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Abstract
6D object pose estimation is an important application of computer vision and a basic module in robotic manipulation, but
dealing with occlusion in a cluttered environment, handling symmetries, and textureless surfaces, are real issues. Other issues
with such systems are accuracy and efficiency. The recent two-stage methods perform well in terms of accuracy; however,
a linear increase in their runtimes occurs due to the increase in the number of objects in a scene. This paper proposes a
fully convolutional and parallel architecture that obtains the 3D translation and orientation for object poses from the same
pixel-wise dense estimation. It exploits the same voting block for inliers for multiple instances, final 3D translation estimation,
and quaternions aggregation. Only the center point estimation of the objects decreases the model’s running time, while still
useful for occlusions and texturelessness. Symmetries and varieties are handled with a loss function based on shape matching
and the pose of the object. Our proposed approach has fewer parameters and takes less time to train and evaluate, achieving
great accuracy. Experiments on LINEMOD and occlusion LINEMOD datasets using ADD (-S) and 2D projection evaluation
metrics show that the proposed method outperforms state-of-the-art approaches for 6D pose estimation.

Keywords 6D object pose estimation · Pixel-wise labeling · Pixel-wise center localization · Pixel-wise quaternion rotation

1 Introduction

This section introduces the proposed 6D object pose esti-
mation approach for robot manipulation. Due to the current
research progress in robotics and artificial intelligence, 6D
poses have becomeone of the hottest research topics. It is also
used for augmented reality, robot navigation, self-driving
cars, bin picking, and 6Dobject tracking.Asmentioned in the
abstract section, the accuracy of 6D object pose estimation
suffers from occlusion, object symmetries, and textureless
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surfaces of objects. Robust, efficient, and scalable end-to-end
deep learning architecture is in high demand to handle these
issues. We present such architecture in this research paper.
Given an RGB image as input, the 6D pose of the object is
a rigid body transformation from the object coordinate sys-
tem O to the camera coordinate system C. Here, we assume
that the 3D model of the object is available and the object’s
coordinate system is defined in the 3D space of the model.
The 6D pose, which is 3D rotation R and 3D translation T,
is a rigid object transformation (R; T) from the coordinates
of the rigid object to the coordinates of the camera. Transfor-
mation here can be shown as a rigid transformation matrix
[R, T] ∈ SE(3) where R ∈ SO(3) and T ∈ R3. We pro-
pose a network that predicts 6D poses for each object in the
input RGB image. Efficient semantic segmentation has been
achieved by modifying the EfficientDet [1] which is used to
extract class labels and bounding boxes, but we modify it to
extract semantic labels for each pixel and further calculate
the objects’ center points and depths which is necessary for
3D translation, and finally calculates quaternions pixel-wise
for 3D rotation.

Pixel-wise labeling is used where the network classifies
image pixels into object classes. Several approaches use
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object detectionwith bounding boxes to detect objects for 6D
pose estimation [2–4], but semantic labeling provides richer
information regarding each object and handles the occlusion
better.Well-known approaches for 6D object pose estimation
which are based on semantic segmentation are applied by
[5–8]. For further details of the backbone network, we refer
readers to the EfficientDet paper [1], which has been used
and modified for pixel-wise labeling for our architecture.
EfficientDet uses EfficientNet [9] as the backbone network.

Figure 1 illustrates the proposed system’s basic idea,
which predicts semantic segmentation of the objects in the
input image, the 2D pixel coordinates of the object center and
its depth, pixel-wise quaternions, and finally calculates the
6D poses for objects. It creates a vector field representation
for center point localization by predicting a unit vector from
each pixel toward the center of the object. Using the semantic
labels, image pixels are associated with an object vote on the
object center location based on RANSAC [10]. Assuming
known camera intrinsic parameters, the estimation of the 2D
center of the object and its distance from the camera enables
us to recover its 3D translation T without calculating any 2D
bounding boxes for objects. It exploits the same semantic
segmentation branch to estimate 3D rotation R by regress-
ing convolutional features pixel-wise to quaternions directly.
A similar quaternion estimation approach is used by Con-
vPoseCNN [5]. We will show that the 2D center point voting
followed by translation estimation T and rotation regression
to estimateR can be applied to both textured and textureless
objects and is robust to occlusions as the network is trained
to vote based on the centers of objects. The network uses
a dense-based approach and is fully convolutional because,
unlike PoseCNN, it estimates quaternions convolutionally,
and the RANSAC only finds the center location inside a con-
volutional layer.

This end-to-end architecture achieves precise resultswhile
using much fewer parameters and results in shorter training
times. Voting based onRANSAC is useful for pruning outlier
predictions and we exploit this property for detecting mul-
tiple instances of the same object. Our network can handle

(a)

(b)

(c)

(d)

(e)

Fig. 1 a An RGB image passes through the 6D pose network which
performs b pixel-wise labeling, c calculating objects’ center points and
its depths, and d orientation as 4-dim quaternions prediction and finally
calculates e the 6D object poses

multiple instances of the same object occurring viaRANSAC
inliers. Another advantage of using RANSAC is that we use a
weighted RANSAC clustering technique for aggregating the
selected quaternions to a final orientation estimation. Thus,
the 3D translation and 3D rotation complete the process of
6D pose estimation. The proposed network contributions are
given as:

• It is an accurate, efficient, end-to-end, fully convolutional,
and scalable network for 6D object pose estimation which
is robust to occlusions, texturelessness, and symmetries.

• It can handle multiple instances of the same object, and
performweighted RANSAC clustering for aggregating the
selected quaternions to a final 3D orientation.

• It uses a modified ShapeMatch loss function by including
the translation T along with the rotation R.

• It shares parameters in several layers, so it has
fewer parameters and takes less training and evaluation
timing.

All the above-mentioned contributions together improve
the performance of our architecture. The rest of the paper
is organized into the following sections: Sect. 2, related
work, presents a thorough literature review of this research.
Section3, themethodused, presents the step-by-stepmethod-
ology and implementation details of this research. Section 4,
results and discussion, shows the experiments, qualitative
and quantitative results, and discussion to prove the perfor-
mance of our architecture. Finally, Sect. 5, the conclusion
and future work, concludes the paper by showing future
directions.

2 Related work

Traditionally two main approaches are used for 6D object
pose estimation: the template-based [11–13] and the feature-
based [14–17] approaches. Template-based methods are
thought to be robust toward detecting textureless objects but
struggle to handle occluded objects. The feature-basedmeth-
ods are thought to be robust toward occlusions but struggle to
detect textureless objects. The recent deep learning-based 6D
object pose estimation methods using RGB images provide
end-to-end architectures. These approaches are categorized
in this section in the following ways.

2.1 Direct pose regressionmethods

Various deep learning approaches like [18–21] regress pixels
directly to the 3D object coordinates for 2D–3D correspon-
dences, but 3D coordinate regression encounters ambiguities
when dealing with symmetric objects. PoseCNN [4] also
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falls in this category but it can handle occlusion and sym-
metry well. It uses Hough voting to estimate the 2D center
location of the object. 2D object center localization can be
achieved directly, however, would fail in case the object
center is hidden due to occlusion. PoseCNN decouples
the 6D pose estimation process and calculates the pixel-
wise labeling, 3D translation, and 3D orientation separately.
The orientation branch contains RoI pooling [22] for 2D
bounding box estimation for objects. Several researchers
use 2D object detection methods for 6D object pose
estimation.

2.2 2D object detection-basedmethods

Although the two-staged detectors [22, 23] show more accu-
racy in certain circumstances, one-stage 2D object detectors
such as SSD [24], YOLO [25], and EfficientDet [1] are more
efficient. The method presented in [1] also handles the scala-
bility issue well. [26] is a 2D object detection method for 6D
pose estimation using deep learning. SSD6D [27] uses the
idea of 2D object detection of SSD and classifies localized
objects with discrete poses. YOLO6D [3] uses YOLO and
detects directly the 2D projections of the 3D bounding box
vertices. BB8 [2] also uses bounding boxes to detect objects
for further estimating 6D object pose estimation. These 2D
object detection-based methods for 6D object pose estima-
tion are considered template matching using deep learning.
The recent EfficientPose [28] extends EfficientDet for 6D
object pose estimation which shows improved efficiency and
also shows better accuracy on LINEMOD data using ADD
(-S) evaluation metric [13].

The region of interest (RoI) pooling of the 2Dobject detec-
tion methods focuses on the hypotheses of the individual
object at a time due to which contextual information is lost;
hence, the 6D object poses estimation based on 2D object
detection may lose performance in situations of occlusions.
[24, 25] use fully convolutional architectures for object detec-
tion which are simpler and more efficient. Because of a fixed
region size and the size-invariant property of RoI pooling,
the fully convolutional architectures typically outperform
RoI-based architectures in terms of model size, training, and
inference time.

The fully convolutional or dense architectures replace the
RoI pooling-based orientation estimation with fully convo-
lutional and pixel-wise quaternion orientation prediction in
6D pose estimation. Although [19], which is a detection-
based 6D pose estimation approach, achieves state-of-the-art
accuracy and efficiency in object 6D pose estimation, the
semantic segmentation-based fully convolutional architec-
tures are robust anyway as these architectures gain more
information about the scene and the objects’ pixels, cut off
the parameters by a huge margin, and learn the various geo-
metric shapes of objects well.

2.3 Dense predictionmethods

Unlike PoseCNN [4], PVNet [7] avoids theRoI pooled orien-
tationpredictionusing2Ddirectionvectors to densely predict
a fixed number of keypoints. Each keypoint is found using
separate RANSAC-based voting followed by estimating the
final pose using a perspective-n-points (PnP) solver utilizing
the known keypoints’ 2D–3D correspondences. DPVL [8]
and PVDRL [29] improved the results by further consider-
ing the distance between pixel and keypoint which is useful
for the selection of accurate hypotheses in the RANSAC pro-
cess and it avoids the deviation of hypothesis due to direction
unit vectors errors when a pixel is far from a keypoint. Zebra-
Pose [30] also uses a dense approach with a PnP solver. [31]
make the 6Dposes of several cameras and the templatemodel
optimal where a strong RANSAC-based selection process
chooses well-matched 2D–3D feature points in the discrete
stage of their discrete–continuous optimization in accor-
dance with the current model/camera poses. [32] estimate
3D object poses without correspondence from noisy depth
data, and [33] introduce a novel issue that predicts poses
from 3D skeleton sequence positions. By taking advantage
of spatial–temporal linkages for pose estimation using graph
convolutional networks, Cai et al. [34] incorporated spatial
dependencies and temporal consistency.

Other recent 6D objects pose estimation methods using
RGB [3, 19–21, 35] to achieve state-of-the-art accuracy
which applies a 2D keypoints detection approach on the
objects’ surfaces and further solves the PnP problem for the
final 6D object poses. A number of these approaches are
also efficient when estimating the pose of a single object, but
their runtime increase linearly when the number of objects
increases due to solving the perspective-n-points (PnP) prob-
lem for each object individually for the final 6D object poses.

The proposed approach in this research papermakes dense
predictions for an object’s center point localization. It is a
hybrid of dense prediction and keypoint-based, which com-
bines the advantages of both of these methods, hence useful
in the occluded environment and can handle symmetric,
textured, and textureless objects. The 3D translation and
orientation are obtained from the same pixel-wise estima-
tion. It is fully convolutional and exploits the same voting
block for inliers for multiple instances and quaternions
aggregation, hence very accurate and efficient. Our method
calculates orientation regression directly. The additional
overhead of RANSAC or Hough transforms and PnP solving
is not needed, hence useful in resource-constrained settings.
PoseCNN first predicts the translation and RoI and finally,
for each RoI, it estimates object orientation sequentially. Our
proposed architecture is unified and more parallel which can
parallelly perform pixel-wise labeling, vector field predic-
tion, and unit orientation quaternions, while PoseCNN and
ConvPoseCNN [5] predict all of these in separate branches.
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ConvPoseCNN uses the Hough layer for object center loca-
tion estimation and handling multiple instance occurrence of
the same object using Hough inliers and then uses weighted
RANSAC clustering for aggregating the selected quater-
nions to a final orientation estimation. Our architecture takes
advantage of the RANSAC layer for handling all the above
three tasks. Our architecture is capable of simultaneously and
independently performing the rotation estimation for several
objects, which means that it runs parallelly with translation
estimation and is not dependent on translation. Using a clus-
tering method, we convert our pixel-wise estimation into a
final orientation.We demonstrate how our pixel-wise predic-
tion from fully convolutional architecture provides accurate
results while utilizing significantly fewer parameters.

3 Method

The proposed network predicts for each pixel, the labels
and unit vectors pointing to the center point of the object.
Unlike PVNet [7] which predicts 8 keypoints on the object’s
surface, our network similar to PoseCNN [4] considers and
predicts only the center point of the object. The segmenta-
tion and the vector field together vote for the center position
and depth of the object in a RANSAC layer and estimate
the 3D translation. Our network estimates quaternions fully
convolutionally and pixel-wise, parallel to 3D translation,
and estimates the final orientation. Quaternions are regressed
directly using a linear output layer. The pixel-wise labeling,
pixels voting for a central point of the object with RANSAC
voting for 3D translation, and quaternions for 3D rotation, all
use the same convolutional layers and share the same param-
eters. Fully convolutional layers have fewer parameters than
fully connected layers, and hence, our architecture is more
lightweight than PoseCNN and ConvPoseCNN. The follow-
ing subsections explain the process step by step and Fig. 2
presents the network architecture.

3.1 Semantic labeling of object pixels

While EfficientDet model is primarily intended for object
detection, we modified it for semantic segmentation tasks.
We adopt theEfficientDet [1]model and added the P2 layer to
its BiFPN to preserve feature levels from P2 to P7 in BiFPN.
We combine and fuse all from P2 to P7 of the BiFPN out-
put for the final per-pixel classification. EfficientDet exploits
the EfficientNet’s [9] multi-scale feature fusion. The multi-
scale features fusion was used by Lin et al. [36]. Inspired
by these approaches, we also fuse multi-scale features effi-
ciently after which the upsampling is performed to achieve
the pixel-wise labeled image of the input size. We use the
EfficientDet-D4 model with an EfficientNet-B4 backbone
which is pre-trained on ImageNet. In this case, it has a size

similar to ResNet-50. All the levels of BiFPN are up-sampled
and brought at the same scale feature maps which are then
concatenated channel-wise. Then, transposed convolution is
used for upsampling followed by batch normalization and the
swish activation [37] to transform the added feature maps to
the original image size. This way the prediction has a direct
relation to each pixel of the input image. For final pixel-
wise labeling, three blocks of depth-wise convolutions [38]
are applied again followed by the batch norm and the swish
activation. Finally, a further convolution is applied to reduce
channels to the number of classes. The softmax cross-entropy
loss is applied for training semantic labels.

To the final featuremap, a 1×1 convolution is also applied
to obtain the unit vectors along with class probabilities and
also predicts unit orientation quaternions pixel-wise. So there
are three output values of the base network, i.e., pixel-wise
labeling, unit vectors, and unit quaternions.

3.2 3D translation network

The network predicts the 2D center point C = (cx , cy)T of
the object in pixel coordinates and then the distance or depth
Tz from the camera to the object. Adopting the PoseCNN
approach, we do not regress the image features directly to
the 3D translation vector T = (Tx , Ty , Tz)T . Regressing the
image features directly to T is not a generalizable approach
and cannot handle multiple instances of the same object,
hence it is avoided. After localizing the center C in the image,
estimating the depth Tz and the camera intrinsic parameters,
the Tx and Ty can be recovered via the projection equation
of a pinhole camera as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Tx

Ty

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
[ (cx−px ).Tz

fx
(cy−py).Tz

fy

]
(1)

where P = (
px , py

)T is the principal point, while fx and
fy are called focal lengths. Here, C is the 2D center of the
object if the object origin O is the centroid of the object.

The pixels of the object vote for the 2D center location
of the object where for each pixel, a unit vector is calculated
pointing to the center direction. A voting procedure based on
RANSAC is used that takes as input, the pixel-wise semantic
labeling and the center regression results.After obtainingvot-
ing scores, the location with the maximum score is selected
as the center of the object and calculates its depth. We do
not calculate 2D bounding boxes for objects. 2D object cen-
ter localization can be achieved directly, however, would
fail in case the object center is hidden due to occlusion.
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(a) Input RGB Image
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Fig. 2 The proposed end-to-end architecture for 6D objects poses esti-
mation is presented in the figure. EfficientDet (b) uses EfficientNet as
a backbone with the BiFPN layer for object detection. We modify it
for semantic segmentation by adding the P2 layer to the BiFPN and
concatenate all the output values of the BiFPN which passes to the
(c) upsampling module to achieve the original image size back. This
network produces output as pixel-wise labeling (semantic segmenta-
tion) for each object, a unit vector field pointing towards the center of

each object, and unit orientation quaternions. The RANSAC (e) decides
the center point for each object and calculates the distance or depth
from the camera to the object which then calculates 3D translation.
Finally, weighted RANSAC clustering predicts orientation quaternion
pixel-wise for each object, i.e., 3D rotation. The 3D translation and 3D
rotation together complete the process of 6D pose estimation (f)

This RANSAC layer also helps in clustering the selected
quaternions to a final estimation of orientation during the 3D
rotation presented in Sect. 3.3.

Once a set of object centers is generated, the pixels that
vote for the center of an object are considered the inliers for
the center, and thus, the depth of the center Tz is calculated to
be the average of the depths estimated by the inliers. Finally,
using Eq. (1) and the depth information, the 3D translation
T is estimated.

3.3 3D rotation network

Our end-to-end architecture predicts orientation quaternions
in a fully convolutional way using the predicted pixel-wise
segmentation to identify which quaternions belong to which
object. Quaternions are regressed directly using the same
architectural parameters of the segmentation branch. This
has several advantages over [39] and [4] architectures, i.e.,
avoiding fully connected layers and the extra denseprediction
branches for objects center position with depths and orienta-
tion quaternions. Additionally, we use RANSAC inliers for
handling the occurrence of multiple instances of the same
object. The same RANSAC voting layer which is used for
translation estimation has been exploited for separating for
each object hypothesis, the predictions into inlier sets.

To aggregate the selected quaternions to a final orien-
tation estimation, we use a weighted RANSAC clustering

technique defined by ConvPoseCNN [5] as this approach is
less affected by outlier predictions; hence less chance to suf-
fer from skewed results. The weighted RANSAC clustering
technique is given as:

Assume that Q = {Q1, Q2, Q3, . . . , Qn} are the
quaternions and W = {W1, W2, W3, . . . , Wn} are the
weights for these quaternions for all objects in an image.
So,Qi = {q1, q2, q3, . . . , qn} be the quaternions andWi =
{w1, w2, w3, . . . , wn} be the weights of these quaternions
associated with a single object. Considering a specific object,
the algorithm iteratively selects a randomquaternion qr ∈ Qi

with a probability proportional to its weight and then deter-
mines the inliers setQin asQin = {qi ∈ Qi |d(qi , qr ) < θ},
where d(qi , qr ) is the angular distance between a quater-
nion and random quaternion. Finally, the qr with the largest∑

qi∈Qin
wi is selected as the resultant quaternion.

Our architecture takes advantage of the RANSAC layer
for object center locations estimation, handling multiple
instances of occurrence of the same object using RANSAC
inliers, and aggregating the selected quaternions to a final
orientation estimation via weighted RANSAC clustering
technique. Therefore, ConvPoseCNN [5] uses the Hough
layer for the first two tasks and uses weighted RANSAC
clustering for the third task. This difference is shown in
Fig. 3.
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3D 
Rotation

(a) 3D rotation by ConvPoseCNN

3D 
Rotation

(b) 3D rotation by us

Fig. 3 Shows the difference between the 3D orientation estimation of
ConvPoseCNN and our proposed method. ConvPoseCNN uses Hough
inliers and then applies weighted RANSAC, while our method uses the
RANSAC inliers and hence removes the extra step

3.4 Loss function

We use the ShapeMatch loss (SMLoss) proposed by Xiang
et al. (2018) [4] for rotation training that calculates the dis-
tance between 3D points set of the object rotated by the
predicted quaternions q̃ and the ground truth quaternions
q and handles symmetric and non-symmetric objects. The
SMLoss is based on two loss functions, i.e., the pose loss
(PLoss) and the symmetric loss (SLoss).

SMLoss(q̃ , q) =
{
SLoss(q̃ , q)

PLoss(q̃ , q)

if symmetric,
otherwise

(2)

To turn the loss function to transform the object of interest
with the estimated and the ground truth 6D pose, and then
computing the average point distances between the trans-
formed model points, we add the translation T also along
with the rotation R in both the PLoss and SLoss functions.
This strategy is useful to immediately tune the model on the
performance metric similar to ADD and ADD (-S) metrics
(the ADD and ADD (-S) metrics are presented in Sect. 4.2).
It is also useful in avoiding the need for an extra hyperpa-
rameter for balancing the partial losses when calculating the
rotation and translation losses independently. ThePLoss and
SLoss functions are given below inEqs. 3 and 4, respectively.

PLoss(q̃ , q) = 1

2m

∑
x∈M

(
R(q̃)x + T̃

)
− (R(q)x + T)2

(3)

SLoss(q̃, q) = 1

2m

∑
x1∈M

min
x2∈M

(
R(q̃)x1 + T̃

)
− (R(q)x2 + T)2

(4)

whereM = { xi ∈ R3|i = 1, 2, 3, . . . , m} is the 3D model
points set and m the number of points. R(q̃) is the rotation
matrix computed from the estimated quaternion andR(q) is
the rotation matrix computed from the ground truth quater-
nion. Here, we use two loss functions, the PLoss and the
SLoss, as the PLoss performs well only for non-symmetric
objects but is not suitable for handling symmetric objects

properly because it penalizes the rotations that are equal in
terms of the object’s 3D shape symmetry. The SLoss func-
tion avoids this issue and is suitable for handling symmetric
objects. It takes into account the shortest mean distance for
each point to any point in the other transformed point set like
ADD (-S) metric in Sect. 4.2, rather than just measuring the
distance between the matching points of the two transformed
point sets [29]. Again this is useful to train and optimize the
model on the ADD (-S) like performance metric which helps
prevent unnecessary penalties during training when dealing
with symmetric objects.

QLoss is a loss function originally used by SilhoNet [40],
also known as pixel-wise �2 has been exploited for efficiency
reasons for orientation regression which is the log distance
function between the predicted and ground truth quaternions.
Calculating the QLoss between two quaternions q̃ and q
given in [40] is as follows:

QLoss(q̃ , q) = log(ε + 1 − |q̃.q|) (5)

where ε is the stability constant having a small value which
is e−4 in this case. The total loss is achieved by the linear
combination of all losses as follows:

L = αLseg + βLT + γLR (6)

whereL is a total loss,Lseg, LT, andLR are the segmentation,
translation, and rotation losses, respectively, while α, β, and
γ are the normalization factors and are hyperparameters. A
momentum-based SGD has been used for training the total
loss.

3.5 Implementation details

As the LINEMOD and Occlusion LINEMOD datasets have
limited annotated data due to which the network leads to
overfitting. To avoid overfitting, we apply augmentation to
the dataset. The processing performed includes rotation, hor-
izontal flip, color jittering, width and height shift, zoom,
channel shift, and shear. For each object, we synthesized
10,000 images and rendered 10,000 images similar to PVNet
[7] andDPVL [8].We use amomentum-based SGD for train-
ing with a learning rate of 0.001 and momentum of 0.9, for
the total loss α = β = 1, for the QLoss, the γ = 1, and
for the SMLoss, the γ = 100. The model has been trained
for 200 epochs. We trained our network on the LINEMOD
dataset and performed no post-refinement operations. Our
method achieves real-time performance on a GTX 2080 Ti
GPU which is 27 fps.
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4 Results and discussions

The experiments, results, comparisons, and discussions of
our method against other related well-known methods for
6D object pose estimation are explored and presented in this
section using state-of-the-art datasets and evaluation metrics
for evaluating this architecture.

4.1 Datasets

All experiments are performed on the two main benchmark-
ing datasets for 6D object pose estimation LINEMODE and
OCCLUSION LINEMOD [41].

4.1.1 LINEMOD

This dataset has 15,783 images of 13 objects, and each object
has about 1200 images with masks. For each object, there is
also provided a high-quality 3Dmodel. It contains images of
small objects in a cluttered scene under different illumination
conditions.

4.1.2 OCCLUSION LINEMOD

Similarly, the Occlusion LINEMOD dataset is a subset of
the LINEMOD dataset that contains only the objects that
are occluded. It consists of a total of 1214 images of only
8 objects with occlusions among them which is more chal-
lenging. A number of research studies have reported these
datasets for comparative analysis of the 6D object pose esti-
mation.

4.2 Evaluationmetrics

For evaluation purposes, we use the ADD metric [13] which
is a standard metric for calculating the average Euclidean
distance between predicted and ground truth pose using the
transformed 3D model points, and the 2D projection metric
[39] which measures in the pixel domain, the closeness of
the 2D projected vertices to the ground truth.

4.2.1 ADDmetric

Considering that the ground truth translation T and rotation
R, and the estimated translation T̃ and rotation R̃ are pro-
vided, the average of the pairwise distances between the 3D
model points transformed according to the ground truth pose,
and the estimated pose is computed using the average dis-
tance as:

ADD = 1

m

∑
xεM

‖(Rx + T) − (R̃x + T̃)‖2 (7)

where m is the number of points and M is the set of 3D
model points. The correct pose is considered if the ADD
score is < 10% of the target diameter of the object. This is
the predefined threshold with which the average distance is
compared. But due to the rotational invariant nature of the
symmetric objects regarding the appearance such as “Egg
box” and “Glue” in theLINEMODandocclusionLINEMOD
datasets, the ADDmetric penalizes these objects. Therefore,
the ADD (S), which is the mean distance using the closest
point distance, is calculated for handling symmetric objects:

ADD(S) = 1

m

∑
x1εM

minx2∈M‖(Rx1 + T) − (R̃x2 + T̃
)‖2
(8)

4.2.2 2D Projection metric

The 2D projection metric measures the closeness between
the 2D projected vertices in the pixel domain and the ground
truth. The correct pose is considered if the mean 2D projec-
tion error is < 5px .

2D.Proj = 1

m

∑
xεM

‖K(Rx + T) − K(R̃x + T̃)‖2 (9)

wherem is the total number of points on the 3D object model
M = { xi ∈ R3|i = 1, 2, 3, . . . , m}, x is a point or a set
of points on the surface of the 3D object model,R and T are
the rotation and translation, respectively,Rx+T is the target
pose that transforms the point with SE(3) transformation and
vice versa, and K is the intrinsic parameter of camera.

4.3 Comparisons with state-of-the-art

Comparisons of our proposed method with the state-of-the-
art methods of 6D object poses based on RGB input are
presented in this section and the qualitative results of our
method are also presented. All the comparisons are car-
ried out against PVNet [7], PoseCNN [4], SSD6D [27],
YOLO6D [3], BB8 [2], CDPN [19], DPOD [21], Pix2Pose
[20], CSA6D [42], PVDRL [29], RePOSE [43], ZebraPose
[30], BiCo-Net [48], and EfficientPose [28]. The ADD (-S)
and 2D-projection metrics are used for the evaluation of the
results on LINEMOD and occlusion LINEMOD datasets.
Since our proposed method estimates accurate poses of
objects from an RGB image, any pose refinement methods
are not adopted for further improvement of the 6D object
pose estimation results. As certain methods do not report
2D-projection-based results, those are not included in Table
2.
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4.3.1 Comparisons on LINEMOD Dataset

Table 1 presents results on the LINEMOD dataset using
ADD (-S)metric and shows the performance of our proposed
method compared to the previous approaches. BB8 uses as
keypoints the eight corners of the 3D bounding box and the
object center and regresses their coordinates directly. The
YOLO6D and SSD6D also localize keypoints via regression.
DPOD, Pix2Pose, and CDPN regress 3D object coordinate.
PVNet and PVDRL apply a voting strategy, localizing eight
keypoints on the surface of objects and also the center of
each object from the predicted vector fields. DPOD regresses
dense 2D–3D correspondences.

PoseCNN, ConvPoseCNN, EfficientPose, and our pro-
posed method estimate the center point of the objects only.
PoseCNN first localizes object centers via Hough voting and
then estimates poses by regression. ConvPoseCNN uses a
dense approach for 3Dorientationwhile PoseCNNcalculates
2D boxes and then a fully connected network. Efficient-
Pose uses a detection-based approach. Our method is more
parallel and uses a dense approach for 3D translation and
orientation. Note that BB8, DPOD, SSD6D, and PoseCNN
require further refinement of the estimated object poses. In
the tables, only the refined results of these approaches are
shown. The ConvPoseCNN paper does not report results on
LINEMOD and occlusion LINEMOD datasets, so we do not
use its results in comparisons. ZebraPose [30] also does not
report results on LINEMOD, they only report on occlusion
LINEMOD. Table 1 shows that using the LINEMODdataset,
our proposed method outperforms most of the objects apply-
ing ADD (-S) scores. In comparison with the state-of-the-art
methods RePOSE and EfficientPose, our method success-
fully improves the performance of the initial pose estimation
on average 1.52% and 0.27% accuracy performance, respec-
tively. The EfficientPose has reported very high results on the
LINEMODdataset usingADD (-S)with improved efficiency
and our proposed method performs well by a proportion in
terms of accuracy; however, our approach outperforms in
termsof accurate pose estimation ofmost of the object classes
in LINEMOD which mean that our approach can accurately
detect a higher number of objects than EfficientPose. As can
be seen in Table 1, the RePOSE and EfficientPose show bet-
ter results on 5 classes and 4 classes, respectively, while our
approach on 6 classes which are (Ape, Cam, Cat, Duck,
Egg box, and Phone). This achievement is necessary for
real-world applications as we need our systems to accu-
rately perform over more and more objects. Accuracies for
textureless objects like “Ape” are improved by 8.28% and
0.07%, and for “Duck” are improved by 11.7% and 1.01%
against RePOSE and EfficientDet, respectively, and achieve
maximum accuracy for symmetric objects like “egg box”
which is 100% although SSD6D and EfficientDet outper-
forms in terms of “Glue.” The graphs (a) and (b) in Fig. 5 Ta
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Table 2 The performance of the LINEMOD dataset for object pose estimation based on 2D projection score

Methods BB8 [2] YOLO6D[3] CDPN
[19]

PoseCNN [4] PVNet [7] DPVL [8] PVDRL
[29]

CSA6D
[42]

Ours

Ape 96.6 92.1 96.86 83 99.23 99.04 99.42 98.60 99.54

Bench vise 99.1 95.06 98.35 50 99.81 99.71 99.83 95.80 99.88

Cam 86 93.24 98.73 71.9 99.21 99.41 99.55 98.80 99.65

Can 91.2 97.44 99.41 69.8 99.9 100 100 97.40 99.95

Cat 98.8 97.41 99.8 92 99.3 99.7 99.86 99.50 99.89

Driller 80.9 79.41 95.34 43.6 96.92 98.12 98.83 95.10 98.88

Duck 92.2 94.65 98.59 91.8 98.02 99.06 99.59 98.40 99.72

Egg box 91 90.33 98.97 91.1 99.34 99.43 99.84 99.90 99.97

Glue 92.3 96.53 99.23 88 98.45 99.51 99.86 99.90 99.96

Hole
puncher

95.3 92.86 99.71 82.1 100 100 100 98.20 100

Iron 84.8 82.94 97.24 41.8 99.18 99.69 99.91 97.80 99.93

Lamp 75.8 76.87 95.49 48.4 98.27 99.14 99.53 97.50 99.68

Phone 85.3 86.07 97.64 58.8 99.42 99.42 99.65 97.60 99.76

Mean 89.3 90.37 98.1 70.2 99 99.4 99.68 98.10 99.75

Objects like Glue and Egg Box are symmetric objects, Ape and Duck are textureless objects
The bold values indicate the highest score for the different methods given at different objects in the dataset

show the accuracies of textureless and symmetric objects
on LINEMOD using ADD (-S). REDE [44], MixedFusion
[45], and PVN3D [46] on LINEMODwithADD (-S) achieve
98.9, 97.8, and 99.4%, respectively, but they all require
depth information. [47] achieves 97.5% but using a differ-
ent approach that combines two RGB for pose estimation
while we estimate pose from a single RGB. Table 2 shows
that our proposed method also outperforms state-of-the-art
approaches on LINEMOD data in terms of 2D projection
metric (except class “Can”). EfficientDet and RePOSE both
do not report results using the 2D projection matrix, so we
do not add those results to Table 2, instead, we include
CSA6D [42] as it reports only 2D projection-based results on
the LINEMOD dataset. Again the accuracies for textureless
objects like “Ape” are improved by 0.12 and 0.94%, and for
“Duck” 0.13 and 1.32%against PVDRLandCSA6D, respec-
tively. Using the 2D projection metric on the LINEMOD
dataset achieves better accuracy for symmetric objects also
such as “Egg box” which are 0.13 and 0.07%, and for
the “Glue” which are 0.1 and 0.06% against PVDRL and
CSA6D, respectively.Our architecture on averageof 0.07 and
1.65% outperforms PVDRL andCSA6D, respectively, based
on the 2D projection metric. The total number of wins by our
proposed architecture is 12 out of 13 object classes. The num-
ber of wins is the classes where our architecture shows higher
accuracy compared to the state-of-the-art.Again the # ofwins
which is 12 in our case are the classes where our architec-
ture shows higher accuracy compared to the recent related
state-of-the-art methods. The graphs (c) and (d) in Fig. 5

show the accuracies of textureless and symmetric objects on
LINEMOD using 2D projection.

4.3.2 Comparisons on occlusion LINEMOD dataset

The results of our method compared to the state-of-the-art
approaches on LINEMOD using Add (-S) are presented
in Table 3 which shows that our method compared to the
state-of-the-art approaches achieves the best overall average
performance of 79.57%, which outperforms state-of-the-art
BiCo-Net [48], ZebraPose [30], and EfficientPose [28] by
10.07, 2.65, and 0.53%, respectively. In terms of texture-
less objects “Ape” and “Duck,” and symmetric objects like
“Egg box” and “Glue,” the ZebraPose and our methods are
comparable. ZebraPose outperforms our method in terms on
“Ape” by 0.26% while our method outperforms ZebraPose
by 4.71% and EfficientPose by 3.9%. In terms of “Egg box,”
our method outperforms ZebraPose by 24.13% and Effi-
cientDet by 1.57%, but when it comes to “Glue,” ZebraPose
outperforms slightly our method which is 2.86%. Efficient-
Pose performs well on “Cat” and “Driller” while Bico-Net
on “Hole puncher.” To see visually how accurate our net-
work is, the qualitative results on occlusion data are given in
Fig. 4, and graphs (e) and (f) in Fig. 5 show the accuracies of
textureless and symmetric objects on occlusion LINEMOD
using ADD (-S) metric.
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Table 3 The performance of the Occlusion LINEMOD dataset for object pose estimation based on ADD (-S) score

Methods YOLO6D
[3]

Pix2Pose
[20]

PoseCNN
[4]

PVNet
[7]

PVDRL
[29]

RePOSE
[43]

BiCo-Net
[48]

ZebraPose
[30]

EfficientPose
[28]

Ours

Ape 2.48 22.00 9.60 15.81 22.44 31.10 55.6 57.90 56.57 57.64

Can 17.48 44.70 45.20 63.3 73.31 80.00 83.2 95.00 91.12 90.84

Cat 0.68 22.70 0.93 16.68 24.23 25.60 47.3 60.60 68.58 68.11

Driller 7.66 44.70 41.40 65.65 75.07 73.10 69.9 94.80 95.64 93.70

Duck 1.14 15.00 19.60 25.24 38.60 43.00 58.3 64.50 65.31 69.21

Egg box – 25.20 22.00 50.17 51.43 51.70 78.1 70.90 93.46 95.03

Glue 10.08 32.40 38.50 49.62 44.08 54.30 76.9 88.70 85.15 85.84

Hole
puncher

5.45 49.50 22.10 39.67 50.11 53.60 87.2 83.00 76.53 76.20

Mean 6.42 32.00 24.90 40.77 47.40 51.60 69.5 76.92 79.04 79.57

Objects like Glue and Egg Box are symmetric objects, Ape and Duck are textureless objects
The bold values indicate the highest score for the different methods given at different objects in the dataset

Fig. 4 The qualitative results on
occlusion LINEMOD dataset.
The ground truths are shown in
green 3D bounding boxes and the
predictions of the 3D bounding
boxes around the objects are
shown other colors

4.4 Time comparison

The training of the proposed model is faster and takes only
200 loops/epochs to train. Our network takes an 480 × 640
image as input and runs at 27 fps on a GTX 2080 Ti GPU.
PVNet also takes 200 loops to train and runs at 25 fps using
similar computing power, while EfficientDet is trained for
5000 epochs. On the occlusion dataset, our network runs
on an average of 26 FPS where there are multiple object
pose estimations. This speed is real-time efficient for 6D
object pose estimation. This efficiency is because of the fewer
FLOPs of the EfficientDet architecture and the fully convo-
lutional and parallel architecture of our proposed network.

4.5 Ablation study

Although the two-stage methods produce good results for
objects poses, our proposed method is more robust in terms
of accuracy and efficiency, as during the two-stage pose
estimation methods, solving the perspective-n-points (PnP)
problem for several keypoints and then for many objects is
an expensive task. Results presented in Sect. 4 show the per-
formance of our method.

RANSAC is a slower process than Hough voting but
here if we use the Hough layer for objects center locations
estimation, handling multiple instances occurrence of the
same object using Hough inliers, and then using weighted

RANSACclustering for aggregating the selected quaternions
to a final orientation estimation, become time-consuming.
Instead, we use the same RANSAC layer for all these three
tasks, which decreases the running time. Our dense architec-
ture outperforms RoI-based architectures in terms of model
size, training, and inference time. Each hierarchical layer
in our proposed network shares a set of parameters, which
makes it lightweight and flexible, and because of its flex-
ibility, it may be incorporated into any encoder–decoder
network to reduce model size. More details are given in
Sects. 2.2 and 2.3. The weighted RANSAC performance
is better than the non-weighted one for the estimation of
aggregating the selected quaternions to a final orientation
presented in Sect. 3.3. Calculating the SMLoss pixel-wise
is not computationally possible so to make training possi-
ble with SMLoss, we first aggregate the dense predictions
and then calculate the orientation loss presented in Sect. 3.4.
For the SMLoss, via its variations, we performed some
experiments. We tested the results using the loss similar to
PoseCNN which considers only rotations and then we tried
using our new loss that takes into account both the transla-
tion and rotation and observed the results presented in Table
4 using occlusion LINEMOD and ADD (-S). Our network
model uses far lesser parameters which are less than half of
the total parameters of ConvPoseCNN. One reason that Con-
vPoseCNN has many parameters is because of the VGG16
[49] backbone which has 138 million parameters in total.
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Fig. 5 a Accuracies of textureless objects Ape and Duck using
LINEMOD dataset and ADD (-S) metric, b accuracy of symmetric
objects Egg box and glue using LINEMOD and ADD (-S), c texture-
less objects using LINEMOD and 2D projection, d symmetric objects

using LINEMOD and 2D projection, e textureless objects using occlu-
sion LINEMOD and ADD (-S), and f is the accuracies of symmetric
objects using occlusion LINEMOD and ADD (-S)

Table 4 Comparison on the Occlusion LINEMOD dataset for objects
pose estimation based on ADD (-S) scores with and without translation
T in SMLoss

Methods Ours without T in
SMLoss

Ours with T in
SMLoss

Ape 57.00 57.64

Can 90.80 90.84

Cat 67.67 68.11

Duck 67.98 69.21

Hole puncher 75.04 76.20

The bold values indicate the highest score for the different methods
given at different objects in the dataset

We use a modified version of EfficientDet which is based on
EfficientNet-B4 with BiFPN which has about 17 M parame-
ters. EfficientDet-D4 has about 21 M parameters which are

comparable to ResNet-50. Another reason that ourmodel has
fewer parameters is unlike ConvPoseCNN which estimates
all three modules, i.e., pixel-wise labeling, 3D translation,
and 3D rotation separately through separate convolutional
branches, our network exploits the same base model’s output
for all three modules which share a lot of parameters and also
decreases the calculation time.

EfficientPose evaluates its results using a scaling factor
using a single hyperparameter φ and presents results with
two different values of φ which are φ = 0 and φ = 3. We
only consider the scaling factorφ = 0 for this research, sowe
compare our results with the model hyperparameterized with
φ = 0 based results of EfficientDet. Our model will produce
more accurate results at φ = 3 scaling. In Table 5, we can see
that EfficientPosewithφ = 3outperformsbothEfficientPose
withφ = 0 and our proposed network, but in this case, it loses
its efficiency. On occlusion LINEMOD dataset for objects
pose estimation based on ADD (-S), they achieve 83.98%
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Table 5 Comparison of our proposed network against EfficientDet with
φ = 0 and φ = 3 on the Occlusion LINEMOD dataset for object pose
estimation based on ADD (-S) scores

Methods EfficientPose
with φ = 0

Ours with
φ = 0

EfficientPose
with φ = 3

Ape 56.57 57.64 59.39*

Can 91.12 90.84 93.27*

Cat 68.58 68.11 79.78*

Driller 95.64 93.70 97.77*

Duck 65.31 69.21 72.71*

Egg box 93.46 95.03 96.18*

Glue 85.15 85.84 90.80*

Hole
puncher

76.53 76.20 81.95*

Mean 79.04 79.57 83.98*

Some objects like Glue and Egg Box are symmetric objects, Ape and
Duck are textureless objects
The bold values indicate the highest score for the different methods
given at different objects in the dataset
* shows the results of EfficientPose with hyperparameter ϕ = 3

results.Wecouldnot conduct experimentswithφ = 3, butwe
believe that our proposed systemwith φ = 3 will outperform
EfficientPose with φ = 3. The values with the stars (*) show
the highest values between EfficientDet at φ = 3 compared
to EfficientPose with φ = 0 and our method with φ = 0.

5 Conclusion

The base network of the proposed architecture predicts pixel-
wise labeling of objects, pixel-wise unit vector field toward
the center of the objects, and pixel-wise quaternions, so we
can identify quaternions related to each object at the same
place, and then can determine the final quaternion from those
quaternions for each object. The limitation of our method is
that although it beats the EfficientDet in terms of both the
number of wins and overall average but it could improve the
overall average by a small margin compared to EfficientDet.
As a whole our method performs well.

Applying post-refinement over this proposed method will
improve the results further in terms of accuracy. Further-
more, various experiments can be carried out over orientation
quaternions estimation using various techniques to check
their effectiveness. Similarly, Hough voting can be applied
for center location and inliers for multiple instances of the
same object. Scaling our model at scaling factor φ = 3 will
produce more accurate results. Furthermore, converting such
systems to self-supervised learningwill be a good idea,which
is a set of scalable approaches and needs a lesser amount of
data.
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