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A B S T R A C T

Multiobjective evolutionary algorithm based on decomposition (MOEA/D) divides a multiobjective optimization
problem into a number of single-objective subproblems and solves them in a collaborative way. MOEA/D can
be naturally extended by the common, intensification oriented method of local search for solving combinatorial
multiobjective optimization problems (CMOPs). However, the performance of MOEA/D strongly depends on the
distribution of direction vectors and the decomposition method it adopts. In this paper, an efficient coevolu-
tionary multiobjective local search based on decomposition (CoMOLS/D) is proposed. In CoMOLS/D, two sets of
direction vectors and two populations with different decomposition methods are adopted to coevolve with each
other. Among them, one population aims to achieve fast convergence while the other one puts more effort for
maintaining the complementarily diverse solutions based on the convergence population. In the experimental
studies, CoMOLS/D is compared with four decomposition-based local search heuristics, i.e., MOEA/D-LS (WS,
TCH, PBI and iPBI); a dominance-based local search, i.e., 𝜖-MOEA-LS; an indicator-based local search, i.e., IBEA-
LS; and a state-of-the-art local search with dual populations, i.e., ND/DPP-LS; on two well-known CMOPs. The
experimental results show that CoMOLS/D significantly outperforms the compared algorithms on most of the
test instances.

1. Introduction

The combinatorial MOPs (CMOPs), the multiobjective traveling
salesman problem (TSP) [1–3], multiobjective vehicle routing problem
[4,5], multiobjective flowshop scheduling problem [6], multiobjec-
tive knapsack problem [7] and multiobjective software next release
problem [8,9], have been taking significant interest. In the field of mul-
tiobjective optimization, the set of all the Pareto-optimal solutions is
usually called the Pareto set (PS) and the image of (PS) on the objective
vector space is called the Pareto front (PF). Most CMOPs are  -hard
by nature, which means the exact methods are unable to find the PF
of a CMOP within the polynomial time. Under such circumstances,
meta/-heuristics, such as iterative local search [3], guided local search
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[10], tabu search [11], variable neighborhood search [12], ant colony
optimization [13] and simulated annealing [14], are widely used to
approximate the PF within reasonable execution time.

The decomposition methods have been extensively adopted for
CMOPs [15–19]. They divide an MOP into a number of single-objective
subproblems using aggregation functions. The derived subproblems can
then be solved by the single-objective heuristics in a collaborative
way. Multiobjective evolutionary algorithm based on decomposition
(MOEA/D) [17] is a well-known example operating through decom-
position. In MOEA/D, three decomposition approaches have been used,
including Weighted Sum (WS), Tchebycheff (TCH) and Penalty-based
Boundary Intersection (PBI) [20].

https://doi.org/10.1016/j.swevo.2019.05.007
Received 7 November 2018; Received in revised form 5 April 2019; Accepted 20 May 2019
Available online 3 June 2019
2210-6502/© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.swevo.2019.05.007
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/swevo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2019.05.007&domain=pdf
mailto:xinye@nuaa.edu.cn
mailto:dwgong@vip.163.com
mailto:zfan@stu.edu.cn
https://doi.org/10.1016/j.swevo.2019.05.007


X. Cai et al. Swarm and Evolutionary Computation 49 (2019) 178–193

Fig. 1. The selected solutions using different decomposition approaches are given in the figure. In each subfigure, “xi”, denoted by a small circle, indicates one
solution and “𝜆j”, denoted by an arrow, represents a direction vector. Dashed lines represent their contour lines. Solid circles (“•”) represent the selected solutions
by the first set of direction vectors (𝜆1 - 𝜆4) and solid triangles (“△”) represent the selected solution by the second set of direction vectors (𝜆5 - 𝜆8). The unselected
solutions are denoted by hollow circles (“◦”).

Local search (LS) plays a key role in tackling a wide variety of  -
hard combinatorial optimization problems. LS maintains one candidate
solution and iteratively improves it by exploring its neighbors in the
search space of solutions. During the optimization process, the current
solution is replaced by its better neighbor.

Naturally, LS can be extended to CMOPs. One good example is
Pareto LS (PLS) [21]. It works by exploring the neighbors of a non-
dominated solution set and update the population by newly gener-
ated efficient solutions. Several variants of PLS have been proposed
to tackle the different CMOPs [22,23]. A state-of-the-art multiobjective
memetic algorithm based on decomposition (MOMAD) [15] is proposed
by hybridizing MOEA/D-LS (WS) with PLS. However, both classical PLS
and MOMAD store all the nondominated solutions for LS, which may
bring unbearable time and space complexity.

However, MOEA/D may fail to obtain a well-distributed PF approx-
imation due to the following two reasons [24]. First, MOEA/D (WS,
TCH or PBI) tends to be very sensitive to the shapes of PFs. It can han-
dle PFs with the concave PFs but incompetent to handle PFs with the
convex PFs well. Second, in MOEA/D, the same solution is very likely
to associate with multiple subproblems, which may lead to the loss of
diversity [25]. Fig. 1a–c shows the selected solutions in the MOEA/D
framework using WS, TCH or PBI. It can be observed that they are
unable to maintain a well-distributed solution set. In addition, when
facing the combinatorial MOPs, maintaining a set of diversely popu-
lated solutions may become even harder as the discrete search space
may lead to very discrete PFs.

To address the aforementioned issues, an inverted PBI (iPBI) has
been proposed to tackle the MOPs with extremely convex PFs in Ref.
[26]. However, to achieve well-distributed solution set, the use of iPBI
still needs to assume the convexity of PFs. Algorithms with dual pop-
ulations can be adopted to alleviate such an issue. A state-of-the-art
algorithm, called NP/DPP [27], was proposed with a dual-population
paradigm for multiobjective optimization. Two coevolutionary popu-
lations using Pareto- and decomposition-based selection methods have
been adopted for complementing each other. More recently, a MOEA/D
variant, called MOEA/D-MR [28], with two sets of direction vectors has
been proposed for MOPs with both convex and concave PFs. However, it
maintains two populations with prefixed direction vectors. The adjust-
ment of direction vectors in MOEA/D is also an alternative for achiev-
ing well-distributed solution set. For instance, an algorithm containing
two types of adjustments for the direction vectors (MaOEA/D-2ADV)
[29] is designed for MOPs with irregular PFs. A preference-inspired
co-evolutionary algorithm using weight vectors (PICEA-w) [30] was
proposed. It adopts the concept of coevolution between solutions and
randomly generated direction vectors, which makes it less sensitive
to the geometry of PFs. Another interesting work, called AdaW [31],
adapts the weights during the evolutionary process for Pareto fronts
with various shapes. Nevertheless, all the aforementioned algorithms
are designed to handle the continuous MOPs. One very recent work

[32] designed GWS-PLS algorithm based on grid which has better per-
formance on combinatorial many-objective optimization. Nevertheless,
very little effort has been made to design algorithms adapted to the
geometry of PFs for CMOPs.

In this paper, a coevolutionary multiobjective local search based on
decomposition (CoMOLS/D) is proposed to address CMOPs. Different
from the previous work, CoMOLS/D coevolves two populations with
two sets of direction vectors for balancing convergence and diversity.
CoMOLS/D intends to deliver a well-distributed solution set, as shown
in Fig. 1d.

The remainder of this paper is organized as follows. To make the
paper self-contained, Section 2 gives some preliminary concepts on
CMOPs and the background of coevolutionary algorithms. Section 3
details CoMOLS/D. Section 4 describes the test instances used to vali-
date CoMOLS/D. Experimental studies and discussions are presented in
Section 5. The sensitivity tests on the parameter 𝜃 is conducted; and
a variant of CoMOLS/D is presented in this section as well. Section 6
concludes this paper and gives some future research directions.

2. Preliminaries

This section presents the background knowledge on CMOPs as well
as four common decomposition methods. The related works on coevo-
lutionary algorithms are also discussed in this section.

2.1. Basic definitions

A multiobjective optimization problem (MOP) can be formally stated
as follows:

minimize F(x) = (f1(x),… , fm(x)) (1)

subject to x ∈ Ω

where Ω is the decision space, F ∶ Ω → ℝm consists of m real-valued
objective functions which conflict with each other. The attainable objec-
tive set is {F(x) ∣ x ∈ Ω}. In the case when Ω is a finite set, (1) is called
a combinatorial MOP (CMOP).

Let u,v ∈ ℝm, u is said to dominate v, denoted by u ≺ v, if and
only if ui ≤ vi for every i ∈ {1,… ,m} and uj < vj for at least one
index j ∈ {1,… ,m}.1 Given a set S in ℝm, a solution in it is called
non-dominated in S if no other solution in S can dominate it. A solu-
tion x∗ ∈ Ω is Pareto-optimal if F(x∗) is non-dominated in the attain-
able objective set. F(x∗) is then called a Pareto-optimal (objective) vec-
tor. In other words, any improvement in one objective of a Pareto

1 In the case of maximization, the inequality signs should be reversed.
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Algorithm 1 Main framework.

Algorithm 2 Local search (LOCALSEARCH).

optimal solution must lead to deterioration to at least one another
objective.

The ideal and nadir point (objective vectors) can be used to define
the ranges of PFs. The ideal objective vector z∗ = (z∗1,… , z∗m)T can be
calculated by

z∗j = min
x∈Ω

fj(x), j ∈ {1,… ,m}. (2)

The nadir objective vector znad = (znad
1 ,… , znad

m )T can be calculated
by

znad
j = max

x∈PS
fj(x), j ∈ {1,… ,m}. (3)

2.2. Decomposition approaches in MOEA/D

Four common decomposition methods [20], such as Weighted
Sum, Tchebycheff, Penalty-based Boundary Intersection and inverted
Penalty-based Boundary Intersection (iPBI), can be defined as follows.

Let 𝝀
i = (𝜆i

1,… , 𝜆i
m)T be a direction vector for ith subproblem,

where 𝜆i
j ≥ 0, j ∈ 1,… ,m and

∑m
j=1 𝜆

i
j = 1.
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Algorithm 3 Coevolving direction vectors (CoDVs).

1. Weighted Sum (WS) Approach: The ith subproblem is defined as

minimize gws(x ∣ 𝝀i) =
m∑

j=1
𝜆i

jfj(x)

subject to x ∈ Ω .

(4)

2. Tchebycheff (TCH) Approach: The ith subproblem is defined as

minimize gtch(x ∣ 𝝀i, z∗) = max
1≤j≤m

{|fj(x) − z∗j | · 𝜆i
j}

subject to x ∈ Ω ,

(5)

where Ω is the feasible region, but 𝜆i
j = 0 is replaced by 𝜆i

j = 10−6

to avoid the numerical error on a digital computer in Eq. (5).
3. Penalty-based Boundary Intersection (PBI) Approach: This

approach is a variant of Normal-Boundary Intersection approach
[33]. The ith subproblem is defined as

minimize gpbi(x ∣ 𝝀i
, z∗) = di

1 + 𝜃di
2 ,

di
1 = (F(x) − z∗)T · 𝝀i∕‖𝝀i‖ ,

di
2 = ‖F(x) − z∗ − (𝝀i∕‖𝝀i‖) · di

1‖
subject to x ∈ Ω ,

(6)

where ∥ • ∥ denotes L2-norm and 𝜃 is the penalty parameter.
4. Inverted Penalty-based Boundary Intersection (iPBI) Approach:

This approach is a variant of PBI [26]. The ith subproblem is defined
as

maximize gipbi(x ∣ 𝝀i, znad) = di
1 − 𝜃di

2 ,

di
1 = (znad − F(x))T · 𝝀i∕‖𝝀i‖ ,

di
2 = ‖znad − F(x) − (𝝀i∕‖𝝀i‖) · di

1‖
subject to x ∈ Ω .

(7)

2.3. Coevolutionary algorithms

Coevolution is a reciprocal evolutionary exchange between species
that have interaction with each other. As a natural extension of the
traditional EAs, coevolutionary algorithms (CAs) arise from the biolog-
ical observations that coevolving several species is more in line with
the nature than evolving a group of individuals within a single species
[34–36].

Over the past two decades, there has been an increasing amount
of interest of adopting the coevolution techniques to address MOPs
[37,38]. The typical CA involves the use of multiple groups of species
(whose individuals are spatially or globally distributed) for a MOP.
As species can either compete or cooperate during the search process,
CAs can be classified into two types - competitive or cooperative. An
example of competitive coevolutionary framework is the predator-pray
model [39,40], in which a predator hunts a prey and the weakest prey
is eliminated by the predator. On the other hand, in the framework
of cooperative coevolution, individuals are rewarded when they have
good performance working with other individuals and vice versa. Under
this model, each subpopulation represents a piece of the original prob-
lem, and all these subpopulations coevolve for better performance grad-
ually. In Ref. [41], each objective to be optimized has one different sub-
population; and in Ref. [30], a weight set and a solution set are coevolv-
ing with each other. These are typical examples for cooperative MOEAs
based on decomposition in the objective space. In addition, some work
[42,43] has also been conducted for the coevolution by the decompo-
sition in the decision space, particularly for dealing with large-scale
optimization problems. More recently, a bi-criterion evolution frame-
work [44] has been proposed. It contains one population selected with
Pareto criterion and the other selected with Non-Pareto criterion for
coevolution.
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Algorithm 4 Updating populations (UpdatePops).

Fig. 2. The coevolutionary framework of two populations in CoMOLS/D.

3. The framework of CoMOLS/D

In this section, the pseudo code of our proposed algorithm, coevolu-
tionary multiobjective local search based on decomposition (CoMOLS/D) is
given in Algorithm 1. It maintains two populations: the first population
P and the secondary population Q.

The first population P adopts WS with a set of uniformly prede-
fined direction vectors W1, while the secondary population Q adopts
iPBI, whose direction vectors W2 coevolve with P. In addition, two
populations coevolve by updating each other. In CoMOLS/D, the goal
of the first population P using WS with the predefined direction vec-
tors aims to achieve fast convergence; while the secondary popula-
tion Q using iPBI with the dynamic direction vectors aims for the
complementarily diverse solutions based on the first population P.
The coevolution of two populations in CoMOLS/D is illustrated in
Fig. 2.

CoMOLS/D contains four major steps: 1) local search on P, 2) coevo-
lution of direction vectors of Q with P, 3) local search on Q and 4)
update population P and Q. Each step is detailed as follows.

3.1. Local search

The local search procedure in CoMOLS/D is presented in Algo-
rithm 2. Both P and Q use the same local search heuristic, which
is presented as follows. For each “unsearched” solution x (i.e.,
“isSearched” = = False) in P or Q, its neighborhood N(x) is explored;

then each solution y ∈ N(x) is used to update the population based
on either WS or iPBI. Once a solution in the population is updated, it
is marked as “un-searched”(i.e., “isSearched” = = False). After all the
individuals are explored (i.e., “isSearched” = = True), the local search
procedure is terminated.

3.2. Coevolving the direction vectors

The primary motivation of the Algorithm 3 is to insert new direction
vectors W2 of the secondary population Q in the sparse region based on
the distribution of the first population P.

As the size of P
⋃

Q is N, the number of the second direction vector
set W2 is L = N− |P|. Each solution in P is associated with its nearest
neighbor based on Euclidean distance. All the individuals are divided
into a set of clusters (denoted by ), using clustering methods, such
as union-find algorithm [45] (line 2). After that, the centroids of all
the clusters, denoted by {u1,… ,uk}, could be computed (line 3). If

the number of clusters is insufficient (i.e.,

(
k

2

)
≤ L), which indicates

that the number of all the direction vectors inserted between every two
centroids is less then L, one individual randomly selected from P is
considered the centroid of a new cluster. This process is repeated until
the number of clusters becomes sufficient (lines 4–8).

Note that the indexes of all the centroid pairs are denoted by

pair_index = {(1,2),… , (i, j),… , (k − 1, k)}. (8)

The midpoints of all the centroid pairs are denoted by V and the corre-
sponding Euclidean distances between every two of them are denoted
by D (line 9). Then, L midpoint in V that has the least distance in D is
selected. Each of them and the Nadir point will form L direction vectors
(i.e.,W2) (lines 10–16). For each direction vector in W2, the solution in
P
⋃

Q that has the best aggregation function value, is associated with
it, based on Algorithm 4. All the solutions associated with W2 form a
new population Q for local search.

3.3. Updating populations

Algorithm 4 presents the updating of population P with its direc-
tion vectors W1 or Q with its direction vectors W2. It aims to choose
the best solution for each direction vector according to its aggregate
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Table 1
Mean and standard deviation of normalized HV obtained by CoMOLS/D, MOEA/D-LS (WS, TCH, PBI and iPBI), 𝜖-MOEA-LS, IBEA-LS and ND/DPP-LS.
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Table 2
Mean and standard deviation of IGD obtained by CoMOLS/D, MOEA/D-LS (WS, TCH, PBI and iPBI), 𝜖-MOEA-LS, IBEA-LS and ND/DPP-LS.
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Table 3
Mean and standard deviation of DIR obtained by CoMOLS/D, MOEA/D-LS (WS, TCH, PBI and iPBI), 𝜖-MOEA-LS, IBEA-LS and ND/DPP-LS.
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Table 4
Comparisons of CoMOLS/D with MOEA/D-LS (WS, TCH, PBI and iPBI), 𝜖-MOEA-LS, IBEA-LS and ND/DPP-LS in terms of C-metric.

Instance MOEA/D-LS [17] 𝜖-MOEA-LS [57] IBEA-LS [58] ND/DPP-LS [27]

WS TCH PBI iPBI

C(A,B) C(B,A) C(A,B) C(B,A) C(A,B) C(B,A) C(A,B) C(B,A) C(A,B) C(B,A) C(A,B) C(B,A) C(A,B) C(B,A)

ClusterAB100 70.91 13.15 27.29 48.86 48.86 26.30 31.66 43.02 97.34 3.38 100 0.00 26.17 38.21
ClusterAB300 78.11 14.89 38.40 27.17 63.53 21.44 59.85 23.24 100 0.00 100 0.00 44.51 25.33
euclidAB100 95.22 1.11 53.47 37.30 67.74 21.27 60.71 20.48 97.45 1.43 100 0.00 32.39 49.43
euclidAB300 82.47 8.58 54.39 19.09 88.62 7.33 46.30 33.20 100 0.00 100 0.00 73.68 20.30
kroAB100 84.67 6.40 46.52 39.52 49.44 28.64 55.06 36.00 93.70 3.30 100 0.00 35.63 28.46
kroAB200 87.67 6.32 44.35 27.12 52.31 30.12 51.61 30.78 100 0.00 100 0.00 54.17 34.04
kroAB300 86.60 8.60 40.13 28.57 94.12 2.04 66.49 16.18 100 0.00 100 0.00 31.61 29.38
euclidABC100 14.07 29.10 64.70 2.63 64.51 5.33 99.68 0.00 97.81 0.00 100 0.00 57.21 13.93
kroABC100 13.70 28.86 68.29 2.36 59.71 3.93 97.31 0.02 100 0.00 100 0.00 52.49 6.18
mQAP_50_2(-0.3) 88.78 3.17 50.76 42.25 65.64 26.76 59.43 31.69 67.72 32.66 80.36 8.08 43.32 37.42
mQAP_50_2(0.0) 85.71 7.62 52.26 41.59 73.68 20.00 33.22 55.24 91.05 3.17 92.86 4.52 63.48 33.59
mQAP_50_2(0.3) 97.65 0.36 43.79 49.64 52.17 32.14 42.77 68.21 75.78 21.45 99.40 0.00 32.36 47.68
mQAP_60_2(-0.3) 95.24 0.69 41.69 57.04 54.07 30.72 42.45 27.94 100 0.00 100 0.00 22.04 44.07
mQAP_60_2(0.0) 88.37 0.63 33.25 57.99 15.85 61.76 24.28 63.32 95.45 1.22 62.88 25.84 34.26 53.42
mQAP_60_2(0.3) 88.37 1.92 51.63 40.38 75.73 21.15 44.77 36.22 97.42 0.00 91.49 7.09 52.68 22.03
mQAP_30_3(-0.3) 49.30 18.79 40.49 9.97 60.24 7.22 91.28 0.44 96.40 0.08 34.84 9.44 42.49 10.37
mQAP_30_3(0.0) 52.10 13.97 46.61 13.37 61.57 10.55 84.23 0.94 97.00 0.00 37.32 9.69 36.49 16.37
mQAP_30_3(0.3) 50.00 18.80 32.08 20.78 55.94 14.19 78.81 2.69 92.24 0.20 68.47 4.72 45.39 22.45
mQAP_40_3(-0.3) 49.76 19.24 75.43 3.84 84.29 3.59 94.05 2.12 99.16 0.00 33.30 14.18 85.33 4.57
mQAP_40_3(0.0) 47.24 14.94 55.85 9.25 69.43 3.56 96.46 0.24 100 0.00 36.51 6.12 45.85 6.85
mQAP_40_3(0.3) 45.25 19.98 58.99 8.06 74.13 7.76 97.38 0.05 100 0.00 32.46 9.74 62.34 5.26

Better C-metric values are highlighted in boldface.
A corresponds to CoMOLS/D; B corresponds to the compared algorithm.

approach. First, a new population TQ is constructed by associating a
random solution in TP to each direction vector in W (i.e. W1 or W2).
The individuals in TP are seen as the updating information for TQ. As
the algorithm shows, then every subproblem in TQ is checked to see if
the solution can be replaced by any individuals in population TP based
on the aggregate function.

4. Experimental setup

This section is devoted to the experimental setup. Two combinato-
rial MOPs, i.e., multiobjective traveling salesman problem (mTSP) and
multiobjective quadratic assignment problem (mQAP) are firstly intro-
duced, followed by the explanation of the performance metrics adopted

in the experimental studies. Finally, the parameter settings of the com-
pared algorithms are also given in detail.

4.1. Multiobjective traveling salesman problem

In the traveling salesman problem (TSP), a salesman tends to find
the shortest route of n cities, starting and ending at the same city and
visiting each of the other cities only once. The TSP could be defined
as a graph G = (V,E), where V = {1,…, n} is the set of cities, and
E = {e = (i, j) ∣ i, j ∈ V} is the set of edges.

For multiobjective TSP (mTSP), each edge e has m cost values. Each
feasible solution contains all the cities in V which can form a Hamilto-
nian cycle. Mathematically, the mTSP can be formulated as:

Fig. 3. The nondominated solutions obtained by eight algorithms in the run with the median HV values on euclidAB100.
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Fig. 4. The nondominated solutions obtained by eight algorithms in the run with the median HV value on kroAB200.

Fig. 5. The nondominated solutions obtained by eight algorithms in the run with the median HV value on mQAP_50_2(-0.3).

minimize  k(𝝅) =
n−1∑
j=1

c(k)
𝜋(j),𝜋(j+1) + c(k)

𝜋(1),𝜋(n),

subject to k = 1,… ,m

(9)

where 𝝅 = (𝜋(1),…, 𝜋(n)) is a permutation of cities; c(k)s,t is the
kth(1 ≤ k ≤ m) cost of the edge between city s and city t; and m is the
number of objectives to be optimized. In our experiments, m is equal to
2 or 3.

4.2. Multiobjective quadratic assignment problem

The multiobjective quadratic assignment problem (mQAP) models
any sort of facilities layout problem in which the minimization of mul-
tiple simultaneous flows is required. Given n facilities and n locations,

the mQAP consists of a single n × n distance matrix A where ai,j is the
distance between locations i and j, and m distinct n × n flow matrices
B(k) (1 ≤ k ≤ m), where b(k)r,s is the kth flow between facilities r and s.
The mQAP can be stated as follows:

minimize  k(𝝅) =
n∑

i=1

n∑
j=1

ai,jb
(k)
𝜋(i),𝜋(j),

subject to k = 1,… ,m

(10)

where 𝝅 is a feasible solution constructed by a permutation of n facili-
ties.

4.3. Test instances

Nine mTSP instances are considered in the experiments. All these
instances with the prefix “kro”, “euclid” or “Cluster” are collected from
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Fig. 6. The nondominated solutions obtained by eight algorithms in the run with the median HV value on mQAP_40_3(-0.3).

Fig. 7. The average normalized HV values vs. the number of local search times for eight algorithms over 31 runs.

Refs. [21,46,47] as the test instances.2 They are named as follows: for
example, “kroABC100” means that the instance is “kro” with 100 cities
and three objectives (‘A’, B′ and ‘C’ ). All these instances are symmetric
version of the TSP, which means that the distance from node i to node
j is the same as that from node j to node i.

2 Files are downloaded from https://sites.google.com/site/thibautlust/
research/multiobjective-tsp.

For mQAP, all the instances were generated according to Ref.
[48] with n = 50,60 for bi-objective and n = 30,40 for tri-objective.
Moreover, the parameter 𝜉 can be used to control the correlation
between the flow matrices in mQAP instances [49] (𝜉 ∈ {−0.3,0,0.3}).
An instance named “mQAP_60_2 (0.3)” indicates that it is a bi-objective
QAP, in which the number of facilities (locations) n is 60 and the cor-
relation parameter 𝜉 is set to 0.3.
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Table 5
The average CPU time (in second) spent by eight compared algorithms.

Instance CoMOLS/D MOEA/D-LS(WS) [17] 𝜖-MOEA-LS [57] IBEA-LS [58] ND/DPP-LS [27]

WS TCH PBI iPBI

ClusterAB100 53.1 14.0 66.5 50.4 66.4 131.7 195.2 82.5
ClusterAB300 156.6 40.1 247.8 199.2 258.9 772.0 735.0 294.7
euclidAB100 59.9 13.6 65.7 59.6 68.0 177.1 218.3 90.2
euclidAB300 177.9 33.8 228.2 218.5 240.7 604.8 692.1 317.0
kroAB100 49.1 11.9 63.8 64.6 69.2 176.0 208.7 97.4
kroAB200 58.4 15.7 76.3 82.8 87.5 508.8 460.7 108.7
kroAB300 134.1 40.4 212.4 225.3 260.0 725.7 687.2 282.4
euclidABC100 194.7 70.5 201.7 151.9 255.9 247.4 219.5 269.5
kroABC100 159.2 75.2 187.0 187.2 334.6 241.4 217.0 174.6
mQAP_50_2(-0.3) 8.6 1.3 7.2 7.2 6.7 79.8 101.2 7.5
mQAP_50_2(0.0) 7.2 1.2 7.6 7.2 6.0 79.3 106.2 8.1
mQAP_50_2(0.3) 6.9 1.2 5.8 5.7 5.9 74.6 96.9 6.7
mQAP_60_2(-0.3) 18.0 2.7 15.5 15.0 13.8 153.0 135.6 19.3
mQAP_60_2(0.0) 19.1 2.8 18.4 13.6 19.0 154.1 141.0 20.8
mQAP_60_2(0.3) 16.8 2.6 16.8 14.1 14.0 149.7 144.3 17.3
mQAP_30_3(-0.3) 2.5 0.6 2.1 2.2 3.1 81.7 86.2 2.2
mQAP_30_3(0.0) 3.2 0.5 2.2 2.1 2.9 77.6 83.8 2.1
mQAP_30_3(0.3) 1.7 0.5 1.8 1.7 2.4 55.6 78.7 1.8
mQAP_40_3(-0.3) 9.4 1.8 6.6 6.4 8.1 156.0 127.9 5.9
mQAP_40_3(0.0) 8.4 1.7 6.2 6.4 7.6 170.9 121.8 6.3
mQAP_40_3(0.3) 10.3 1.8 7.4 6.1 8.3 174.0 123.0 7.6

All the algorithms were tested on a PC with intel(R) Core(TM) i7-7700 CPU 3.6 GHz.
All the algorithms were coded in Java and based on the framework of jMetal [56].

Fig. 8. Sensitivity test of the penalty parameter 𝜃 in CoMOLS/D.

4.4. Performance metrics

4.4.1. Hypervolume (HV)
Suppose that r∗ = (r∗1 , r

∗
2 ,… , r∗m)T is a reference point in the objec-

tive space which is dominated by any Pareto optimal objective vectors
in a PF approximation S. The HV value of S (with regard to r∗) mea-
sures the volume of region in the objective space dominated by S and
bounded by r∗ [50].

HV(S) = Leb

(⋃
x∈S

[f1(x), r∗1] ×…[fm(x), r∗m]
)

(11)

where Leb(•) indicates the Lebesgue measure. HV can measure the
approximation in terms of both convergence and diversity. Obviously,
the higher the HV value, the better the approximation is. In this paper,
the HV value of S is calculated based on Eq. (11) with reference point
(1.1,1.1,…)T after normalizing S.

4.4.2. Set coverage (C-metric)
Let 𝔸 and 𝔹 be two different sets of PF approximation of a MOP,

C(𝔸,𝔹) indicates the percentage of the solutions in 𝔹 that are domi-

nated by at least one solution in 𝔸:

C(𝔸,𝔹) = |{u ∈ 𝔹 ∣ ∃v ∈ 𝔸 ∶ v ≺ u}||𝔹| × 100% (12)

where C(𝔸,𝔹) = 0 means that no solution in 𝔹 is dominated by any one
in 𝔸 while C(𝔸,𝔹) = 100 means that each solution in 𝔹 are dominated
by at least one in 𝔸. The indicators of C(𝔸,𝔹) and C(𝔹,𝔸) together can
show the relative convergence between 𝔸 and 𝔹 [50].

4.4.3. Inverted generational distance (IGD)
Let P∗ be a set of points uniformly sampled over the true PF, and S

be the set of solutions obtained by an EMO algorithm. The IGD [51,52]
value of S is computed as:

IGD(S,P∗) =

∑
x∈P∗

dist(x, S)

|P∗| (13)

where dist(x, S) is the Euclidean distance between a point x ∈ P∗ and
its nearest neighbor in S, and |P∗| is the cardinality of P∗. IGD calcu-
lates an average minimum distance from each point in P∗ to those in S,
which measures both convergence and diversity of a solution set S. The
lower the IGD value is, the better the quality of S is. IGD could measure
both convergence and diversity like HV, but it requires the true Pareto

189



X. Cai et al. Swarm and Evolutionary Computation 49 (2019) 178–193

fronts. For COMPs, the true PFs are always unknown, so we set all the
nondominated solutions delivered by all the eight compared algorithms
over all the 31 runs as the approximation PFs.

4.4.4. Diversity indicator based on reference vectors (DIR)
Given a Pareto approximation S that contains N solutions in m-

dimensional objective space, DIR [53] is used to estimate the diversity
of S. Let V =

{
𝜆1, 𝜆2,… , 𝜆M}

be a set of uniformly generated refer-
ence vectors. The coverage of each solution in S is obtained by comput-
ing the number of nearest reference vectors. Suppose a coverage vector
c = (c1, c2,… , cN)T with regard to S is obtained, the DIR value of S is
computed as:

DIR =

√
1
N
∑N

i=1 (ci − mean(c))2

M
N

√
N − 1

(14)

where mean(c) is the average value of c. DIR is a unary diversity indi-
cator to estimate the diversity of PF approximations for multi/many-
objective optimization.

4.5. Parameter settings

The population sizes of all the compared algorithms are set to 300
for both bi-objective and tri-objective problems. The maximal number
of iterations is set to 100 for bi-objective problems and 200 for tri-
objective ones. Each algorithm was run 31 times independently for each
instance.

In the decomposition-based approaches, a set of direction vec-
tors W ∶ {𝝀1,𝝀2,… ,𝝀N} is uniformly generated by Das and Dennis’s
method [54]. The number of direction vectors N is controlled by a

parameter H: N =
(

H + m − 1

m − 1

)
, where m is the number of objectives

with a uniform spacing 𝛿 = 1∕H. For the bi-objective problems, if 300
direction vectors is needed, we set H = 299. As for tri-objective ones
(m = 3), if 300 direction vectors are required, then we set H = 23.

To maintain a similar population size with MOEA/D-LS, IBEA-LS
and CoMOLS/D, 𝜖 in 𝜖-MOEA-LS is set to 100 for bi-objective mTSP
instances and 1,000 for tri-objective mTSP instances. For mQAP, 𝜖 is
set to 700,000 for bi-objective instances and 3,000,000 for tri-objective
ones. NSGA-II and MOEA/D(TCH) are chosen as one Pareto-based and
one decomposition-based method embedded in ND/DPP-LS, where the
Pareto-based population size is set to 150 for all the test instances,
the decomposition-based population size is set to 150 for bi-objective
instances and 153 for tri-objective instances for uniformity. In the
decomposition-based algorithms, the local search is conducted on the
solution of each subproblem for replacing its neighbors. In the non-
decomposition-based algorithms, N solutions are selected from the off-
spring obtained by conducting local search on their parents.

For mTSP and mQAP instances, 2-opt neighborhood approach
[22,55], which swaps two elements of the permutation for generating
the neighboring solutions, is adopted for the neighborhood N(x) of each
solution x for all the compared algorithms. The penalty parameter is set
to 5.0 for MOEA/D-LS (PBI); 1.0 for MOEA/D-LS (iPBI) and CoMOLS/D
on all the bi-objective problems and 0.5 on all the tri-objective problem.

All the compared algorithms are implemented based on the open
source MOEA platform, jMetal [56]. The fundamental data structures
are the same for all the compared algorithms.

5. Experimental results and discussions

In this section, the following experiments are conducted to test the
performance of CoMOLS/D:

• comparisons with MOEA/D-LS (WS, TCH, PBI and iPBI), 𝜖-MOEA-LS
[57] and IBEA-LS [58] in terms of HV, IGD, DIR, C-metric and CPU
time;
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Table 7
CoMOLS/D (iPBI) vs. CoMOLS/D (iTCH) in terms of C-metric and HV.

Instance C-metric HV

C(A,B) C(B,A) CoMOLS/D (iPBI) CoMOLS/D (iTCH)

ClusterAB100 31.03 50.32 9.491E-01 (1.42E-03) 9.495E-01 (1.28E-03)≈

ClusterAB300 13.16 81.51 9.750E-01 (1.91E-03) 9.772E-01 (1.70E-03)+

euclidAB100 41.47 43.81 7.966E-01 (1.53E-03) 7.964E-01 (1.62E-03)≈

euclidAB300 19.77 76.90 9.128E-01 (1.59E-03) 9.144E-01 (1.41E-03)+

kroAB100 51.13 32.80 8.697E-01 (2.33E-03) 8.701E-01 (1.54E-03)≈

kroAB200 51.11 40.93 9.742E-01 (1.66E-03) 9.747E-01 (2.14E-03)≈

kroAB300 23.70 61.22 9.482E-01 (1.63E-03) 9.496E-01 (1.04E-03)+

euclidABC100 22.30 22.23 6.682E-01 (1.76E-03) 6.669E-01 (1.44E-03)-

kroABC100 23.84 20.38 7.671E-01 (1.45E-03) 7.658E-01 (1.49E-03)-

mQAP_50_2(-0.3) 50.96 52.82 5.715E-01 (7.07E-03) 5.706E-01 (6.11E-03)≈

mQAP_50_2(0.0) 76.25 9.21 5.437E-01 (5.41E-03) 5.404E-01 (6.17E-03)≈

mQAP_50_2(0.3) 61.79 43.21 5.625E-01 (8.83E-03) 5.606E-01 (8.36E-03)≈

mQAP_60_2(-0.3) 65.51 28.87 5.374E-01 (6.30E-03) 5.378E-01 (5.17E-03)≈

mQAP_60_2(0.0) 73.75 20.38 5.103E-01 (5.94E-03) 5.087E-01 (5.99E-03)≈

mQAP_60_2(0.3) 28.43 63.46 5.417E-01 (5.07E-03) 5.395E-01 (4.69E-03)≈

mQAP_30_3(-0.3) 29.86 33.85 4.193E-01 (5.79E-03) 4.185E-01 (6.25E-03)≈

mQAP_30_3(0.0) 34.33 31.40 2.953E-01 (3.60E-03) 2.951E-01 (4.61E-03)≈

mQAP_30_3(0.3) 30.11 40.22 5.904E-01 (9.00E-03) 5.884E-01 (9.65E-03)≈

mQAP_40_3(-0.3) 32.78 34.60 2.783E-01 (4.62E-03) 2.791E-01 (4.25E-03)≈

mQAP_40_3(0.0) 22.16 36.29 2.866E-01 (4.81E-03) 2.872E-01 (4.70E-03)≈

mQAP_40_3(0.3) 26.78 37.22 2.916E-01 (4.02E-03) 2.930E-01 (4.75E-03)≈

1. A corresponds to CoMOLS/D (iPBI). B corresponds to CoMOLS/D (iTCH).
2. ‘+ ’, ‘−’ or ‘≈’ indicate that the HV values obtained by the corresponding algorithm is significantly
better, significantly worse or similar to that of CoMOLS/D (iPBI) on this test instance, respectively
(wilcoxon’s rank sum test at the 0.05 significance level).

• sensitivity test on the penalty parameter 𝜃 in CoMOLS/D;
• sensitivity test on |P| in CoMOLS/D;
• iPBI vs. iTCH in CoMOLS/D.

5.1. Performance results

The performance of the nondominated sets obtained by all the eight
compared algorithms on nine mTSP and twelve mQAP instances, in
terms of HV, IGD and DIR are presented in Tables 1–3 respectively. It
can be observed that CoMOLS/D significantly outperforms other seven
algorithms on all nine mTSP instances except for “euclidABC100” and
“kroABC100” in terms of DIR. As for the mQAP instances, CoMOLS/D
achieves the best performance on all the tri-objective ones except
for “mQAP_30_3(0.3)” and “mQAP_40_3(-0.3)” in terms of HV and
IGD. For bi-objective mQAP instances, CoMOLS/D, MOEA/D-LS (TCH),
MOEA/D-LS (iPBI) and ND/DPP-LS have very similar performance.

The convergence performance of all the eight algorithms on all the
test instances in terms of C-metric are shown in Table 4. It is clear to
see that CoMOLS/D has better convergence performance on most of the
test instances.

To visualize the final performance of all the eight compared algo-
rithms, their final nondominated solutions on euclidAB100, kroAB200,
mQAP 50 2(-0.3) and mQAP 40 3(-0.3) are illustrated in Figs. 3–6. In
these figures, all the nondominated solutions delivered by all the eight
compared algorithms over all the 31 runs, marked in red dots (“.·.”) are
plotted as the substitution of a reference PF. It can be seen clearly that
the solution set obtained by CoMOLS/D are more widely and uniformly
distributed. The solution sets derived by MOEA/D-LS (WS) are widely
but unevenly distributed. The solution sets obtained by MOEA/D-LS
(TCH, PBI and iPBI) are uniformly but narrowly distributed. Both the
convergence and diversity of the nondominated solutions derived by
𝜖-MOEA-LS and IBEA-LS are not very satisfactory (see Figs. 3–6).

In addition, the convergence plots among all the eight
algorithms over “ClusterAB100”, “kroAB300”, “euclidABC100”,
“mQAP_60_2(0.0)”, “mQAP_30_3(-0.3)”, and “mQAP_40_3(0.3)” are
illustrated in Fig. 7. It can be observed that CoMOLS/D converges very
fast and always achieves the best final performance in terms of HV.

The CPU time used by each algorithm for each run is recorded
and listed in Table 5. In general, all the decomposition-based algo-
rithms run faster than the domination-based and indicator-based algo-
rithms on all the test instances. Among them, MOEA/D-LS (WS) has the
fastest convergence speed for all the instances. As for mTSP instances,
CoMOLS/D uses less time than MOEA/D-LS (TCH, PBI and iPBI) except
for “ClusterAB100”, “euclidAB100” and “euclidABC100”. For mQAP
instances, CoMOLS/D and MOEA/D-LS (TCH, PBI and iPBI) consume
very similar amount of CPU time.

5.2. Sensitivity test on penalty parameter 𝜃

In CoMOLS/D, a penalty parameter 𝜃 is used to control the balance
of diversity and convergence in PBI and iPBI. To investigate its sensi-
tivity on CoMOLS/D, the performance of CoMOLS/D with 𝜃 = (0.01,
0.1, 0.5, 1.0, 2.0, 10.0, 50.0) is tested. Fig. 8 shows the performance of
CoMOLS/D in terms of the mean HV values, with different 𝜃 values on
“ClusterAB100”, “kroABC100” and “mQAP_30_3(0.0)”.

It can be observed that a larger value of 𝜃 usually leads to the slower
convergence speed for CoMOLS/D. CoMOLS/D achieves the best perfor-
mance with 𝜃 = 1.0or2.0 for the bi-objective instances and 𝜃 = 0.5
for the tri-objective ones.

5.3. Sensitivity test on |P|
The population in CoMOLS/D contains two subpopulations: P and

Q. As |Q| = N − |P|, only the sensitivity test on |P| is conducted as
follows.

The performance of CoMOLS/D with |P| = (N
4 ,

N
3 ,

N
2 ,

2N
3 ,

3N
4 ,N) is

shown in Table 6. It can be observed that CoMOLS/D has the best per-
formance when N

2 (N = 300) for most of the instances.

5.4. iPBI vs. iTCH in CoMOLS/D

The aggregation function iPBI is adopted for the secondary popula-
tion Q in CoMOLS/D. Nevertheless, the inverted Tchebycheff method
(iTCH) [59] has been proposed very recently. Similar to iPBI, the iTCH
also uses the nadir point as its reference point. In addition, the iTCH
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method does not have any additional parameter. Thus it is interesting
to conduct experiments on CoMOLS/D using iTCH. In this section, the
CoMOLS/D (iTCH), as a variant of CoMOLS/D, is compared with the
original CoMOLS/D (iPBI).

The performance of two compared algorithms, in terms of C-metric
and HV values, are presented in Table 7. From these empirical results,
we have the following observations. Overall, two algorithms are com-
petitive with each other. In particular, CoMOLS/D (iPBI) tends to
perform better over the tri-objective TSP instances while CoMOLS/D
(iTCH) is slightly better on the bi-objective TSP instances. Neverthe-
less, both of them have very similar performance on mQAP instances.

6. Conclusion

In this paper, we propose a coevolutionary algorithm with local
search in MOEA/D framework for combinatorial multiobjective opti-
mization problems. The proposed CoMOLS/D is compared with four
classical decomposition based and two non-decomposition based
approaches on two sets of test instances (mTSP and mQAP). The exper-
imental results show that the overall performance of CoMOLS/D out-
performs all the compared algorithms. The sensitivity analyses of the
penalty parameter and the first population size are also investigated.
Moreover, an alternative inverted decomposition method (iTCH) is
compared with inverted PBI in CoMOLS/D framework. The feature
research directions include the extension of CoMOLS/D for the com-
binatorial many-objective optimization problems and applications on
real-world problems.
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