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A B S T R A C T

This paper proposes a novel adaptive variable power sliding mode observer-based model predictive control
(AVPSMO-MPC) method for the trajectory tracking of a Mecanum-wheeled mobile robot (MWMR) with external
disturbances and model uncertainties. First, in the absence of disturbances and uncertainties, a model predictive
controller that considers various physical constraints is designed based on the nominal dynamics model of the
MWMR, which can transform the tracking problem into a constrained quadratic programming (QP) problem to
solve the optimal control inputs online. Subsequently, to improve the anti-jamming ability of the MWMR, an
AVPSMO is designed as a feedforward compensation controller to suppress the effects of external disturbances
and model uncertainties during the actual motion of the MWMR, and the stability of the AVPSMO is proved
via Lyapunov theory. The proposed AVPSMO-MPC method can achieve precise tracking control while ensuring
that the constraints of MWMR are not violated in the presence of disturbances and uncertainties. Finally,
comparative simulation cases are presented to demonstrate the effectiveness and robustness of the proposed
method.
1. Introduction

The Mecanum-wheel mobile robot (MWMR) is a kind of omnidi-
rectional mobile robot with four Mecanum wheels, which has excellent
stability and mobility [1–3]. In recent years, the applications of MWMR
in many fields have increased demand, such as industrial transporta-
tion, scientific research, home use and etc [4–6]. Trajectory tracking
control is the key to enabling the system to autonomously achieve
the desired state [7,8]. However, the MWMR is a nonlinear system
with various constraints, making precise tracking control difficult to
achieve [9].

To overcome these control difficulties, a variety of control algo-
rithms have been developed for the trajectory tracking control of the
MWMR, such as sliding mode control [10] and fuzzy control [11].
In [10], an adaptive integral terminal sliding mode control algorithm
was proposed for trajectory tracking in the MWMR. To improve the
movement accuracy and stability of the MWMR, a fuzzy adaptive pro-
portion integration differentiation control method was presented and
experimentally verified [11]. Although these studies performed well,
they were not optimal control algorithms. Compared to non-optimal
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control approaches, model predictive control (MPC) is an optimal
control approach, which can effectively deal with various system con-
straints. Note that it is necessary to consider physical constraints to
achieve the desired control effect [12].

Owing to its ability to handle various complex constraints, MPC is
widely used in robot control [13–15]. To simultaneously satisfy state
and input constraints, a model-predictive fault-tolerant controller was
designed for the tracking mission of the MWMR [16]. In [17], an
algorithm that incorporates the learned barrier function into nonlin-
ear MPC was proposed for multiple nonholonomic wheeled mobile
robots to ensure the robots’ safe navigation. A robust MPC method
was developed to implement trajectory tracking control and simulta-
neously deal with various constraints of the MWMR [18]. In [19],
a hierarchical MPC structure was presented, which simultaneously
considers the non-minimal phase property of their newly designed
wheeled bipedal robot, achieving precise pose tracking. In addition, a
distributed MPC was designed to form multiple MWMRs with variable
relative configurations [20]. Although MPC can effectively address
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the constraint problem of mobile robots, it often relies on accurate
model information [21]. When the robot model is not accurate, MPC
may fail to achieve the desired control effect [22]. It is well known
that the MWMR has a precise and complicated wheel-train structure;
therefore, mechanical errors may lead to model uncertainties. Addi-
tionally, the control performance of most motion systems is affected
by unknown disturbances that may exist in various real-world environ-
ments [23–25]. Most existing research on MWMR uses only the nominal
model; however, the kinematics and dynamics of mobile robots can
be perturbed by disturbances and uncertainties [26,27]. To achieve
precise control, it is particularly important to consider the unknown
disturbances and model uncertainties [28].

To solve these control problems, many scholars have conducted in-
depth studies and proposed various solutions [29]. The sliding mode
observer (SMO) is generally regarded as a powerful method. A con-
trol strategy based on SMO can effectively eliminate the influence of
unknown disturbances and improve the control performance of the
system [30]. In the study reported in [31], a novel control method
based on a sliding mode disturbance observer was studied for the
tracking problem of robot manipulators with model uncertainties and
disturbances. Furthermore, a robust predictive controller based on a
sliding mode disturbance observer was designed for permanent-magnet
synchronous motor drive systems [32]. However, the discontinuous
signum function introduced by the traditional SMO inevitably leads to
high-frequency chattering of the system [33–35]. Due to their charac-
teristics of reaching a stable state within a limited time and weaken
the influence caused by chattering, high-order SMOs have attracted
extensive attention from researchers [36]. In the study reported in [37],
a closed-loop control strategy based on a fuzzy second-order SMO was
adopted to realize the trajectory tracking control of a two-link robot. To
suppress chattering, in [38], a super-twisting algorithm was introduced
in the design of the SMO to approximate unknown disturbances, which
improved the control effect of the system. It should be noted that high-
order SMO greatly improves the control performance, but can weaken
chattering only to a certain extent. Introducing a saturation function
is an effective method for eliminating the effects of chattering [39].
In [40], a speed control strategy based on the SMO was investigated,
in which the signum function was replaced with a sigmoid function
based on a variable boundary layer. Moreover, an adaptive sliding
mode control method was designed to realize the trajectory tracking
control of differential-driving mobile robots with uncertain parameters
by introducing a saturation function into the reaching law [41]. In
[42], to improve the robustness of the system, a saturation function was
introduced in the SMO design to eliminate the influence of chattering,
and an adaptive sliding mode strategy was proposed to improve the
tracking accuracy and response rate of the system. The above research
results indicate that the SMO-based control algorithm can improve the
anti-jamming capabilities and achieve a better control performance.
However, to the best of our knowledge, although there have been a lot
of research results, a trajectory tracking method that simultaneously
considers the constraints and unknown disturbances of MWMR has not
yet been fully studied. Inspired by the above research results, a model
predictive control strategy based on a sliding mode observer (SMO-
MPC) is beneficial for designing a tracking controller that considers
these factors.

In this paper, an improved adaptive variable power SMO-based MPC
algorithm is proposed to perform the desired trajectory tracking control
for the MWMR with disturbances and uncertainties. By using the ability
of the sliding mode observer based on adaptive variable power reaching
law (AVPSMO) to estimate the lumped disturbances of the system,
a feedforward compensation controller based on MPC is designed to
suppress the effects of lumped disturbances. The proposed AVPSMO-
MPC can improve tracking performance and robustness. The novelty of
this study lies in the following aspects:

(1) The proposed method can deal with not only kinematic con-
straints but also dynamic constraints.
52
Fig. 1. The model of the Mecanum-wheeled mobile robot.

(2) Compared with traditional MPC, AVPSMO-MPC can not only deal
with physical constraints effectively but also eliminate the effects
of unknown disturbances and uncertainties.

(3) Compared with the traditional observer, the proposed AVPSMO
can eliminate the influence of chattering and improve the con-
vergence rate.

2. Problem formation

The MWMR is mainly composed of four Mecanum wheels which can
be driven by independent motors. The Mecanum wheel has two degrees
of freedom, namely the rotation around the axle and the translation in
the direction orthogonal to the axis of the roller. By controlling the
rotate velocity and steering of the four wheels, the robot can achieve
omnidirectional movement.

2.1. Kinematics of MWMR

The motion schematic of the robot is shown in Fig. 1, where 𝑋𝑂𝑌
and 𝑋q𝑂q𝑌q respectively represent the inertial coordinate system and
robot coordinate system. We can express the resultant velocities of the
wheels in the robot frame as:
𝑉𝑖x = 𝑉𝑖m + 𝑉𝑖r cos(𝛼𝑖),

𝑉𝑖y = 𝑉𝑖r sin(𝛼𝑖),
(1)

where 𝛼1 = 𝛼4 = 45◦ and 𝛼2 = 𝛼3 = −45◦ denote the offset angle of
the rollers; 𝑉𝑖x and 𝑉𝑖y represent the resultant velocities of the wheels
along the 𝑥-axis and 𝑦-axis respectively, while 𝑉𝑖m and 𝑉𝑖r represent
the tangential velocities of the free moving roller and the translational
velocities of the wheels respectively, 𝑖 = 1, 2, 3, 4. Define the distances
between the wheels with the center of robot as 𝐿 and 𝑙. Then, the
correlation between the velocities of wheels and robot body can be
established as:
⎡
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where the vector [𝑣x, 𝑣y, 𝜔]T represent the velocities of the robot along
𝑥q, 𝑦q and the rotation velocity around the geometric center of the
body.

By solving Eqs. (1) and (2), we can obtain the relation between the
body velocities of the MWMR and the angular velocities of four wheels
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where

𝑱 r =
𝑟
4
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(4)

enotes the Jacobian matrix. The variable 𝑟 is the radius of the
ecanum wheels, while [𝑤1, 𝑤2, 𝑤3, 𝑤4]T denote the velocities of four
heels.

Then, the nominal kinematics model of the robot can be written as:

⎡

⎢

⎢

⎣

�̇�
�̇�
�̇�

⎤

⎥

⎥

⎦
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⎥
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, (5)

here [𝑥, 𝑦, 𝜑]T denotes the position and direction angle of robot in the
nertial coordinate system.

.2. Dynamics of MWMR

The nominal dynamics model of MWMR without considering fric-
ion can derived by using Lagrange equation. The kinetic energy equa-
ion of MWMR is given as follow [43]:

= 1
2
𝑚(𝑣2x + 𝑣2y) +

1
2
𝐽z𝜔

2 + 1
2
𝐽𝜔(�̇�21 + �̇�22 + �̇�23 + �̇�24 ), (6)

where �̇�𝑖 = 𝜔𝑖, 𝑖 = 1, 2, 3, 4; 𝑚 denotes the total mass of the MWMR; 𝐽z
and 𝐽𝜔 denote the MWMR moment and the wheels moment of inertia
around their center of revolution. Noted that viscous friction can cause
certain energy loss:

𝐷 = 1
2
𝐷𝜃(�̇�21 + �̇�22 + �̇�23 + �̇�24 ), (7)

where 𝐷𝜃 represents the viscous friction coefficient between the wheels
and the road surface during robot movement. The Lagrangian function
is expressed as:

𝐿 = 𝐾 − 𝑉 , (8)

where 𝑉 = 0 represents the potential energy of the robot in the plane
of motion. Then, the use of the Lagrangian function yields [9]:

2(𝝉 − 𝒇 ) −
𝜕𝐷𝜃

∑4
𝑖=1 �̇�

2
𝑖

𝜕�̇�

= 𝜕
𝜕𝑡

𝜕(𝑚(𝑣2x + 𝑣2y) + 𝐽z𝜔2 + 𝐽𝜔
∑4

𝑖=1 �̇�
2
𝑖 )

𝜕�̇�

−
𝜕(𝑚(𝑣2x + 𝑣2y) + 𝐽z𝜔2 + 𝐽𝜔

∑4
𝑖=1 �̇�

2
𝑖 )

𝜕𝜽

(9)

here 𝜽 = [𝜃1, 𝜃2, 𝜃3, 𝜃4]T; 𝒇 represents the static friction; The vector
= [𝜏1, 𝜏2, 𝜏3, 𝜏4]T denotes the external generalized force generated by

he DC motor corresponding to the four wheels.
Substituting (3), (5) into (9), one obtains:

= 𝑴�̈� +𝐷𝜃 �̇� + 𝒇 , (10)
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where

𝑴 =

⎡

⎢
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⎤

⎥

⎥

⎥

⎥

⎦

,

𝑨j =
𝑚𝑟2

8
, 𝑩j =

𝐽z𝑟2

16(𝐿 + 𝑙)
.

(11)

Differentiating (2) and substituting (1), (10), the nominal dynamics
odel of the robot can be written as:
�̈�
�̈�
�̈�

⎤

⎥

⎥

⎦

= − (𝑱+(𝜑)�̇� (𝜑) +𝐷𝜃𝑱+(𝜑)𝑴−1𝑱 (𝜑))
⎡

⎢

⎢

⎣

�̇�
�̇�
�̇�

⎤

⎥

⎥

⎦

+ 𝑟𝑱+(𝜑)𝑴−1(𝝉 − 𝒇 )

(12)

here 𝑱+(𝜑) and �̇� (𝜑) respectively represent the generalized inverse
nd the derivative matrix of 𝑱 (𝜑), and

(𝜑) =

⎡

⎢

⎢

⎢

⎢

⎣

√

2 sin(𝜑a) −
√

2 cos(𝜑a) −(𝑙 + 𝐿)
√
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√

2 sin(𝜑a) (𝑙 + 𝐿)
√

2 cos(𝜑a)
√
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⎤

⎥

⎥

⎥

⎥

⎦

,

𝜑a = 𝜑 + 𝜋
4
.

(13)

Defining a state variable 𝒙 = [𝑥, 𝑦, 𝜑, �̇�, �̇�, �̇�]T and system control
input 𝑢, the system state equation of MWMR can be obtained as follow:

�̇� = 𝑨𝒙 + 𝑩𝒖, (14)

here

𝑨 =
[

𝟎 𝑬
𝟎 −(𝑱+(𝜑)�̇� (𝜑) +𝐷𝜃𝑱+(𝜑)𝑴−1𝑱 (𝜑))

]

∈ R6×6,

𝑩 =
[

𝟎
𝑟𝑱+(𝜑)𝑴−1

]

∈ R6×4,
(15)

and 𝑬 represents the identity matrix of the corresponding dimension.
Moreover, it is well known that to realize desired control effect,

unknown disturbances and model uncertainties need to be considered.
In order to derive the kinematic model of MWMR in the presence of ex-
ternal disturbances and model uncertainties, the following assumption
need to be made:

Assumption 1. The unknown disturbances and model uncertainties in
the system are all bounded.

Then, the relationship between body velocities and the velocities of
wheels considering the unknown disturbances and model uncertainties
can be written as follows:

⎡

⎢

⎢

⎣

𝑣x
𝑣y
𝜔

⎤

⎥

⎥

⎦

= 𝑱 r
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⎢

⎢

⎢

⎣
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⎤

⎥

⎥

⎥

⎥
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+
⎡

⎢

⎢

⎣

𝑓x
𝑓y
𝑓𝜔

⎤

⎥

⎥

⎦

, (16)

where [𝑓x, 𝑓y, 𝑓𝜔]T denotes the lumped disturbances including unknown
isturbances and model uncertainties in different velocity directions of
he robot centroid. Then, the kinematic model can be written as:

⎡

⎢

⎢

⎣

�̇�
�̇�
�̇�

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢
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⎥
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⎜

⎜

⎜
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⎡

⎢

⎢
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⎢

⎣
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⎥
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⎥

⎦

+
⎡

⎢

⎢

⎣

𝑓x
𝑓y
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⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

. (17)

Remark 1. Most control algorithms for MWMR can use the nomi-
nal kinematics model (5) to achieve ideal trajectory tracking control;
however, the effects of lumped disturbances cannot be ignored in
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practical implementations. The main purpose of this paper is to design
a composite controller consisting of a nominal MPC and feedforward
AVPSMO, to eliminate the influence of lumped disturbances and ensure
that the system constraints are not destroyed. The nominal MPC uses
the nominal dynamics model (14) to obtain an ideal tracking trajectory
without considering the disturbances and uncertainties. The AVPSMO
is designed to approximate unknown terms, to realize disturbance
compensation and eliminate the influence of lumped disturbances.

3. Model predictive control

The essence of MPC is a rolling optimization algorithm. At each sam-
pling instant, the MPC needs to solve the optimization problem online
iteratively to obtain the control sequence. In this section, the nominal
dynamics model (12) of the robot is used to design the model predictive
controller. The discrete expression of system (14) is as follows:

𝒙𝑘+1 = 𝑮𝑘𝒙𝑘 +𝑯𝑘𝒖𝑘, (18)

where

𝑮𝑘 = (𝑬 + 𝑇𝑨), 𝑯𝑘 = 𝑇𝑩. (19)

The notation 𝑇 is the sampling time. Define 𝑁p and 𝑁c as the
rediction horizon and control horizon of the system, respectively.
hen, the following cost function can be formulated:

=
𝑁p
∑

𝑗=1
∥ 𝒙𝑘+𝑗|𝑘 − 𝒓𝑘+𝑗|𝑘 ∥2𝑸 +

𝑁c−1
∑

𝑗=0
∥ 𝛥𝒖𝑘+𝑗|𝑘 ∥2𝒑 (20)

where 𝑸 and 𝑷 denote positive definite matrix of corresponding di-
mension. The notation 𝒙𝑘+𝑗|𝑘 and 𝒓𝑘+𝑗|𝑘 denote the predicted state and
the set desired value at instant 𝑘 + 𝑗 respectively. The input increment
ector 𝛥𝒖𝑘+𝑗|𝑘 = 𝒖𝑘+𝑗|𝑘−𝒖𝑘+𝑗−1|𝑘, where 𝒖𝑘+𝑗|𝑘 is the control input vector

at time instant 𝑘 + 𝑗.
Then, define the following prediction sequence:

�̄�𝑘 ≜ [𝒙T𝑘+1|𝑘,𝒙
T
𝑘+2|𝑘,… ,𝒙T𝑘+𝑁p|𝑘

]T ∈ R6𝑁p

�̄�𝑘 ≜ [𝒓T𝑘+1|𝑘, 𝒓
T
𝑘+2|𝑘,… , 𝒓T𝑘+𝑁p|𝑘

]T ∈ R6𝑁p

�̄�𝑘 ≜ [𝒖T𝑘|𝑘, 𝒖
T
𝑘+1|𝑘,… , 𝒖T𝑘+𝑁c−1|𝑘

]T ∈ R4𝑁c

▵ �̄�𝑘 ≜ [▵ 𝒖T𝑘|𝑘,▵ 𝒖T𝑘+1|𝑘,… ,▵ 𝒖T𝑘+𝑁c−1|𝑘
]T ∈ R4𝑁c

(21)

subject to

�̄�min ≤ �̄�𝑘 ≤ �̄�max,
�̄�min ≤ �̄�𝑘 ≤ �̄�max,
▵ �̄�min ≤▵ �̄�𝑘 ≤▵ �̄�max,

(22)

where �̄�min, �̄�max, �̄�min, �̄�max, ▵ �̄�min and ▵ �̄�max are the corresponding
lower and upper bounds of variables. Then, the prediction of states at
the future moment can be calculated as:
𝒙𝑘+1|𝑘 = 𝑮𝑘𝒙𝑘|𝑘 +𝑯𝑘𝒖𝑘|𝑘
𝒙𝑘+2|𝑘 = 𝑮𝑘+1𝒙𝑘+1|𝑘 +𝑯𝑘+1𝒖𝑘+1|𝑘

⋮
𝒙𝑘+𝑁p|𝑘 = 𝑮𝑘+𝑁p−1𝒙𝑘+𝑁p−1|𝑘 +𝑯𝑘+𝑁p−1𝒖𝑘+𝑁p−1|𝑘

(23)

Then, Eq. (23) can be rewritten as the follow compact form:

�̄�𝑘 = 𝑴𝑘𝒙𝑘 +𝑵𝑘𝒖𝑘−1 +𝒁𝑘 ▵ �̄�𝑘, (24)

where

𝑴𝑘 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑮𝑘
𝑮𝑘+1𝑮𝑘

⋮
⃖⃖⃖⃖∏𝑖=𝑘+𝑁p−1

𝑖=𝑘 𝑮𝑖

⎤

⎥

⎥

⎥

⎥

⎦

∈ R6𝑁p×6,

𝑵𝑘 =

⎡

⎢

⎢

⎢

⎢

𝑯𝑘
𝑯𝑘+1 +𝑮𝑘+1𝑯𝑘

⋮

𝑯 + ⃖⃖⃖⃖∏𝑖=𝑘+𝑁p−1𝑮 𝑯 +⋯ + ⃖⃖⃖⃖∏𝑖=𝑘+𝑁p−1𝑮 𝑯

⎤

⎥

⎥

⎥

⎥

54

⎣ 𝑘+𝑁p−1 𝑖=𝑘+1 𝑖 𝑘 𝑖=𝑘+𝑁p−1 𝑖 𝑘+𝑁p−2 ⎦

d

∈ R6𝑁p×4,

𝒁𝑘 =

⎡

⎢

⎢

⎢

⎢

⎣

𝑯𝑘 …
𝑯𝑘+1 +𝑮𝑘+1𝑯𝑘 …

⋮ ⋱

𝑯𝑘+𝑁p−1 +
⃖⃖⃖⃖∏𝑖=𝑘+𝑁p−1

𝑖=𝑘+1 𝑮𝑖𝑯𝑘 +⋯ + ⃖⃖⃖⃖∏𝑖=𝑘+𝑁p−1
𝑖=𝑘+𝑁p−1

𝑮𝑖𝑯𝑘+𝑁p−2 ⋯

𝟎
𝟎
⋮

𝑯𝑘+𝑁p−1 +
⃖⃖⃖⃖∏𝑖=𝑘+𝑁p−1

𝑖=𝑘+𝑁c+1
𝑮𝑖𝑯𝑘+𝑁c−1 +⋯ + ⃖⃖⃖⃖∏𝑖=𝑘+𝑁p−1

𝑖=𝑘+𝑁P−1
𝑮𝑖𝑯𝑘+𝑁p−2

⎤

⎥

⎥

⎥

⎥

⎦

∈ R6𝑁p×4𝑁c . (25)

The notation ⃖⃖⃖⃖∏ means multiplying to the left. Then, the cost func-
tion (20) can be transformed into the following optimization problem:

min 𝐽 (𝑘) = ‖𝑴𝑘𝒙𝑘 +𝑵𝑘𝒖𝑘−1 +𝒁𝑘 ▵ �̄�𝑘 − �̄�𝑘‖2𝑸 + ‖ ▵ �̄�𝑘‖2𝑷 , (26)

subjected to

�̄�min ≤ 𝑴𝑘𝒙𝑘 +𝑵𝑘𝒖𝑘−1 +𝒁𝑘 ▵ �̃�𝑘 ≤ �̄�max,
�̄�min ≤ 𝑼𝑘−1 + �̄� ▵ �̄�𝑘 ≤ �̄�max,
▵ �̄�min ≤▵ �̄�𝑘 ≤▵ �̄�max,

(27)

where
𝑼𝑘−1 = 1𝑁c

⨂

𝒖𝑘−1 ∈ R4𝑁c ,

�̄� =

⎡

⎢

⎢

⎢

⎢

⎣

𝑬 0 ⋯ 0
𝑬 𝑬 ⋯ 0
⋮ ⋮ ⋱ ⋮
𝑬 𝑬 𝑬 𝑬

⎤

⎥

⎥

⎥

⎥

⎦

∈ R4𝑁c×4𝑁c ,
(28)

The problem (26) can be transformed into a constrained QP problem
as follows:

min 1
2
▵ �̄�T𝑘𝜸 ▵ �̄�𝑘 + 𝜿T ▵ �̄�𝑘, (29)

subject to

𝑾 ▵ �̄�𝑘 ⩽ 𝒉, (30)

where
𝜸 = 2(𝒁T

𝑘𝑸𝒁𝑘 + 𝑷 ) ∈ R4𝑁c×4𝑁c ,
𝜿 = 2𝒁T

𝑘𝑸(𝑴𝑘𝒙𝑘 +𝑵𝑘𝒖𝑘−1 − �̄�𝑘) ∈ R4𝑁c ,

𝑾 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝒁𝑘
−𝒁𝑘
�̄�
− �̄�
�̃�
− �̃�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R(12𝑁p+16𝑁c)×4𝑁c ,

�̃� =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0⋯ 0
0 1 0 0⋯ 0
0 0 1 0⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ R4𝑁c×4𝑁c ,

𝒉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̄�max −𝑴𝑘𝒙𝑘 −𝑵𝑘𝒖𝑘−1
−�̄�min +𝑴𝑘𝒙𝑘 +𝑵𝑘𝒖𝑘−1

�̄�max − 𝑼𝑘−1
−�̄�min + 𝑼𝑘−1

▵ �̄�max
− ▵ �̄�min

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R12𝑁p+16𝑁c .

(31)

. Sliding mode observer

In this section, an improved AVPSMO is designed to approximate
he lumped disturbances in the kinematics model of robot. And use the

isturbance estimations to eliminate the influence of disturbances on
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the system to improve the robustness of the system. The kinematics
model (17) can be rearranged as:

�̇� = �̄�𝒗 +𝑫𝒇 , (32)

here

�̄� = 𝑟
4

⎡

⎢

⎢

⎣

cos(𝜑) − sin(𝜑) 0
sin(𝜑) cos(𝜑) 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

1 1 1 1
−1 1 1 −1
−1
𝑙+𝐿

1
𝑙+𝐿

−1
𝑙+𝐿

1
𝑙+𝐿

⎤

⎥

⎥

⎥

⎦

,

𝑫 =
⎡

⎢

⎢

⎣

cos(𝜑) − sin(𝜑) 0
sin(𝜑) cos(𝜑) 0
0 0 1

⎤

⎥

⎥

⎦

,

(33)

= [𝑤1 𝑤2 𝑤3 𝑤4]T and 𝒛 = [𝑥 𝑦 𝜑]T. Then, the sliding surface can be
esigned as:

= 𝒛 − �̂�, (34)

here 𝒔 = [𝑠1, 𝑠2, 𝑠3]T, and �̂� = [�̂�, �̂�, �̂�]T denote the estimate value
f the position and direction angle. Then, the adaptive variable power
eaching law can be designed as:

̇ = −𝑲1𝒔 − (𝑲2 +𝑲3|𝒔|𝝀1 +𝑲4|𝒔|𝝀2 )𝐬𝐚𝐭(𝒔), (35)

where 𝐬𝐚𝐭(𝒔) ≜ [sat(𝑠1), sat(𝑠2), sat(𝑠3)]T, in which the saturation func-

tion sat(𝑠𝑖), 𝑖 = 1, 2, 3 can be designed as: sat(𝑠𝑖) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 𝑠𝑖∕𝜒 > 1

𝑠𝑖∕𝜒, −1 ≤ 𝑠𝑖∕𝜒 ≤ 1

−1, 𝑠𝑖∕𝜒 < −1

,

𝜒 > 0 is the thickness of the boundary layer. Moreover, 𝝀1 =
diag(𝜆11, 𝜆12, 𝜆13) and 𝝀2 = diag(𝜆21, 𝜆22, 𝜆23) are the corresponding
variable exponential power matrices, and

𝝀1 ≜ 𝜂1 ⋅ 𝑬 ⋅ 𝐭𝐚𝐧𝐡(|𝒔|𝛿)|𝒔| + 𝜂2𝑬,

𝝀2 ≜ 0.5(𝜂3𝑬 + 𝑬) + 0.5(𝜂3𝑬 − 𝑬)𝐬𝐠𝐧(|𝒔| − 𝑬),

|𝒔| ≜
⎡

⎢

⎢

⎣

|𝑠1| 0 0
0 |𝑠2| 0
0 0 |𝑠3|

⎤

⎥

⎥

⎦

,

|𝒔|𝝀𝑖 ≜
⎡

⎢

⎢

⎣

|𝑠1|
𝜆𝑖1 0 0
0 |𝑠2|

𝜆𝑖2 0
0 0 |𝑠3|

𝜆𝑖3

⎤

⎥

⎥

⎦

,

𝐭𝐚𝐧𝐡(|𝒔|𝛿) ≜
⎡

⎢

⎢

⎣

𝑡𝑎𝑛ℎ(|𝑠1|
𝛿) 0 0

0 tanh(|𝑠2|𝛿) 0
0 0 tanh(|𝑠3|𝛿)

⎤

⎥

⎥

⎦

,

𝐬𝐠𝐧(|𝒔| − 𝑬) ≜
⎡

⎢

⎢

⎣

sgn(|𝑠1| − 1) 0 0
0 sgn(|𝑠2| − 1) 0
0 0 sgn(|𝑠3| − 1)

⎤

⎥

⎥

⎦

,

(36)

in which 𝜂1 > 1, 0 < 𝜂2 < 1, 𝜂3 > 1, 𝜎 is a constant going to infinity and
𝑲 𝜄 = diag(𝑘𝜄1, 𝑘𝜄2, 𝑘𝜄3), 𝜄 = 1, 2, 3, 4 is appropriate positive definite matrix.
The adaptive laws of 𝑲 𝜄 can be designed as:

⎧

⎪

⎨

⎪

⎩

�̇�11 = 𝜉1𝑠21,
�̇�12 = 𝜉2𝑠22,
�̇�13 = 𝜉3𝑠23,

⎧

⎪

⎨

⎪

⎩

�̇�21 = 𝜍1𝑠1𝑠𝑎𝑡(𝑠1),
�̇�22 = 𝜍2𝑠2𝑠𝑎𝑡(𝑠2),
�̇�23 = 𝜍3𝑠3𝑠𝑎𝑡(𝑠3),

⎧

⎪

⎨

⎪

⎩

�̇�31 = 𝜅1|𝑠1|
𝜆11+1,

�̇�32 = 𝜅2|𝑠2|
𝜆12+1,

�̇�33 = 𝜅3|𝑠3|
𝜆13+1,

⎧

⎪

⎨

⎪

⎩

�̇�41 = 𝜎1|𝑠1|
𝜆21+1,

�̇�42 = 𝜎2|𝑠2|
𝜆22+1,

�̇�43 = 𝜎3|𝑠3|
𝜆23+1,

(37)

where 𝜉𝑖, 𝜍𝑖, 𝜅𝑖 and 𝜎𝑖 are all positive constants.

Remark 2. The novel reaching law (35) can significantly improve the
convergence rate whether the sliding surface 𝒔 is close to or far from
zero. When |𝑠𝑖| ≥ 1, 𝜆1𝑖 = 𝜂1|𝑠𝑖|+𝜂2, 𝜆2𝑖 = 𝜂3, all terms play an important
role in accelerating convergence. When |𝑠𝑖| < 1, 𝜆1𝑖 = 𝜂2, 𝜆2𝑖 = 1, the
reaching rate is equal to a quick power reaching rate.

Then, the AVPSMO can be designed as:

̇ ̄ 𝝀1 𝝀2
55

�̂� = 𝑩𝒗 +𝑲1𝒔 + (𝑲2 +𝑲3|𝒔| +𝑲4|𝒔| )𝐬𝐚𝐭(𝒔) (38) c
By subtracting (38) from (32), the observation error can be obtained
as:

�̇� = 𝑫𝒇 −𝑲1𝒔 − (𝑲2 +𝑲3|𝒔|𝝀1 +𝑲4|𝒔|𝝀2 )𝐬𝐚𝐭(𝒔) (39)

Once the system reaches the sliding surface, then

𝒔 = �̇� = 0 (40)

Combining (39) and (40), yields

�̂� = 𝑫−1[𝑲1𝒔 + (𝑲2 +𝑲3|𝒔|𝝀1 +𝑲4|𝒔|𝝀2 )𝐬𝐚𝐭(𝒔)] (41)

Theorem 1. For the robot system (32), the unknown disturbances and
uncertainties of the robot can be accurately estimated by the AVPSMO (38).

Proof. Define �̄�𝜄1, �̄�𝜄2, �̄�𝜄3 are the corresponding nominal values of
𝑘𝜄1, 𝑘𝜄2, 𝑘𝜄3. Then, choose the following Lyapunov function:

𝑉𝑖 =
1
2
𝑠2𝑖 +

1
2𝜉𝑖

�̃�21𝑖 +
1
2𝜍𝑖

�̃�22𝑖 +
1
2𝜅𝑖

�̃�23𝑖 +
1
2𝜎𝑖

�̃�24𝑖 (42)

where �̃�𝜄𝑖 = 𝑘𝜄𝑖 − �̄�𝜄𝑖, 𝜄 = 1, 2, 3, 4, and 𝑖 = 1, 2, 3. Obviously, the function
𝑉𝑖 is positive definite. Define 𝒅dis = 𝑫𝒇 = [𝑑1dis, 𝑑2dis, 𝑑3dis]T. Then,
differentiating Eq. (42) with respect to time yields

�̇�𝑖 = 𝑠𝑖�̇�𝑖 + 𝑠2𝑖 �̃�1𝑖 + 𝑠𝑖sat(𝑠𝑖)�̃�2𝑖 + |𝑠𝑖|
𝜆1𝑖+1�̃�3𝑖 + |𝑠𝑖|

𝜆2𝑖+1�̃�4𝑖
= 𝑠𝑖[𝑑𝑖dis − 𝑘1𝑖𝑠𝑖 − 𝑘2𝑖sat(𝑠𝑖) − 𝑘3𝑖|𝑠𝑖|

𝜆1𝑖 sat(𝑠𝑖)
− 𝑘4𝑖|𝑠𝑖|

𝜆2𝑖 sat(𝑠𝑖)] + 𝑠2𝑖 �̃�1𝑖 + 𝑠𝑖sat(𝑠𝑖)�̃�2𝑖
+ |𝑠𝑖|

𝜆1𝑖+1�̃�3𝑖 + |𝑠𝑖|
𝜆2𝑖+1�̃�4𝑖

= 𝑠𝑖[𝑑𝑖dis − 𝑘3𝑖|𝑠𝑖|
𝜆1𝑖 sat(𝑠𝑖) − 𝑘4𝑖|𝑠𝑖|

𝜆2𝑖 sat(𝑠𝑖)]
− 𝑠2𝑖 �̄�1𝑖 − 𝑠𝑖sat(𝑠𝑖)�̄�2𝑖 + |𝑠𝑖|

𝜆1𝑖+1�̃�3𝑖
+ |𝑠𝑖|

𝜆2𝑖+1�̃�4𝑖
≤ 𝑠𝑖[𝑑𝑖dis − 𝑘3𝑖|𝑠𝑖|

𝜆1𝑖 sat(𝑠𝑖) − 𝑘4𝑖|𝑠𝑖|
𝜆2𝑖 sat(𝑠𝑖)]

− 𝑠𝑖sat(𝑠𝑖)�̄�2𝑖 + |𝑠𝑖|
𝜆1𝑖+1�̃�3𝑖 + |𝑠𝑖|

𝜆2𝑖+1�̃�4𝑖
≤ |𝑠𝑖𝑑𝑖dis| − 𝑘3𝑖|𝑠𝑖|

𝜆1𝑖+1
|sat(𝑠𝑖)| − 𝑘4𝑖|𝑠𝑖|

𝜆2𝑖+1
|sat(𝑠𝑖)|

− 𝑠𝑖sat(𝑠𝑖)�̄�2𝑖 + |𝑠𝑖|
𝜆1𝑖+1�̃�3𝑖 + |𝑠𝑖|

𝜆2𝑖+1�̃�4𝑖

(43)

Note that when |𝑠𝑖| ≥ 𝜒, 𝑖 = 1, 2, 3, yields

̇ 𝑖 ≤ |𝑠𝑖||𝑑𝑖dis| − 𝑘3𝑖|𝑠𝑖|
𝜆1𝑖+1

|sat(𝑠𝑖)| − 𝑘4𝑖|𝑠𝑖|
𝜆2𝑖+1

|sat(𝑠𝑖)|
− 𝑠𝑖sat(𝑠𝑖)�̄�2𝑖 + |𝑠𝑖|

𝜆1𝑖+1𝑘3𝑖 + |𝑠𝑖|
𝜆2𝑖+1𝑘4𝑖

= |𝑠𝑖||𝑑𝑖dis| − 𝑠𝑖sat(𝑠𝑖)�̄�2𝑖
= |𝑠𝑖||𝑑𝑖dis| − |𝑠𝑖|�̄�2𝑖

(44)

According to Assumption 1, it can be deduced that 𝒅dis is bounded,
o the nominal values of definite matrix 𝑲2 can be designed to make
𝑑𝑖dis| < �̄�2𝑖, 𝑖 = 1, 2, 3. In this case, it is easy to prove �̇�𝑖 < 0, indicating
hat all sliding mode variables 𝑠𝑖, 𝑖 = 1, 2, 3 can converge to the inside
f boundary layer. When the thickness of boundary layer goes to zero,
he sliding mode variable 𝑠𝑖 converge to zero. Therefore, the system is
table.

This ends the proof. □

emark 3. To improve the performance of the observer, this paper
as made the following improvements to the AVPSMO: (i) The variable
ower reaching law that combines the advantages of the double power
eaching law and the exponential reaching law is introduced. (ii) In
he observer design, through the boundary layer design, the saturation
unction is introduced to replace the traditional signum function to
liminate the chattering of the output of the observer. (iii) The variable
xponential power reaching law can adapt to the variation of the
liding variable 𝒔 and can be adjusted adaptively, so as to ensure a fast

onvergence rate in the whole process.
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5. Analysis and calculation of control parameters on the effect of
system robustness

By optimizing the constrained QP problem (29), the optimal input
control increment ▵ �̄�𝑘 can be obtained, and then optimal input �̄�𝑘
can be solved. Therefore, at time instance 𝑘, the velocity acting on the
robot motor after compensation by the output of AVPSMO (41) can be
calculated as

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1(𝑘)
𝑤2(𝑘)
𝑤3(𝑘)
𝑤4(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1(𝑘 − 1)
𝑤2(𝑘 − 1)
𝑤3(𝑘 − 1)
𝑤4(𝑘 − 1)

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑇𝑴−1

⎡

⎢

⎢

⎢

⎢

⎣

𝑢1(𝑘)
𝑢2(𝑘)
𝑢3(𝑘)
𝑢4(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

− 𝑱 v

⎡

⎢

⎢

⎣

𝑓x(𝑘)
𝑓y(𝑘)
𝑓𝜔(𝑘)

⎤

⎥

⎥

⎦

(45)

where

𝑱 v = 1
𝑟

⎡

⎢

⎢

⎢

⎢

⎣

1 −1 −(𝑙 + 𝐿)
1 1 (𝑙 + 𝐿)
1 1 −(𝑙 + 𝐿)
1 −1 (𝑙 + 𝐿)

⎤

⎥

⎥

⎥

⎥

⎦

(46)

is the generalized inverse matrix of 𝑱 r. Then, at the 𝑘th time instance,
the kinematic model with disturbances and uncertainties can be written
as:

⎡

⎢

⎢

⎣

�̇�(𝑘)
�̇�(𝑘)
�̇�(𝑘)

⎤

⎥

⎥

⎦

= 𝑫k

⎛

⎜

⎜

⎜

⎜

⎝

𝑱 r

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1(𝑘)
𝑤2(𝑘)
𝑤3(𝑘)
𝑤4(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑓x(𝑘)
𝑓y(𝑘)
𝑓𝜔(𝑘)

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

(47)

where

𝑫k =
⎡

⎢

⎢

⎣

cos[𝜑(𝑘)] − sin[𝜑(𝑘)] 0
sin[𝜑(𝑘)] cos[𝜑(𝑘)] 0

0 0 1

⎤

⎥

⎥

⎦

. (48)

Substituting Eq. (45) into Eq. (47) yields

⎡

⎢

⎢

⎣

�̇�(𝑘)
�̇�(𝑘)
�̇�(𝑘)

⎤

⎥

⎥

⎦

= 𝑫k

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

𝑣x(𝑘)
𝑣y(𝑘)
𝜔(𝑘)

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑓x(𝑘)
𝑓y(𝑘)
𝑓𝜔(𝑘)

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

, (49)

where

⎡

⎢

⎢

⎣

𝑓x(𝑘)
𝑓y(𝑘)
𝑓𝜔(𝑘)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑓x(𝑘)
𝑓y(𝑘)
𝑓𝜔(𝑘)

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝑓x(𝑘)
𝑓y(𝑘)
𝑓𝜔(𝑘)

⎤

⎥

⎥

⎦

(50)

are the estimated errors of lumped disturbances.

Remark 4. In accordance with Assumption 1, notwithstanding the tem-
poral variability in lumped disturbances, the designed AVPSMO (41)
can accurately estimate the value of 𝒇 under the condition that |𝑑𝑖dis| <
�̄�2𝑖, 𝑖 = 1, 2, 3, thereby ensuring the robustness of the system. Therefore,
it can be proved that the proposed AVPSMO-MPC algorithm in this
paper can effectively eliminate the influence of lumped disturbances
𝒇 and achieve fast and stable tracking control.

The AVPSMO-MPC principle of an MWMR is shown in Fig. 2. The
proposed control method is implemented as follows: (1) The nominal
dynamics model (14) and the actual kinematics model considering
lumped disturbances (17) of the robot are established, respectively. (2)
Based on the nominal dynamics model, the model Predictive controller
is designed and transformed into a constrained QP problem (29). (3)
The constrained QP problem (29) is solved to obtain the optimal
control input of the robot. (4) Based on the AVPSMO (41), the lumped
disturbances are estimated. (5) According to the estimates in Step 4, the
velocities acting on the motor of the follower robot are compensated
using Eq. (45). (6) The position information of the reference and
follower robots is updated, and the tracking error is calculated. (7)
Moving to the next time step and returning the current state value.
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6. Simulation results

In this section, to demonstrate the performance of the proposed
AVPSMO-MPC algorithm with disturbances and uncertainties consid-
ered, two comparative simulation cases are performed based on Matlab.
In both simulation cases, the parameters of follower robot 𝑅 and
virtual reference robot 𝑅r are the same. The parameters are set to:
𝑟 = 0.05 m, 𝐿 = 0.35 m, 𝑙 = 0.25 m. The total control time 𝑇c of the
system is 160 s and the sampling time 𝑇 is 0.1 s.

6.1. Tracking rectangular reference trajectory

In the first simulation case, the proposed AVPSMO-MPC method
in this paper and the traditional MPC algorithm are respectively used
to control the robot to track a rectangular reference trajectory under
the same situation. The parameters of the model predictive controller
are chosen as: 𝑁p = 5, 𝑁c = 2, 𝑸 = diag(100, 100, 100, 50, 50, 50),
𝑷 = diag(1, 1, 1, 1, 1, 1). The parameters of AVPSMO (41) are set to: 𝜀1 =
𝜀2 = 𝜀3 = 0.2, 𝜍1 = 𝜍2 = 𝜍3 = 0.1, 𝜅1 = 𝜅2 = 𝜅3 = 0.2, 𝜎1 = 𝜎2 = 𝜎3 = 0.1,
𝜂1 = 1.3, 𝜂2 = 0.3, 𝜂3 = 1.6, 𝜒 = 1. The lumped disturbances are set to
𝒇 = [0.08 sin(0.2𝑡)+0.04 cos(0.1𝑡), 0.08 cos(0.1𝑡), 0.04 sin(0.2𝑡)]T. Moreover,
consider the following constraints:

[−6,−6,−6,−6]T ≤ 𝒖𝑘 ≤ [6, 6, 6, 6]T,

[−0.5,−0.5,−0.5,−0.5]T ≤▵ 𝒖𝑘 ≤ [0.5, 0.5, 0.5, 0.5]T.
(51)

The angular velocities of four wheels of the virtual robot are given
as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ≤ 𝑇c ≤ 40,
𝑤1r = 2 rad∕s,
𝑤2r = 2 rad∕s,
𝑤3r = 2 rad∕s,
𝑤4r = 2 rad∕s,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

40 < 𝑇c ≤ 80,
𝑤1r = 2 rad∕s,
𝑤2r = −2 rad∕s,
𝑤3r = −2 rad∕s,
𝑤4r = 2 rad∕s,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

80 < 𝑇c ≤ 120,
𝑤1r = −2 rad∕s,
𝑤2r = −2 rad∕s,
𝑤3r = −2 rad∕s,
𝑤4r = −2 rad∕s,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

120 < 𝑇c ≤ 160,
𝑤1r = −2 rad∕s,
𝑤2r = 2 rad∕s,
𝑤3r = 2 rad∕s,
𝑤4r = −2 rad∕s.

(52)

The initial positions and orientation angles of robots 𝑅r and 𝑅 are
et to (𝑥r, 𝑦r, 𝜑r) = (5 m, 3 m, 0 rad) and (𝑥, 𝑦, 𝜑) = (4 m, 3.2 m, 0 rad),
espectively. The trajectories are shown in Fig. 3. From Fig. 3 and
ts partial enlarged figure, it is easy to find that the AVPSMO-MPC
lgorithm can make robot follow the reference trajectory completely.
owever, the trajectory exhibits a certain error with respect to the

eference trajectory when only the MPC method is used. It is shown that
he AVPSMO-MPC method can eliminate the influence of disturbances
nd improve the accuracy of trajectory tracking. The tracking errors of
he system are shown in Fig. 4. It is evident that all the errors fully
onverge to zero when the AVPSMO-MPC method is used, whereas
ertain errors persist when the traditional MPC method is used.

Fig. 5 shows the estimations of the lumped disturbances. Although
he lumped disturbances change irregularly, the designed AVPSMO
an still estimate the disturbance value quickly and accurately with
lmost no estimation error or chattering. The actual angular velocities
etween the wheels and the ground can be defined as [�̄�1, �̄�2, �̄�3, �̄�4]T.
ombining Eq. (45) to Eq. (50), yields

⎡

⎢

⎢

⎢

⎢

⎣

�̄�1(𝑘)
�̄�2(𝑘)
�̄�3(𝑘)
�̄�4(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1(𝑘)
𝑤2(𝑘)
𝑤3(𝑘)
𝑤4(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑱 v

⎡

⎢

⎢

⎣

𝑓x(𝑘)
𝑓y(𝑘)
𝑓𝜔(𝑘)

⎤

⎥

⎥

⎦

. (53)

The coupling constraint relationship between the angular velocities
f the four wheels [18] is shown in Fig. 6. It can be found that the
oupling constraint of the velocity is always maintained during the
ntire tracking process. The actual angular velocities of the four wheels
re shown in Figs. 7–10. When the AVPSMO-MPC method is used, the
elocities of the four wheels can fully converge to the desired velocities;

owever, the effect of the MPC method is not ideal.
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Fig. 2. Block diagram of the proposed AVPSMO-MPC algorithm.
Fig. 3. Trajectory tracking result of rectangular trajectory.

Fig. 4. Comparison of rectangular trajectory tracking errors.

6.2. Tracking S-shaped reference trajectory

In the second simulation case, 30 times independent repeated sim-
ulation experiments are conducted, where the follower is tasked with
tracking a reference robot from various initial setpoints. Moreover, in
57
Fig. 5. Estimations of lumped disturbances.

Fig. 6. The velocity constraint verification.

order to verify the disturbance rejection ability of the proposed method,
the disturbance values are different in each simulation experiment.
Comparative analysis with latest high-impact methods [39,42,44,45]
are illustrated to prove the superiority of the proposed AVPSMO-MPC.
The methods in literature [39,42,44,45] can be expressed as follows:
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b

m

Fig. 7. Angular velocity versus time plot of wheel 1.

Fig. 8. Angular velocity versus time plot of wheel 2.

Fig. 9. Angular velocity versus time plot of wheel 3.
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Fig. 10. Angular velocity versus time plot of wheel 4.

∙ The double power sliding mode observer (DPSMO) in [39]: The
ouble power reaching law is given as �̇� = −𝑲1𝒔 − 𝑲2𝐬𝐚𝐭(𝒔) −

𝑲3|𝒔|𝜀1𝑬𝐬𝐚𝐭(𝒔) − 𝑲4|𝒔|𝜀2𝑬𝐬𝐚𝐭(𝒔). Then, the observer can be designed
as ̇̂𝒛 = �̄�𝒗 + 𝑲1𝒔 + 𝑲2𝐬𝐚𝐭(𝒔) + 𝑲3|𝒔|𝜀1𝑬𝐬𝐚𝐭(𝒔) + 𝑲4|𝒔|𝜀2𝑬𝐬𝐚𝐭(𝒔), where
0 < 𝜀1 < 1, 𝜀2 > 1 and the definition of other parameters are consistent
with those described in Eq. (36).

∙ The sliding mode disturbance observer (SMDO) in [42]: The
reaching law is given as �̇� = −𝑲1𝒔 − 𝑲2𝐬𝐚𝐭(𝒔). Then, the observer can
be designed as ̇̂𝒛 = �̄�𝒗+𝑲1𝒔+𝑲2𝐬𝐚𝐭(𝒔), where 𝑲1 and 𝑲2 are positive
definite.

∙ The adaptive terminal sliding mode disturbance observer
(ATSMDO) in [44]: The sliding surface is given as 𝒔 = 𝒆+𝑲1�̇�+𝑲2�̇�

𝑚
𝑛 ,

where 𝒆 = 𝒛 − �̂�. The reaching law is given as �̇� = 𝑲3𝒔 + 𝑲4𝐬𝐠𝐧(𝒔).
Then, the observer can be designed as ̇̂𝒛 = �̄�𝒗 + �̂� , where �̂� = [𝑲1 +
𝑚
𝑛 𝑲2�̇�

(𝑚−𝑛)
𝑛 ]−1[�̇�+𝑲3𝒔+𝑲4𝐬𝐠𝐧(𝒔)] + �̂�. 𝑲1, 𝑲2, 𝑲3 and 𝑲4 are positive

definite, and 2𝑛 > 𝑚 > 𝑛 > 0. ̇̂𝜶 = 𝜌[𝑲1 +
𝑚
𝑛 𝑲2�̇�

(𝑚−𝑛)
𝑛 ]𝒔 as an adaptive

ain, where 𝜌 is a positive constant. The definition of other parameters
re consistent with those described in Eq. (36).
∙ The new extended state observer (NESO) in [45]: The observer can

e designed as ̇̂𝒛 = �̄�𝒗 + 𝑔(𝒆)
𝜀 , where 𝑔(⋅) is a odd continuous function,

𝜀 < 1 is a small positive constant.
Define the number of experiments as 𝑛e = 1, 2,… , 30, the initial

states of robot 𝑅r and 𝑅 are set to (𝑥r, 𝑦r, 𝜑r) = (5 m, 3 m, 0 rad) and
(𝑥, 𝑦, 𝜑) = ((4−0.01𝑛e) m, (2−0.01𝑛e) m, 0 rad), respectively. The angular
velocities of four wheels of the virtual robot are given as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 ≤ 𝑇c ≤ 80,
𝑤1r = 1.2 rad∕s,
𝑤2r = 1.3 rad∕s,
𝑤3r = 1 rad∕s,
𝑤4r = 1.5 rad∕s,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

80 < 𝑇c ≤ 160,
𝑤1r = 1.5 rad∕s,
𝑤2r = 1 rad∕s,
𝑤3r = 1.3 rad∕s,
𝑤4r = 1.2 rad∕s,

(54)

The parameter settings of MPC are the same as in the first simulation
case. The parameter settings of the observers are as follows:

∙ DPSMO: 𝑲1 = 3𝑬,𝑲2 = 𝑬, 𝑲3 = 3𝑬,𝑲4 = 𝑬, 𝜀1 = 1.5, 𝜀2 = 0.5;
∙ SMDO: 𝑲1 = 3𝑬, 𝑲2 = 𝑬;
∙ ATSMDO: 𝑲1 = 𝑬,𝑲2 = 0.1𝑬, 𝑲3 = 3𝑬,𝑲4 = 0.05𝑬, 𝑚 = 2, 𝑛 = 1,

𝜌 = 0.07;
∙ NESO: 𝑔(𝒆) = 𝒆, 𝜀 = 0.1;
∙ AVPSMO: 𝜀1 = 𝜀2 = 𝜀3 = 0.2, 𝜍1 = 𝜍2 = 𝜍3 = 0.2, 𝜅1 = 𝜅2 = 𝜅3 =

0.2, 𝜎1 = 𝜎2 = 𝜎3 = 0.1, 𝜂1 = 1.5, 𝜂2 = 0.1 and 𝜂3 = 1.5.
Under the above parameter settings, thirty times tracking experi-

ents are performed using DPSMO-MPC, SMDO-MPC, ATSMDO-MPC,

ESO-MPC and AVPSMO-MPC, respectively. In the 𝑛𝑒th experiment,
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Fig. 11. Comparisons of the integral absolute tracking errors from 30 tracking
xperiments.

he lumped disturbances are set to: 𝒇 = 0.01𝑛e[𝑓x, 𝑓y, 𝑓𝜔]T, where
x = 0.5 + 0.5 sin(0.5𝑡), 𝑓y = sin(0.07𝑡) + 0.5 cos(0.05𝑡) and 𝑓𝜔 = sin(0.1𝑡) +
.5 cos(0.5𝑡).

To evaluate the tracking performance of DPSMO-MPC, SMDO-MPC,
TSMDO-MPC, NESO-MPC and AVPSMO-MPC, the integral absolute

racking errors (IAE) and integral absolute disturbance estimation er-
ors from 30 tracking experiments are shown as boxplots in Fig. 11 and
ig. 12, respectively. These boxplots intuitively demonstrate that the
AE corresponding to the proposed AVPSMO-MPC method is smaller
nd more centralized than those of the other algorithms. Notably,
ig. 11 signifies that the proposed strategy has a better tracking per-
ormance, and Fig. 12 substantiates that the proposed AVPSMO-MPC
an more accurately estimate disturbances, thereby demonstrating the
obustness of the algorithm. It is evident that the proposed algo-
ithm excels in disturbance suppression and exhibits excellent tracking
erformance for various setpoints.

In addition, we record the results of one of the comparative sim-
lation cases in detail. The tracking results and the integral absolute
racking errors for the S-shaped trajectory with above five controllers
re shown in Fig. 13 and Fig. 14, respectively. Although each of the five
ontrol algorithms have good control effect, the AVPSMO-MPC method
roposed in this paper has a smaller tracking error. The estimated dis-
urbance values and the integral absolute disturbance estimation errors
re shown in Fig. 15 and Fig. 16, respectively. In the 30 simulation
ases, the AVPSMO is generally able to converge within 2s. Moreover,
s shown in Figs. 15–16, AVPSMO-MPC has superior accuracy in terms
f disturbance estimation compared with other algorithms.

From the above comparative simulation cases, the following conclu-
ions can be made:

(1) Compared with the traditional MPC method, the proposed
AVPSMO-MPC strategy can realize more stable tracking control
in the presence of disturbances and uncertainties, and can ensure
that various constraints are not violated;

(2) The AVPSMO designed in this paper can quickly and accurately
approximate unknown lumped disturbances. Moreover, the effect
of chattering is almost completely eliminated;

(3) In repeated simulation experiments, each experiment is inde-
pendent with different setpoints and disturbances. The proposed
59
Fig. 12. Comparisons of the integral absolute disturbance estimation errors from 30
tracking experiments.

Fig. 13. Trajectory tracking result of S-shaped trajectory.

AVPSMO-MPC consistently demonstrates its ability to effectively
suppress disturbances and achieve precise and stable tracking in
the aforementioned situations.

7. Conclusion

Aiming at the tracking control problem of the MWMR under the in-
fluence of unknown disturbances and model uncertainties, an AVPSMO-
MPC algorithm is proposed in this paper. First, considering various
physical constraints, the unmeasurable lumped disturbance is incorpo-
rated into the nominal model, and a control problem with trajectory
tracking and disturbance rejection is established. To eliminate the effect
of model error caused by external disturbances and uncertainties, an
AVPSMO is introduced to approximate the disturbance online. The
proposed observer can adaptively adjust the reaching law parameter
based on observation errors. The stability and robustness of the de-
signed sliding mode observer are rigorously proven. On this basis, a
model predictive controller is designed for the tracking control of the
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Fig. 14. Comparisons of the integral absolute tracking errors.

Fig. 15. Estimations of lumped disturbances.

WMR. Finally, the effectiveness and robustness of the proposed con-
rol algorithm is verified by comparative simulation cases. Simulation
esults indicate that the proposed AVPSMO-MPC method effectively
uppresses tracking errors caused by the lumped disturbances, improves
he performance of tracking control, with faster response compared
ith other methods.

Future research may focus on predictive control for more different
pplication scenarios. For example, learning predictive control theory
nd method for time-delay systems, and communication constrained
nd event triggered distributed learning control.
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