.
Zhang, et al., 2019) between the prediction outcome and
the label is allowed in evaluation, which is adopted in this
study as well.

3 | EXPERIMENTAL RESULTS AND
DISCUSSIONS

3.1 | Comparative experiments and
discussions

The proposed network was built on a U-like encoder-
decoder architecture and compared to seven methods,
including FCN, U-Net, Attention U-Net, DC_Zou, DC_Liu,
DMA-Net (Sun et al., 2022), and AttentionCrackNet (J.
Chen & He, 2022). In this work, DC_Zou and DC_Liu
denote the models of DeepCrack (Zou et al., 2018) and
DeepCrack (Y. Liu et al., 2019), respectively. For a fair
comparison, all these networks are trained with the same
hyperparameters. In the following subsections, the eval-
uation results of the proposed method on CamCrack789,
Crack500, CFD, and DeepCrack237 are given and com-
pared with those of existing methods.

3.1.1 | Results on CamCrack789

Table 2 shows that the proposed RHACrackNet gets the
best results with F1 94.94% and Re 95.04%. Compared with
U-Net, and DC_Liu, the performance improvement on F1
made in RHACrackNet are 1.19%, and 6.51%. Note that
the lightweight version of RHACrackNet is only 0.14%
lower than RHACrackNet on F1. From Figure 7a, it can
be observed that RHACrackNet has the best precision and
recall values. Furthermore, in visualization results shown
in Figure 8, the detection accuracy of RHACrackNet is the
best, which can more accurately identify four different geo-
metrical characteristics of cracks (common, intersecting,
block, and alligator cracks) and suppress the background
noise. Notably, the lightweight version RHACrackNet*
shows a very similar performance to RHACrackNet.

3.1.2 | Results on Crack500

Table 3 shows that RHACrackNet outperforms the
other compared methods on Crack500. Compared with
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TABLE 2 Experimental results on the CamCrack789 dataset.
Precision Recall
Methods (Pr) (Re)
FCN [CVPR 2015] 0.9445 0.9440
U-Net [MICCAI 2015] 0.9349 0.9401
Attention U-Net [MIDL 2018] 0.9470 0.9495
DC_Zou [TIP 2018] 0.9660 0.8455
DC_Liu [Neurocomputing 2019] 0.9669 0.8146
DMA-Net [TITS 2022] 0.9377 0.9463
AttentionCrackNet [CACAIE 2022] 0.9386 0.9450
RHACTrackNet 0.9483 0.9504
RHACrackNet* 0.9494 0.9465
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Floating-point
F1 score operations per second Time/image
(F1) (FLOPs; G) (s)
0.9443 290.46 0.094
0.9375 375.24 0.111
0.9482 624.72 0.199
0.9017 1283.64 0.361
0.8843 188.56 0.058
0.9420 212.12 0.068
0.9418 329.02 0.104
0.9494 21.60 0.033
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Precision-Recall curves of compared methods on CamCrack789, Crack500, CFD, and DeepCrack237 datasets.
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Ground truth Attention U-Net DC_Zou _Li DMA-Net  AttentionCrackNet RHACrackNet RHACrackNet*

Raw image

FIGURE 8 Visualization results of different models from the CamCrack789 dataset. The green, red, and blue pixels in the images
represent true positives, false positives, and false negatives, respectively.

TABLE 3 Experimental results on Crack500.

FLOPs Time/image

Methods Pr Re F1 (G) (s)

FCN [CVPR 2015] 0.8067 0.8385 0.8223 61.96 0.023
U-Net [MICCALI 2015] 0.7984 0.8464 0.8203 80.06 0.025
Attention U-Net [MIDL 2018] 0.8129 0.8345 0.8235 133.28 0.045
DC_Zou [TIP 2018] 0.8058 0.7999 0.8028 273.84 0.082
DC_Liu [Neurocomputing 2019] 0.8542 0.7478 0.7975 40.22 0.015
DMA-Net [TITS 2022] 0.7426 0.9183 0.8204 45.23 0.018
AttentionCrackNet [CACAIE 2022] 0.7794 0.8570 0.8006 70.2 0.024
RHACrackNet 0.8061 0.8542 0.8295 4.60 0.011
RHACTrackNet* 0.8173 0.8404 0.8287 2.06 0.011

U-Net, and DC_Liu, it has 0.92%, and 3.20% performance
improvement on F1l. Moreover, from Figures 7b and 9a,
it is observed that RHACrackNet* obtains a similar
performance to that of RHACrackNet. In the first row
of Figure 9a, although all methods fail to inspect the
full shape of the cracks, RHACrackNet model and its
lightweight version outperform the other methods. From
the second row of Figure 9a, compared with RHACrack-
Net and RHACrackNet*, FCN and U-Net misidentify
more background pixels at the crack edge as crack pix-
els, showing poorer detection results. DC_Zou fails to

identify some cracks, while DC_Liu almost misses all of
them.

3.1.3 | Results on CFD

As illustrated in Figure 7c, RHACrackNet outperforms
other models on this dataset, and the lightweight ver-
sion RHACrackNet* obtains a performance similar to
that of RHACrackNet. Table 4 shows that RHACrack-
Net significantly outperforms the other comparative
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DMA-Net  AttentionCrackNet RHACrackNet RHACrackNet*

(c) DeepCrack237

FIGURE 9 Visualization results of different models from Crack500, CFD, and DeepCrack237.

TABLE 4 Experimental results on CFD.

FLOPs Time/image

Methods Pr Re F1 (G) (s)
FCN [CVPR 2015] 0.8118 0.8510 0.8309 145.22 0.064
U-Net [MICCAI 2015] 0.8463 0.8809 0.8633 187.62 0.068
Attention U-Net [MIDL 2018] 0.9253 0.8844 0.9044 312.36 0.117
DC_Zou [TIP 2018] 0.9674 0.8088 0.8810 641.82 0.200
DC_Liu [Neurocomputing 2019] 0.9890 0.6065 0.7519 94.28 0.047
DMA-Net [TITS 2022] 0.9171 0.9453 0.9310 106.06 0.053
AttentionCrackNet [CACAIE 2022] 0.9430 0.9408 0.9399 164.52 0.066
RHACTrackNet 0.9629 0.9520 0.9574 10.80 0.030
RHACTrackNet* 0.9595 0.9359 0.9476 4.84 0.030

models in Re and F1. The F1/Re values of FCN, U-Net,
Attention U-Net, DC_Zou, DC_Liu, DMA-Net, and
AttentionCrackNet are 12.65%/10.10%, 9.41%/7.11%,
5.30%/6.76%, 7.64%/14.32%, 20.55%/34.55%, 2.64%/0.67%,
and 1.75%/1.12% lower than that of RHACrackNet, respec-
tively. From Figure 9b, the visualization results depict
that the prediction results of Attention U-Net, DMA-Net,
AttentionCrackNet, RHACrackNet, and RHACrackNet*
have a more complete shape than the other four methods
and are closer to the ground truth. The main reason for
this is probably due to the attention mechanism used
by all five algorithms. In addition, some segmentation
details of an exemplar image with tiny cracks are shown
in Figure 10, in which images in the second and third rows

are magnified views of the red and yellow rectangular
boxes in the top row images, respectively. It can be seen
that RHACrackNet has better performance than other
models in detecting tiny cracks.

3.1.4 | Results on DeepCrack237

From Figure 7d and 9c, the proposed RHACrackNet
outperforms the other models in comparison to the
DeepCrack237 dataset. As shown in Figure 9, the cracks
detected by RHACrackNet and RHACrackNet* have better
continuity than the other methods. For complicated cracks
like the second row in Figure 9c, RHACrackNet shows
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FIGURE 10 A detailed demonstration of the advantages of the proposed method in segmenting tiny cracks.

TABLE 5 Results of compared methods test on DeepCrack237 dataset.
FLOPs Time/image

Methods Pr Re F1 (G) (s)
FCN [CVPR 2015] 0.9049 0.8886 0.8967 197.50 0.152
U-Net [MICCAI 2015] 0.9206 0.9130 0.9168 255.16 0.178
Attention U-Net [MIDL’ 2018] 0.9284 0.9121 0.9202 424.80 0.317
DC_Zou [TIP 2018] 0.9481 0.8041 0.8702 872.88 0.585
DC_Liu [Neurocomputing 2019] 0.9790 0.7131 0.8252 128.22 0.107
DMA-Net [TITS 2022] 0.9421 0.9072 0.9241 144.24 0.127
AttentionCrackNet [CACAIE 2022] 0.9079 0.9052 0.8899 223.74 0.164
RHACTrackNet 0.9364 0.9141 0.9251 14.68 0.083
RHACTrackNet* 0.9312 0.9139 0.9226 6.58 0.080

the best performance in detecting thin cracks, and the
performance of RHACrackNet* is comparable to that
of RHACrackNet. From Table 5, it can be seen that
both RHACrackNet and RHACrackNet* are better than
Attention U-Net in all metrics. Compared to FCN, U-
Net, Attention U-Net, DC_Zou, DC_Liu, DMA-Net, and
AttentionCrackNet, there are 2.84%, 0.83%, 0.49%, 5.49%,
9.99%, 0.10%, and 3.52% of improvement by RHACrackNet,
respectively.

Furthermore, the floating-point operations per second
(FLOPs) and processing time of the models are analyzed
on all datasets, and the results are given in Tables 2-5.
As shown in these tables, the proposed RHACrackNet
achieves the best performance, and its FLOPs are much
fewer than other compared models except for RHACrack-
Net*. RHACrackNet* is not only the fastest (more than
two times faster than U-Net) among all the models but
also obtains a similar performance similar to that of
RHACrackNet with fewer FLOPs on four datasets. In
addition, it is noted that Attention U-Net, DMA-Net, Atten-
tionCrackNet, RHACrackNet, and RHACrackNet* as a
group obtain better performance than the other meth-
ods. One possible reason for this is that they all employ
attention mechanisms. From the visualization results on
the four datasets, due to integrating the spatial and chan-

nel attention mechanisms, the proposed method focuses
more on the crack region and better suppresses the
background interference than the Attention U-Net and
AttentionCrackNet, which only use the attention gate.

3.2 | Results of special cases

Even though the proposed model can achieve very sat-
isfactory detection results in most images, it does fail in
very difficult cases. Actually, no one model can guarantee
to successfully detect cracks in all images. In particular,
it should be noted that when the data distribution in the
image samples is quite different from those of the training
set, itis more likely to cause the proposed method to fail. As
illustrated in Figure 11, some skid-proof stripes were falsely
identified as cracks due to significant similarities between
skid-proof stripes and cracks in terms of texture features.
It should also be noted that some edges of the mainte-
nance hole cover were also detected as cracks as shown in
Figure 11. It is recommended to collect more crack images
with skid-proof stripes and maintenance hole covers in dif-
ferent circumstances to expand the dataset for training to
enhance the performance of the proposed method, among
other methods to improve the model.
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FIGURE 11 Two failure cases, including skid-proof stripes and maintenance hole cover interference.
TABLE 6 Results of comparison with different attention mechanisms on CamCrack789 and CFD.
CamCrack789 CFD
Models Pr Re F1 Pr Re F1
SE 0.9139 0.9658 0.9366 0.9374 0.9359 0.9342
CBAM 0.9180 0.9621 0.9367 0.9429 0.9231 0.9303
ECA 0.9223 0.9640 0.9405 0.9269 0.9208 0.9161
DA 0.8835 0.9784 0.9258 0.9187 0.9107 0.9103
HAB 0.9483 0.9504 0.9494 0.9629 0.9520 0.9574
[*)}
o0
~
-
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Ground truth

Raw image

FIGURE 12 Visualization results of methods of different attention modules.

TABLE 7 Results of ablation experiments on CamCrack789.
Models Pr Re F1
Baseline 0.9155 0.9585 0.9323
Baseline+RBs 0.9256 0.9594 0.9393
Baseline+HAB 0.9298 0.9601 0.9426
Baseline+RBs+HAB 0.9483 0.9504 0.9494

3.3 | Results with different attention

modules

To demonstrate the effectiveness of the proposed atten-
tion module, the HAB in the model is replaced with the
other current mainstream attention mechanisms, such as
SE, CBAM, efficient channel attention (ECA; Q. Wang
et al., 2020), and dual attention (DA; Fu et al., 2019). As
shown in Table 6, the proposed method outperforms the
other variants integrated with current mainstream atten-
tion methods on the CamCrack789 and CFD datasets.

Raw image Ground truth Baseline

| ' “. Ji
P~y Sty Rty A

Baseline+RBs BaselinetHAB RHACrackNet

FIGURE 13 Visualization results of ablation experiment.

Additionally, it demonstrates that the attention mecha-
nism has improved the model’s ability to extract features.
ECA is similar to HAB in terms of F1 on the CamCrack789,
but the proposed attention module takes into account the
characteristics of both spatial and channel attentions of
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FIGURE 14 Visualization of feature maps before and after each HAB and RBs.
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FIGURE 15 Visualization of channel attention maps and spatial attention maps for each HAB.

cracks. From the upper row images of Figure 12, it can be
seen that the proposed method performs better than other
attention mechanisms in suppressing background inter-
ference (see the region marked by the yellow rectangular
box). As shown in the lower row images of Figure 12, the
crack detection result of HAB is the best. In addition, from
the region marked by the red rectangular box, the conti-
nuity of the cracks detected by the proposed method is
better, compared with other methods of attention. From
Figure 12 and Table 5, the proposed HAB algorithm is more
suitable for tiny crack detection than the current main-
stream attention methods.

3.4 | Ablation study

The ablation study is used to demonstrate the effectiveness
of RBs and HABs for crack detection. The experimen-
tal results on the CamCrack789 dataset are given in
Table 7, in which RBs and HAB denote the RBs and
HAB, respectively. It can be seen that both Baseline+RBs
and Baseline+HAB obtain better results than Baseline
concerning the comprehensive measurement indicator
F1. This indicates that both RBs and hybrid attention
mechanisms contribute to improving the Baseline model’s
performance. It is noted that the proposed HAB can
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Six-degree-of-freedom manipulator

FIGURE 16 Design diagram of the mobile robot.
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FIGURE 17 Different motion patterns of the mobile platform.
ICR denotes the instantaneous center of rotation.

significantly improve the Baseline, increasing the F1 value
from 0.9323 to 0.9426. Moreover, RHACrackNet performs
3.28% and 1.71% better than Baseline in Pr and F1, respec-
tively, demonstrating that integrating both RBs and hybrid
attention mechanisms into the Baseline model can further
improve its performance. From the visualization result in
Figure 13, it can be observed that: (1) the crack shape in
the prediction result of Baseline is coarse and has poor
continuity (see the region marked by the red rectangu-
lar box); (2) Baseline+RBs has better continuity, compared
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with Baseline, but the result still contains interference
in the background (see the region marked by the yellow
rectangular box); (3) the background of the result pre-
dicted by Baseline+HAB is clean, but the detail of crack
is not fine; and (4) RHACrackNet obtains best perfor-
mance in terms of both capturing details and suppressing
background interference.

To intuitively observe the effect of HAB and RBs in the
proposed encode-decode architecture, the feature maps
before and after each HAB and RBs are given in Figure 14,
respectively. It can be seen that after being processed by
the modules of HAB and RBs, the feature maps are clearly
enhanced on the crack areas, and the noises on the back-
ground areas are effectively suppressed. Furthermore, this
effect is more evident when the level of the layer becomes
higher, which demonstrates that the capabilities of the
processed features are increasingly strengthened in the
hierarchical architecture of the proposed network. Based
on the enhanced processed features, the classifier at the
end of the decoder can more readily recognize the crack
areas and perform an even more accurate crack segmen-
tation. As shown in Figure 2, HAB is composed of two
attention procedures, that is, channel attention and spatial
attention. The channel attention can guide the network to
select the more discriminate feature channels to represent
cracks, which enables us to slim the network by removing
abundant feature channels and achieve lightweight com-
putation. The spatial attention can guide the network to
focus on the crack areas while avoiding the background
inferences such as water stains, shadows, and oil stains.

To further reveal the mechanism of HAB, a visualization
study is conducted. By visualizing the channel attention
weights and the selected feature channel with the largest
attention weight at different layers of the network archi-
tecture, as depicted in Figure 15, it can be discerned that
the selected feature channel can highlight the presence of
cracks (the higher the level of layer, the more clearly the
crack features are represented). Then in the subsequent
spatial channel module, the feature map filtered by the
channel attention mechanism is further enhanced through
the spatial attention mechanism. By visualizing the spa-
tial attention map using heat map transformation, it can
be clearly observed that the discrimination between crack
pixels and non-crack pixels is greatly facilitated by focus-
ing on the significantly reduced regions highlighted by the
proposed attention mechanism. In particular, when the
depth of the layer increases, the interfering background
noises are more effectively suppressed by the spatial atten-
tion mechanism, leading to a very clean markup of the
focused regions to be paid attention to, which almost over-
lap with the crack regions. This provides a great advantage
because crack regions normally only occupy a small por-
tion of the whole image. Therefore, by introducing the
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FIGURE 18 The mobile robot keeps maneuverable in different scenes.

TABLE 8 Comparison of parameters and FLOPs of all models.

Models Params FLOPs
FCN [CVPR 2015] 18.64 M 239.46 G
U-Net [MICCAI 2015] 17.25M 375.24 G
Attention U-Net [MIDL 2018] 34.88 M 624.72G
DC_Zou [TIP 2018] 30.91 M 1283.64 G
DC_Liu [Neurocomputing 2019] 14.72M 188.56 G
DMA-Net [TITS 2022] 60.46 M 212.12 G
AttentionCrackNet [CACAIE 2022] 23.47M 329.02 G
RHACrackNet 1.67M 21.6 G
RHACrackNet* 0.57M 9.68 G

proposed attention mechanism in this work, the result-
ing network architecture has a potential of significantly
reducing its parameter size, leading to a much faster
inference speed while maintaining a high detection perfor-
mance.

3.5 | Results of real-time deployment

To exemplify the practicability of the developed model,
RHACTrackNet* trained on CamCrack789 is deployed to a
Jetson TX2 mounted on the self-designed mobile robot sys-
tem to perform a real-world test on the campus road. As
illustrated in Figure 16, the mobile robot system mainly
consists of an omnidirectional mobile platform and a six-
degree-of-freedom manipulator mounted on the platform.

TABLE 9
time of all models.

Comparison of parameters, FLOPs, and inference

Time/image

Methods Parameters FLOPs (s)
FCN 18.64 M 14522 G 0.272
U-Net 17.25 M 187.62 G 0.302
Attention U-Net 34.88M 31236 G 0.598
DC_Zou 3091 M 641.82 G 0.911
DC_Liu 14.72M 94.28G 0.166
DMA-Net 60.46 M 106.06 G 0.279
AttentionCrackNet  23.47M 164.52G  0.348
MobileNet V1 6.59 M 27.44 G 0.091
MobileNet V2 6.8 M 24.7G 0.106
EfficientNet 8.64 M 15.96 G 0.140
RHACTrackNet 1.67M 21.60 G 0.047
RHACrackNet* 0.57M 9.68G 0.042

The omnidirectional mobile platform is equipped with
four actively steerable wheels. The entire mobile platform
weighs approximately 220 kg with a maximum payload
of 200 kg and can run for 2 h continuously without pay-
load. As shown in Figure 17, the mobile platform has four
different motion patterns, which ensures the flexibility
of the whole mobile robot system. The motion patterns
consist of stopping, synchronous driving pattern, and two
different rotation patterns, that is, rotating around the
arbitrary instantaneous center of rotation and rotating
around the origin of the robot reference coordinate system.
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(a) Road scenarios (b) Raw images

FIGURE 19

In different motion patterns, the orientations of the four
wheels of the platform are different. As depicted in
Figure 18, the mobile robot system can pass the speed
bump with about 5-cm height on the road, climb a slope of
about 20 degrees, and move on the concrete pavement with
some sand and gravel, and even maneuver on the uneven
lawn. Therefore, based on the strong motion ability of the
mobile platform and the flexibility of the robotic arm, the
camera mounted at the end of the manipulator can col-
lect and detect detailed cracks on the road from different
heights and perspectives. More information about collect-
ing and detecting pavement cracks using the mobile robot
system can be found at https://youtu.be/56P6CdBdirl.

(¢) Ground truth
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(e) Overlaid images
of (b) and (d)

(d) Detection results

Examples of real-time detection results of pavement cracks in different road scenarios.

In this work, to deploy the proposed model to embed-
ded devices, DS_Convs are utilized to replace conventional
convolutions of Baseline+RBs+HAB except that of HAB.
The parameters and FLOPs of all models are listed in
Table 8. The two metrics are computed based on an input
size of 3 X 640 X 480. The parameters and FLOPs of the
proposed RHACrackNet are 1.67 MB and 21.6 GB, which
have approximately 90.31% and 94.24% reduction, com-
pared to the 17.25 MB parameters and 375.24 GB FLOPs
for U-Net, respectively. In addition, the parameters and
FLOPs of RHACrackNet* are only 0.57 MB and 9.68 GB,
which have 65.86% and 55.18% reduction, compared to the
1.67 MB parameters and 9.68 GB FLOPs for RHACrackNet,
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FIGURE 20 Unmanned aerial vehicle (UAV) used for
pavement crack detection.

respectively. RHACrackNet* uses DS_Convs instead of
conventional convolutions, significantly decreasing the
model parameters and computational expense. In sum-
mary, the proposed model obtains substantially fewer
parameters and higher computational efficiency than
other state-of-the-art models. Moreover, RHACrackNet*
achieves a better balance between accuracy and comput-
ing complexity so as to facilitate model deployment to
embedded devices. As a result, the mobile robot system for
pavement crack detection reaches about 25 FPS on Jetson
TX2. Visualization results of the pavement cracks detected
by a self-designed mobile robot on the campus road are
shown in Figure 19. From the first and second rows of
Figure 19, RHACrackNet* can not only detect coarse cracks
but also perform well in detecting tiny cracks. The second
to fifth rows in Figure 19 illustrate crack images with vari-
ous pavement features, including tree leaves, branches, rut
marks, and water stains.

It can be observed that RHACrackNet* can accurately
detect pavement cracks and cause few false positives,
which implies that it can effectively localize pavement
cracks and suppress the influence of background noises.

Although the proposed model has improved the detec-
tion accuracy of pavement cracks, it still faces challenges
in detecting cracks with complex topology. For the last
row of Figure 19, some blurred and shallow cracks at the
edges of the image are not well identified by the network,
which may be caused by the motion of the mobile robot
and the uneven illumination. In addition, it is noted that
sealed crack pixels are misidentified as crack pixels. This is
because the images with sealed cracks are not seen in the
training set. Therefore, there is still room for improving the
detection performance for complex cracks.

To further illustrate the practicality of the proposed
approach, all models (including three mainstream
lightweight models such as MobileNet V1 (Howard et al.,
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2017), MobileNet V2 (Sandler et al., 2018), and EfficientNet
(Tan & Le, 2019)) are tested on a UAV (see Figure 20).
In particular, the UAV is equipped with a widely used
embedded device, NVIDIA Jetson Xavier NX. The camera
used for data acquisition is the same on both mobile plat-
forms and can record 2304 x 1728 pixels of video at 30 FPS.
The model input size is set to 480 x 320. Under this exper-
imental setting, different models are deployed in NVIDIA
Jetson Xavier NX installed on the UAV to detect pavement
cracks. As shown in Table 9, the proposed RHACrackNet*
achieves the fastest inference speed of 23.8 FPS. It is
notable that even in comparison with the other three
lightweight models, the proposed RHACrackNet* has
fewer model parameters, lower computational complexity,
and faster inference speed. As shown in Figure 21, the pro-
posed RHACrackNet achieves the best crack segmentation
performance. The segmentation result of RHACrackNet*
is similar to that of RHACrackNet and significantly better
than those of the three lightweight methods. However,
although the proposed RHACrackNet* has an acceptable
detection speed, in challenging scenarios, such as in the
case of high outdoor temperatures in summer, the heating
of computing devices may lead to a decrease in detection
speed. More work needs to be done to further reduce the
size of the model and make it more lightweight in practical
future applications.

4 | CONCLUSION

In this work, for automated pixel-wise pavement crack
detection, a carefully designed encoder-decoder network
RHACrackNet is proposed by integrating RBs and the
newly proposed HABSs, to achieve an extremely lightweight
model that can be deployed in an embedded device. The
main contributions of the work can be summarized as
follows:

1. Compared with existing models on CamCrack789,
Crack500, CFD, and DeepCrack237 datasets, the pro-
posed network obtains the best F1 value with 94.94%,
82.95%, 95.74%, and 92.51%, respectively. In addition,
the proposed model not only has a fewer parameter
size (1.67 M, which is only 1/20 of the parameters of
Attention U-Net) but also performs a faster inference
speed on all four datasets, compared to the networks in
comparison.

2. An even more lightweight version RHACrackNet* with
only 0.57 M (about 34% of the parameters of RHACrack-
Net) model parameters is generated by replacing
conventional convolutions with DS_Convs, achieving
the fastest inference speed in all the tested crack
datasets.
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FIGURE 21

3. The practicability of the proposed method is demon-
strated by deploying RHACrackNet* trained on Cam-
Crack?789 to a Jetson TX2 on a terrain robot and a Jetson
Xavier NX on a UAV. Real-world testing shows that
the proposed method is capable of detecting pavement
cracks in real-time at 25 FPS on the mobile terrain robot
and about 24 FPS on the drone.

The work of this paper can be improved in several lines.
First, the dataset constructed in this paper only involves
the concrete pavement crack dataset, which contains insuf-
ficient samples for the proposed model to deal with all
actual road crack scenarios. For example, the proposed
method has poor detection of crack images with skid-
proof stripes, sealed cracks, maintenance hole covers, and
so forth. In addition, the self-designed mobile robot will
be installed with a drone to collect crack damages in
distance in different infrastructures to expand the working
range in real-world deployment of the system. Further-
more, it is important to improve the algorithm to enable
crack detection in various civil infrastructures. Some
promising supervised machine learning algorithms, such
as the enhanced probabilistic neural network (Ahmadlou
& Adeli, 2010), neural dynamic classification algorithm
(Rafiei & Adeli, 2017), dynamic ensemble learning algo-
rithm (Alam et al., 2020), finite element machine for fast
learning (Pereira et al., 2020), neural architecture search
(Li et al., 2023), and self-supervised learning (Rafiei et al.,
2022), will be investigated for the future extension of the
research to enhance the model performance for detecting
cracks in various construction materials.
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