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Abstract. In this paper, we propose a new solution selection method
to balance the convergence and diversity during the evolutionary process
for evolutionary multiobjective optimization. The method sorts the solu-
tions based on their ensemble convergence performance, then selects
the solutions based on diversity. The selection method is integrated to
the framework of decomposition based multiobjective evolutionary algo-
rithms (MOEAs). In order to demonstrate the performance of the algo-
rithm, it is compared with three classical MOEAs and one state-of-art
MOEA. The results indicate that our proposed algorithm is very com-
petitive.
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1 Introduction

A multiobjective optimization problem (MOP) can be defined as follows:

minimize F (x) = (f1(x), . . . , fm(x))T (1)
subject to x ∈ Ω

where Ω is the decision space, F : Ω → Rm consists of m real-valued objective
functions. The attainable objective set is {F (x)|x ∈ Ω}.

Let u, v ∈ Rm, u is said to dominate v, denoted by u ≺ v, if and only if ui ≤ vi
for every i ∈ {1, . . . ,m} and uj < vj for at least one index j ∈ {1, . . . , m}1. Given
a set S in Rm, a solution x ∈ S can be called non-dominated in S if no other
solution in S can dominate it. A solution x∗ ∈ Ω is Pareto-optimal if F (x∗) is
non-dominated in the attainable objective set. F (x∗) is then called a Pareto-
optimal (objective) vector. In other words, any improvement in one objective
of a Pareto optimal solution is bound to deteriorate at least another objective.
1 In the case of maximization, the inequality signs should be reversed.
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The set of all the Pareto-optimal solutions is called the Pareto set (PS ) and the
image of (PS ) on the objective vector space is called the Pareto front (PF ) [11].

Usually, it is desirable to balance between convergence and diversity for
obtaining good approximation to the set of Pareto optimal solutions. Over the
last two decades, three major evolutionary algorithm paradigms have been devel-
oped, i.e., dominance-based MOEAs (e.g., [4,6,18]), indicator-based MOEAs
(e.g., [1,2,12,17]) and decomposition-based MOEAs (e.g., [8,14,15]).

Arguably, NSGA-II [6] is the most well-known domination-based MOEA,
which uses Pareto dominance relation as the primary selection criterion to pro-
mote the convergence and the crowding distance is used as density metric to
maintain the diversity.

The indicator based approaches utilize various performance indicators like
ε-indicator [17], R2 indicator [12] and hypervolume indicator [2] to measure the
quality of solutions. Among these indicators, the most commonly used perfor-
mance indicator is hypervolume, which can measure convergence and diversity
simultaneously. However, the hypervolume prefers convex regions to concave
ones [1] and its computational complexity is quite huge.

As a representative of the decomposition-based method, the basic idea of
MOEA/D [15] is to decompose a MOP into a number of single objective opti-
mization subproblems through aggregation functions and optimizes them simul-
taneously. The update of solutions is decided by their aggregation function values,
and the population diversity is achieved by the wide spread of weight vectors.

Apparently, selection is a major issue in designing MOEAs. In this paper, we
propose a sorting-based-selection (SBS) scheme and integrate it into MOEA/D.
First, SBS sorts the solutions in the population according to their ensemble
convergence performance on all subproblems. Then, the diversity selection is
conducted on the sorted population according to each subproblem.

The remainder of this paper is organized as follows. Section 2 provides some
background knowledge of this paper. Section 3 explains our motivation of this
work. Section 4 details the proposed method, sorting-based-selection. Section 5
mainly describes the proposed MOEA/D-SBS. Experimental settings and per-
formance indicators for MOEAs are detailed in Sect. 6. In Sect. 7, we conduct
experiments and present the results of compare our proposed algorithm with
three classical MOEAs, NSGA-II, MSOPS-II [7], MOEA/D-DE [9] and one state-
of-art MOEA, MOEA/D-STM [10]. Section 8 concludes the paper.

2 Motivation

In this paper, a new solution selection method, SBS, is proposed and used in the
framework of MOEA/D to select solutions from the merged population. In SBS,
the merged population is sorted based on convergence. The sorting is empha-
sis on the ensemble performance of each solution on all the subproblems. In
order to maintain the diversity, the solutions in the population are associated
with the subproblems, first. And then the solutions are selected for each sub-
problem. Note that the priority relations of the solutions associated with each
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subproblem are subject to the ensemble convergence. Consequently, a number
of solutions that have a good balance between convergence and diversity are
selected in MOEA/D-SBS. Different from MOEA/D, where each subproblem is
allowed with one solution, MOEA/D-SBS can be associated with any number of
solutions.

3 Sorting-Based-Selection

The new solution selection method, SBS, which selects N solutions from the
merged population, is detailed in this section. First, the merged population is
sorted based on convergence. Then, the solutions in the sorted population are
associated with the subproblems. Finally, N solutions are selected based on
diversity depending on the sorted and associated results.

The pseudo-code of SBS is presented in Algorithm 1.

3.1 Convergence Based Sorting

For each subproblem sj , the aggregation function value, gte(x|λj , z∗), of each
solution xi in population Z is calculated and stored in Δ(i,j), as shown in Step
2.1a. Each row of Δ represents a solution and each column represents a sub-
problem, and λj denotes the weight vector with regard to the j-th subproblem.
In Step 2.1b, each column of matrix Δ, Δ(:, j), is sorted in an ascending order
and the rank values are kept in R(:, j).

In Step 2.2a, each row of matrix R are sorted in an ascending order of rank
values. So, the first column of R will hold the best rank achieved for each solution
across the N subproblems, and the N -th column of R will hold the worst rank
achieved. Thus the matrix R may be used to rank the population. In Step 2.2b,
the solutions in the Z are sorted according to the lexicographical order of the
corresponding rows in R.

3.2 Association

In Step 3, each solution x ∈ Z needs to associate with a subproblem. Solution
x will be associated with the subproblem whose weight vector has the minimum
angle with its objective vector. The acute angle between a solution x and the
weight vector λ of a subproblem can be computed as follows:

α = arccos(
(F (x) − z∗)Tλ

‖F (x) − z∗‖‖λ‖ ). (2)

where F (x) = (f1(x), f2(x), . . . , fm(x))T is the objective vector of the solution
x, and z∗ is the ideal objective vector.

In Step 3, each solution in the sorted solution set Z is associated with a
subproblem. Furthermore, solutions associated with each subproblem are ordered
by ensemble convergence.
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Algorithm 1. SBS(Z, z∗, N)
Input:

1. Z: the solution set;
2. z∗: the ideal objective vector z∗;
3. N : the number of subproblems or the maximum size of P .

Output: the population P , index set I

Step 1 Initialization:

a) Set I = ∅.
b) Set P = ∅.
c) Set M = |Z|.
Step 2 Sorting:
Step 2.1:
For each j = 1, . . . , N , do:

a) For each solution xi in Z, evaluate the aggregation function gte(xi|λj , z∗), and
store it in Δ(i, j).

b) Sort Δ(:, j) in an ascending order and keep the rank values in R(:, j).
Step 2.2:

a) For each i = 1, . . . , M , sort R(i, :) in an ascending order.
b) Sort Z according to the lexicographical order of the rows in R.

Step 3 Association:

For each solution x in the sorted solution set Z, associate it with the subproblem
whose weight vector has the minimum angle with the objective vector of x, based
on (2).

Step 4 Selection:
For each k = 1, . . . , M , do:

a) Set A = ∅;
b) For each subproblem, if the k-th solution associated with it is exist, then add it to

A.
c) If |P | + |A| ≤ N , then set P = P

⋃
A; else, the N − |P | solutions in A are selected

and added to P based on the rankings in Z, then break.

Step 5 Termination: Record the indexes of the subproblems in I, which are associated
with solutions in P . Then return P and I.

3.3 Diversity Based Selection

In order to keep a good population diversity, the solutions will be selected accord-
ing the subproblems. In Step 4, the best associated solution of each subproblem
is selected and added to P , if they are exist. Then, the second best associated
solution is selected, and so on. When |P | + |A| is greater than N , the N − |P |
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solutions in A are selected and added to P , depending on their performance.
Here, the selection is based on their rankings in Z, in which solutions has been
sorted according to their ensemble convergence performance in Step 2.

3.4 Termination

Algorithm 2 is terminated when the size of P reaches N . In Step 5, record the
indexes of the subproblems in I, which are associated with solutions in P . Then
return it and P as outputs.

3.5 Computational Cost of the SBS

In Algorithm 1, the calculation of matrix Δ (Step 2.1a) costs O(mMN) com-
putations, where m is the number of objectives. O(NMlogM) comparisons are
used to sort Δ (Step 2.1b). The sorting of matrix R and population Z needs
O(MNlogN) and O(NMlogM) comparisons (Step 2.2), respectively. And asso-
ciation (Step 3) requires O(mMN) computations. N solutions are selected from
the population Z, so the complexity of selection (Step 4) is O(N). In summary,
the computational cost of the SBS is O(NMlogM).

4 Algorithm

In this section, we present the whole algorithm, multiobjective evolutionary algo-
rithm based on decomposition with diversity-based-sorting (MOEA/D-SBS).
The pseudo-code of MOEA/D-SBS is demonstrated in Algorithm2.

At each generation, MOEA/D-SBS maintains:

– a set of N subproblems, S = {s1, . . . , sN};
– a population of N solutions, P = {x1, . . . , xN};
– objective function values, FV 1, . . . , FV N , where FV i is the F -value of xi;

Let λ1, . . . , λN be a set of even spread weight vectors [15] and z∗ be the
reference point. The MOP of (1) can be decomposed into N scalar optimization
subproblems by using Tchebycheff approach. The k-th subproblem is:

minimize g(x|λk, z∗) = max
1≤i≤m

{|fi(x) − z∗
i |/λk

i }
subject to x ∈ Ω. (3)

In initialization, for each k = 1, . . . , N , let B(k) be the set containing the
indices of the T closest weight vectors to λk in terms of the Euclidean distance.
If i ∈ B(k), i-th subproblem is called a neighbor of k-th subproblem. I is a set
of subproblem indices that each solution xi belongs to. It is initialized by calling
SBS function in Algorithm1.

New solutions are generated in Step 2. In MOEA/D, each new solution is
generated according to each subproblem, while in MOEA/D-SBS is according
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Algorithm 2. MOEA/D-SBS
Input:

1. MOP(1);
2. a stopping criterion;
3. N : the number of subproblems;
4. λ1, . . . , λN : a set of N weight vectors;
5. T : the size of the neighborhood for each subproblem.

Output: population P
Step 1 Initialization:

a) Compute the Euclidean distances between any two weight vectors and obtain T
closest weight vectors to each weight vector. For each i = 1, . . . , N , set B(i) =
{i1, . . . , iT } where λi1 , . . . , λiT are the T closest weight vectors to λi.

b) Generate an initial population P = {x1, . . . , xN} randomly.
c) Initialize the ideal objective vector z∗ by setting z∗

i = min{fi(x
1), . . . , fi(x

N )}, i =
1, . . . , m.

d) Get the set P and I: [P, I] = SBS(P, z∗, N) .

Step 2 New Solution Generation:
For each i = 1, . . . , |P |, do:

a) Selection of the Mating Solutions:
1) Track the index k of the subproblem that xi is associated with : k = I(i).
2) If rand(0, 1) < δ, then set D is the set of solutions that are associated with

the subproblem in B(k), else, set D = P .
b) Reproduction: Set r1 = i and randomly select two indices r2 and r3 from D,

and then generate a solution y from xr1 , xr2 and xr3 by DE, and then perform a
mutation operator on y with probability pm to produce a new solution yi.

c) Evaluation yi : FV i = F (yi).
d) Update of z∗ : For each j = 1, . . . , m, if z∗

j > fj(y
i), then set z∗

j = fj(y
i).

Step 3 Sorting-based-selection: [P, I] = SBS(P
⋃

Y, z∗, N)
Step 4 Stopping Criteria: If stopping criteria is satisfied, then stop and output P .
Otherwise, go to Step 2.

to each individual in population. So the number of times that a subproblem is
selected to generate offspring is equal to the number of solutions associated with
it. In Step 2a, for each individual in population P , the subproblem k is tracked
according to the set of subproblem indices I, then all individuals which are
associated with the neighborhood of subproblem k in population P are selected
as the possible mating range D. In Step 2b, two parent solutions are selected from
the D, and then the differential evolution (DE) operator [13] and polynomial
mutation [5] are applied to three parent solutions, xr1 , xr2 and xr3 , to generate
an offspring yi.

In DE operator, each element yj in y = (y1, . . . , yn)T is generated as follows:

yj =

{
xr1
j + F × (xr2

j − xr3
j ), if rand ≤ CR or j = jrand

xr1
j , otherwise

(4)
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where j = 1, . . . , n, rand ∈ [0, 1], jrand ∈ [1, n] is a random integer, and CR and
F are two control parameters.

The mutation operator generates y = (y1, . . . , yn)T from y in the following
way:

yj =

{
yj + σj × (bj − aj), with probability pm

yj , with probability 1 − pm
(5)

with

σj =

{
(2 × rand)

1
η+1 − 1, if rand < 0.5

1 − (2 − 2 × rand)
1

η+1 , otherwise
(6)

where rand is a uniformly random number from [0, 1]; the distribution index η
and the mutation rate pm are two control parameters; and aj and bj are the
lower and upper bounds of the j-th decision variable, respectively.

The procedure (Step 2a–c) will be repeated N times, so an population Y =
{y1, . . . , yN} will be got. In Step 3, the SBS, detailed in Sect. 4, is adopted to
select offsprings from the merged population.

5 Experimental Studies

5.1 Experimental Setting

The UF test suite, which contains ten unconstrained MOP test instances (UF1
to UF10) from the CEC2009 MOEA competition [16], is considered in our exper-
imental studies. For all UF test functions, the number of decision variables is set
to 30.

All the algorithms were implemented in Matlab. The parameters of NSGA-
II, MSOPS-II, MOEA/D-DE and MOEA/D-STM were set according to the
corresponding references [6,7,9,10]. The parameter settings of our proposed
MOEA/D-SBS are as follows:

1) Control parameters in DE and polynomial mutation: CR = 1.0 and F = 0.5
in DE operator; η = 20 and pm = 1/n in the polynomial mutation operator.

2) Probability used to select in the neighborhood: δ = 0.9.
3) Population size: N = 300 for bi-objective test instances, 595 for the three-

objective ones.
4) Neighborhood size: T = 10 for bi-objective test instances except for UF3, for

which T is set to 20, T = 595 for three-objective ones.
5) Number of runs and stopping condition: Each algorithm is run 30 times inde-

pendently on each test instance. The algorithm stops after 300,000 function
evaluations.

It is worth noting that the population size and the number of function evaluations
are set same for all compared algorithms.

In our experimental studies, we employ two widely used performance indi-
cators inverted generational distance metric (IGD) [3] and hypervolume metric
(IH) [19]. Both of them can simultaneously measure the convergence and diver-
sity of obtained solutions.
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Table 1. Mean and standard deviation values of IGD, obtained by MOEA/D-SBS,
MOEA/D-DE, MSOPS-II and NSGA-II on UF instances.

Instance IGD

MOEA/D-SBS MOEA/D-DE MSOPS-II NSGA-II

UF1 0.0017 (5.67E-05) 0.0024 (4.94E-04)† 0.0743 (5.44E-03)† 0.0839 (1.17E-02)†

UF2 0.0057 (1.69E-03) 0.0112 (3.21E-03)† 0.0572 (2.10E-02)† 0.0327 (2.32E-03)†

UF3 0.0037 (1.72E-03) 0.0254 (2.12E-02)† 0.3141 (1.75E-02)† 0.0703 (1.14E-02)†

UF4 0.0560 (2.67E-03) 0.0677 (2.80E-03)† 0.0567 (4.09E-03) 0.0761 (1.35E-02)†

UF5 0.2469 (2.46E-02) 0.2901 (4.56E-02)† 0.3437 (9.80E-02)† 0.6793 (9.88E-02)†

UF6 0.0927 (4.21E-02) 0.1868 (1.34E-01)† 0.2985 (2.29E-01)† 0.3217 (7.60E-02)†

UF7 0.0023 (2.64E-04) 0.0041 (9.31E-04)† 0.0418 (7.21E-03)† 0.3504 (8.65E-03)†

UF8 0.0522 (7.66E-03) 0.0658 (7.89E-03)† 0.1916 (4.92E-03)† 0.2693 (5.59E-02)†

UF9 0.0278 (2.98E-03) 0.0720 (3.96E-02)† 0.2540 (2.29E-02)† 0.2054 (6.92E-02)†

UF10 1.3755 (2.51E-01) 0.4846 (5.52E-02)‡ 0.2147 (4.98E-02)‡ 0.6429 (8.84E-02)‡

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-SBS

and each of the other competing algorithms.
† and ‡ denotes that the performance of the corresponding algorithm is significantly worse

than or better than that of MOEA/D-SBS, respectively. The best mean is highlighted in

boldface

Table 2. Mean and standard deviation values of IH , obtained by MOEA/D-SBS,
MOEA/D-DE, MSOPS-II and NSGA-II on UF instances.

Instance IH

MOEA/D-SBS MOEA/D-DE MSOPS-II NSGA-II

UF1 3.6582 (0.0020) 3.6504 (0.0076)† 3.4418 (0.0918)† 3.3859 (0.0175)†

UF2 3.6422 (0.0142) 3.6073 (0.0399)† 3.4618 (0.0884)† 3.6090 (0.0076)†

UF3 3.6598 (0.0027) 3.5493 (0.1092)† 2.5711 (0.0457)† 3.5191 (0.0402)†

UF4 3.1672 (0.0117) 3.1352 (0.0165)† 3.1876 (0.0064)‡ 3.0787 (0.1345)

UF5 2.8680 (0.0865) 2.5807 (0.1622)† 2.5875 (0.3309)† 1.5901 (0.2338)†

UF6 3.1558 (0.0932) 2.9058 (0.2428)† 2.6652 (0.4505)† 2.6228 (0.1497)†

UF7 3.4885 (0.0062) 3.4796 (0.0080)† 3.4029 (0.0627)† 2.5452 (0.0091)†

UF8 7.3028 (0.0267) 6.9542 (0.2821)† 6.4215 (0.0098)† 6.6184 (0.3498)†

UF9 7.6812 (0.0419) 6.4168 (0.7147)† 5.7602 (0.2120)† 7.0840 (0.2283)†

UF10 9.615 (4.7472) 16.224 (1.2106)‡ 24.269 (1.0457)‡ 14.770 (1.4454)‡

Wilcoxon’s rank sum test at a 0.05 significance level is performed between
MOEA/D-SBS and each of the other competing algorithms.
† and ‡ denotes that the performance of the corresponding algorithm is signifi-
cantly worse than or better than that of MOEA/D-SBS, respectively. The best
mean is highlighted in boldface
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Fig. 1. Convergence graphs in terms of IGD (mean) obtained by MOEA/D-DIS,
MOEA/D-DE, MSOPS-II and NSGA-II on three UF instances.
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5.2 Comparisons with Classical MOEAs

In this section, we compare MOEA/D-SBS with three classical MOEAs, NSGA-
II, MSOPS-II and MOEA/D-DE. Each algorithm is run 30 times independently
on each test instance. The comparison results of MOEA/D-SBS with the other
three MOEAs in terms of IGD metric values are presented in Table 1. From the
table, we can find that MOEA/D-SBS has obtained the best mean metric values
on all the test problems except UF10. No algorithm can approximate UF10’ PF
very well, as it has many local PFs. MSOPS-II has best performance among all
the compared algorithms on the UF test problem. In Table 1, all comparisons are
statistically significant except the comparison of between MOEA/D-SBS with
MSOPS-II on UF4. From Table 2, we can find that the comparison results in
terms of IH metric are similar to the ones in terms of IGD.

The evolution of the average IGD values versus the number of function
evaluations in the four algorithms on UF test problems are plotted in Fig. 1. It
can be observed from these figures that MOEA/D-SBS performs best on both
the convergence speed and the quality of the final solution sets.

5.3 Comparison with MOEA/D-STM

In this section, MOEA/D-STM which has a good performance on UF test prob-
lems in [10], will be compared with the proposed MOEA/D-SBS. Table 3 presents
their comparison results in terms of IGD metric. From the results, we can
find that the performance of MOEA/D-SBS is significantly better than that

Table 3. Mean and standard deviation values of IGD, obtained by MOEA/D-SBS
and MOEA/D-STM on UF instances.

Instance IGD

MOEA/D-SBS MOEA/D-STM p-value

UF1 0.001711 (5.67E-05) 0.001980 (6.32E-05) 3.69E-11

UF2 0.005661 (1.69E-03) 0.007074 (1.84E-03) 1.17E-03

UF3 0.003658 (1.72E-03) 0.003721 (2.48E-03) 0.4918

UF4 0.055980 (2.67E-03) 0.056139 (3.75E-03) 0.9705

UF5 0.246915 (2.46E-02) 0.252158 (2.45E-02) 0.1907

UF6 0.092737 (4.21E-02) 0.082018 (3.75E-02) 0.0824

UF7 0.002276 (2.64E-04) 0.002658 (6.35E-04) 5.61E-05

UF8 0.052198 (7.66E-03) 0.067490 (1.26E-02) 3.32E-06

UF9 0.027832 (2.98E-03) 0.030200 (2.07E-02) 0.1087

UF10 1.375528 (2.51E-01) 1.238261 (2.23E-01) 1.63E-02

Wilcoxon’s rank sum test at a 0.05 significance level is performed
between MOEA/D-SBS and MOEA/D-STM. Boldface denotes
that the performance of the corresponding algorithm is signifi-
cantly better than that of the other
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of MOEA/D-STM on UF1, UF2, UF7 and UF8, but it is significantly worse on
UF10, on the other test problems it is not statistically significant. So, we can
claim that the proposed algorithm MOEA/D-SBS is competitive with MOEA/D-
STM.

6 Conclusion

This paper proposed a sorting-based-selection (SBS) to select offspring popu-
lation for MOEA/D. The proposed algorithm, MOEA/D-SBS, was tested on
the 10 unconstrained problems for CEC09 algorithm competition. The compar-
ison results with 4 multiobjective evolutionary algorithms (NSGA-II, MSOPS-
II, MOEA/D-DE and MOEA/D-STM) show that MOEA/D-SBS outperforms
other compared algorithms.

Further work includes investigation of the proposed SBS integrated to other
framework of multiobjective evolutionary algorithms. We also intend to extend
MOEA/D-SBS to tackle many optimization problems.

Acknowledgments. This work was supported in part by the National Natural Science
Foundation of China (NSFC) under grant 61300159, by the Natural Science Foundation
of Jiangsu Province under grant BK20130808, by the Research Fund for the Doctoral
Program of Higher Education of China under grant 20123218120041.

References

1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective
optimization: theoretical foundations and practical implications. Theor. Comput.
425(2), 75–103 (2011)

2. Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-
objective optimization. Evol. Comput. 19(1), 45–76 (2011). http://dx.doi.org/10.
1162/EVCO\ a\ 00009

3. Coello, C.A.C., Cortés, N.C.: Solving multiobjective optimization problems using
an artificial immune system. Genet. Program. Evolvable Mach. 6(2), 163–190
(2005)

4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
Chichester (2001)

5. Deb, K., Goyal, M.: A combined genetic adaptive search (geneas) for engineering
design. Comput. Sci. Inf. 26, 30–45 (1996)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

7. Hughes, E.: MSOPS-II: a general-purpose many-objective optimiser. In: IEEE
Congress on Evolutionary Computation, CEC 2007, pp. 3944–3951, September
2007

8. Hughes, E.J.: Multiple single objective pareto sampling. In: Proceedings of the
2003 Congress on Evolutionary Computation (CEC 2003), vol. 4, pp. 2678–2684.
IEEE Press, Canberra, December 2003

9. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated pareto
sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)

http://dx.doi.org/10.1162/EVCOprotect unhbox voidb@x kern .06emvbox {hrule width.3em}aprotect unhbox voidb@x kern .06emvbox {hrule width.3em}00009
http://dx.doi.org/10.1162/EVCOprotect unhbox voidb@x kern .06emvbox {hrule width.3em}aprotect unhbox voidb@x kern .06emvbox {hrule width.3em}00009


A Sorting Based Selection for Evolutionary Multiobjective Optimization 549

10. Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching based selection
in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 18(6),
909–923 (2014)

11. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston (1999)

12. Phan, D.H., Suzuki, J.: R2-IBEA: R2 indicator based evolutionary algorithm for
multiobjective optimization. In: 2013 IEEE Congress on Evolutionary Computa-
tion (CEC), pp. 1836–1845 (2013)

13. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical App-
roach to Global Optimization. Natural Computing Series. Springer, Heidelberg
(2005)

14. Schaffer, J.D., Grefenstette, J.J.: Multiobjective learning via genetic algorithms.
In: Proceedings of the 9th International Joint Conference on Artificial Intelligence
(IJCAI-85), pp. 593–595. AAAI, Los Angeles (1985)

15. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

16. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., Tiwari, S.: Multiobjec-
tive optimization test instances for the CEC 2009 special session and competi-
tion. University of Essex, Colchester, UK and Nanyang Technological University,
Singapore, Special Session on Performance Assessment of Multi-objective Opti-
mization Algorithms, Technical report (2008)

17. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
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