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Abstract

With the increasing prevalence of omnidirectional mobile robots in industrial appli-
cations, such as collaborative transportation and cargo classification, the demand
for computational power in these robots has grown significantly. Model Predictive
Control (MPC) is widely used for trajectory tracking due to its exceptional ability
to handle constraints; however, it is computationally intensive. Therefore, our core
approach proposes a hybrid event-triggering mechanism to minimize the reliance
on MPC. When the tracking error remains within a specified threshold, the system
continues using the existing optimal control sequence without resolving the MPC
optimization problem, thereby reducing computational complexity. However, less
frequent use of MPC can lead to decreased tracking accuracy. To address this issue,
we incorporate a novel sliding mode observer to compensate for errors and mitigate
the effects of unknown disturbances. To validate the performance of the proposed
controller, we conducted simulations comparing the trajectory tracking performance
of traditional MPC, event-triggered MPC, and observer-based MPC under distur-
bance conditions. The results demonstrate that the proposed algorithm maintains
tracking accuracy while significantly reducing computational load.

KEYWORDS:
mecanum-wheeled mobile robot, model predictive control, event-triggered control, sliding mode observer,
trajectory tracking

1 INTRODUCTION

As an omnidirectional mobile robot, the Mecanum-wheeled mobile robot (MWMR), with its superior motion capabilities and
stability, finds increasing application across various domains1,2. With the advancement of technology, the demands associated
with MWMR’s tasks are also on the rise. Notably, trajectory tracking stands out as a prominent research focus in the field of
robotics and represents a pivotal technology for enabling MWMR to autonomously fulfill tasks3,4. In order to achieve tracking
control, scholars have proposed models such as the kinematics trajectory tracking error model5 and dynamic model6 for MWMR,
etc. Given that MWMR is a nonlinear system with complicated constraints, the achievement of precise trajectory tracking proves
challenging7.

To overcome these control difficulties, the exceptional capability of model predictive control (MPC) in effectively manag-
ing complex constraints, encompassing state, input and output in trajectory tracking problems, has garnered increasing favor
among scholars8,9,10. In11, a novel distributed model predictive control has been proposed to achieve formation control of a team
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consisting of four mobile robots. The authors of12 proposed a novel MPC approach based on the dynamics of cooperative lon-
gitudinal motion of the vehicle platoon for addressing the issue of vehicle platoon control. To tackle the optimal coordination
problem, an optimal hierarchical control framework with linear time-varying model predictive controller was developed in13.
Another notable exploration14 introduced a reinforcement learning-based model predictive control, achieving trajectory track-
ing of unmanned surface vehicle. In15, a novel dual-loop nonlinear tube-based robust model predictive control algorithm was
proposed, which ensured the actual system trajectories remained within a designated tube region centered around the nominal
solution.

For trajectory tracking control of mobile robots, dynamic model provides better control effect than considering only kine-
matic model16. However, it is imperative to acknowledge that the computational complexity of MPC escalates with the QP
problem dimension17,18. This implies that MPC not only imposes a higher computational burden but also necessitates increased
communication resources. In this regard, the event-triggering mechanism can effectively reduce the computation and commu-
nication cost19,20. In one study21, to decrease the consumption of resources, a novel dynamic event-triggered mechanism was
proposed by introducing a bounded dynamic variable and a time-varying threshold. In a separate study22, an event-triggered
MPC was implemented for the control of autonomous vehicles path tracking within the CARLA simulation environment, aim-
ing to decrease computation load. In23, a quasi-differential type event-triggering mechanism was proposed, which reduced the
number of event triggers by the event-triggering condition constructed by the error gradient. It is noteworthy that when the event
is not triggered, the system will still employing the control sequence derived from the most recent MPC trigger. However, the
dynamics model of MWMR is time-varying, implying that the system may experience a decrease in control accuracy due to
model uncertainties24. In addition, the external disturbances are also one of the reasons for the system errors25. The presence of
the aforementioned lumped disturbance results in high-frequency triggering of the controller26, which contradicts our intended
control strategy.

This issue has been studied in detail by many scholars, and various effective solutions have emerged. In27, a statistical learning
method was applied to event-triggered MPC to compensate for unknown disturbance. Similarly, an event-triggered extended
state observer based robust MPC was proposed in28, in which the observer was introduced to estimate the disturbances within
the power converter systems. Li 𝑒𝑡 𝑎𝑙.29 proposed a central path-based disturbance prediction approach to improve the state
prediction precision and, hence, reduce greatly the triggering frequency. In30, Liu 𝑒𝑡 𝑎𝑙 presented a virtual stabilizing function
aimed at eliminating the influence of the model uncertainties. The sliding mode observer, recognized as an effective method for
disturbance estimation, has been extensively studied by scholars in recent years. To enhance the anti-disturbance capabilities
of permanent magnet synchronous motor, based on the improved non-singular fast terminal sliding mode controller proposed
in31, SMO was introduced to estimate the load disturbance. In32, a composite SMO was proposed for eliminating the effect of
mismatch between inductance, resistance and magnetic chain parameters in motor systems. In33, a fuzzy second-order SMO
algorithm was employed in closed-loop control, successfully achieving trajectory tracking control of a two-link robot. Building
upon the aforementioned discoveries, SMO is incorporated in this paper to mitigate perturbations within the control process.

Therefore, this paper proposes a SMO-based hybrid event-triggered model predictive control (SMO-HETMPC) for trajectory
tracking of MWMR. Initially, for the trajectory tracking problem of MWMR, a hybrid triggering mechanism combining two
triggering conditions is designed. The proposed triggering condition deviates from the traditional event-triggered MPC, which
relies on the error between the actual state sequence and the optimal predicted state sequence for triggering. Instead, it utilizes
the error state between the actual state sequence and the desired target sequence as the triggering condition, ensuring a certain
level of path tracking accuracy. On this basis, this approach significantly reduces the computational load when compared to time-
driven MPC. Meanwhile, to further reduce the trigger frequency, a SMO is introduced to compensate the control inputs, aiming
to alleviate the impact of model errors and external disturbances. Specifically, a novel reaching law is designed in this paper.
Finally, through experimental comparisons, the effectiveness and robustness of the proposed SMO-HETMPC are validated. In
this paper, the major contributions are summarized as follows:

1. This paper proposes a novel hybrid event-triggering mechanism and demonstrates its effectiveness in mitigating Zeno
behavior. Furthermore, experimental results confirm that the proposed mechanism can effectively reduce computational
overhead.

2. To resist the impact of lumped disturbances on trajectory tracking, a framework integrating the SMO with the hybrid
event-triggering mechanism is established. The MPC within this framework achieving more precise control while further
reducing computational load.
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FIGURE 1 The model of the Mecanum-wheeled mobile robot.

3. Compared to existing event-triggered MPC, the effectiveness of the proposed SMO-HETMPC is proved by comparison
with the latest high-impact methods5,20,28.

The remaining sections of this paper are planned as follows. Section 2 explains the system description. Section 3 introduces
the novel hybrid event-triggered MPC scheme and provides proof that the system avoids Zeno behavior. Section 4 presents
the novel SMO and demonstrates its stability by Lyapunov method. Section 5 verifies the effectiveness of the SMO-HETMPC
algorithm through experimental experiments and comparisons. Finally, conclusions are presented in Section 6.

2 MATHEMATICAL MODEL OF MWMP

Fig. 1 shows the motion schematic of the robot, where 𝑋𝑂𝑌 and 𝑋q𝑂q𝑌q respectively represent the inertial coordinate system
and robot coordinate system.

2.1 Kinematics of MWMR
According to the kinematic model of MWMR introduced in16, the relation between the body velocities of the MWMR, and the
angular velocities of the four wheels can be calculated as

⎡

⎢

⎢

⎣

𝑣x
𝑣y
𝑣𝜑

⎤

⎥

⎥

⎦

= 𝐽r

⎡

⎢

⎢

⎢

⎢

⎣

𝜔1
𝜔2
𝜔3
𝜔4

⎤

⎥

⎥

⎥

⎥

⎦

, (1)

where

𝐽r =
𝑟
4

⎡

⎢

⎢

⎣

1 1 1 1
−1 1 1 −1
−1
𝑙+𝐿

1
𝑙+𝐿

−1
𝑙+𝐿

1
𝑙+𝐿

⎤

⎥

⎥

⎦

(2)

represents the Jacobian matrix, the variable 𝑟 signifies the radius of the Mecanum wheels, while 𝐿 and 𝑙 denote the distances
between the wheels and the center of the robot, respectively. The vector [𝑣x, 𝑣y, 𝑣𝜑]T represents the robot’s velocity components
along 𝑋q, 𝑌q, and the rotational speed around the geometric center of the body, while [𝑤1, 𝑤2, 𝑤3, 𝑤4]T represents the angular
velocities of four wheels.
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Subsequently, the nominal kinematics model of the MWMR is expressed as:

⎡

⎢

⎢

⎣

𝑥̇
𝑦̇
𝜑̇

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos(𝜑) −sin(𝜑) 0
sin(𝜑) cos(𝜑) 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑣x
𝑣y
𝑣𝜑

⎤

⎥

⎥

⎦

, (3)

where [𝑥, 𝑦, 𝜑]T represents the MWMR’s pose information in the inertial coordinate system.

2.2 Dynamics of MWMR
Based on34,35, nominal dynamics model of the MWMR without considering friction can be derived by using Lagrange equation.
Hence, the kinetic energy equation of the MWMR is given as follows:

𝐾 = 1
2
𝑚(𝑣2x + 𝑣2y) +

1
2
𝐽z𝑣

2
𝜑 + 1

2
𝐽𝜔(𝜃̇21 + 𝜃̇22 + 𝜃̇23 + 𝜃̇24) (4)

where the vector 𝜽 = [𝜃1, 𝜃2, 𝜃3, 𝜃4]T is the angle of four wheels; 𝜃̇𝑖 = 𝜔𝑖, 𝑖 = 1, 2, 3, 4; 𝑚 denotes the total mass of the MWMR;
𝐽z and 𝐽𝜔 denote the moments of the MWMR and wheel inertia around the center of their revolution, respectively.

The energy dissipation due to viscous friction can be expressed as:

𝐷 = 1
2
𝐷𝜃(𝜃̇21 + 𝜃̇22 + 𝜃̇23 + 𝜃̇24), (5)

where 𝐷𝜃 represents the viscous friction coefficient of the wheel. Subsequently, the Lagrange function is formulated as:

𝐿 = 𝐾 − 𝑉 , (6)

where 𝑉 is potential energy and equals to zero. The Euler Lagrangian equation can be constructed as:
𝜕
𝜕𝑡

𝜕
𝜕𝜽̇

𝐿 − 𝜕
𝜕𝜽

𝐿 = 𝝉 − ( 𝜕
𝜕𝜽̇

𝐷 + 𝐹 (𝜽̇)), (7)

where the vector 𝝉 = [𝜏1, 𝜏2, 𝜏3, 𝜏4]T represents the generalized external force exerted by the DC motors, individually corre-
sponding to the four wheels of the MWMR. The static friction be expressed as 𝐹 (𝜽̇) = [𝑓𝑐1sgn(𝜃̇1), 𝑓𝑐2sgn(𝜃̇2),
𝑓𝑐3sgn(𝜃̇3), 𝑓𝑐4sgn(𝜃̇4)] is generally known, further derivation of Eq. (7) results in:

𝝉 = 𝑀 𝜽̈ +𝐷𝜃𝜽̇ + 𝐹 (𝜽̇), (8)

where
𝑀 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴j + 𝐵j + 𝐽𝜔 −𝐵j 𝐵j 𝐴j − 𝐵j
−𝐵j 𝐴j + 𝐵j + 𝐽𝜔 𝐴j − 𝐵j 𝐵j
𝐵j 𝐴j − 𝐵j 𝐴j + 𝐵j + 𝐽𝜔 −𝐵j

𝐴j − 𝐵j 𝐵j −𝐵j 𝐴j + 𝐵j + 𝐽𝜔

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐴j =
𝑚𝑟2
8

, 𝐵j =
𝐽z𝑟2

16(𝑙 + 𝐿)2
.

(9)

Differentiating (1) and substituting (3) and (8), the nominal dynamics model of the robot can be written as:

⎡

⎢

⎢

⎣

𝑥̈
𝑦̈
𝜑̈

⎤

⎥

⎥

⎦

= −
(

𝐹 + (𝜑) 𝐹̇ (𝜑) +𝐷𝜃𝐹
+ (𝜑)𝑀−1𝐹 (𝜑)

)

⎡

⎢

⎢

⎣

𝑥̇
𝑦̇
𝜑̇

⎤

⎥

⎥

⎦

+ 𝑟𝐹 + (𝜑)𝑀−1 (𝝉 − 𝐹 (𝜽̇)
)

,

(10)



Binghao Yang ET AL. 5

where

𝐹 (𝜑) =

⎡

⎢

⎢

⎢

⎢

⎣

√

2 sin(𝜑a) −
√

2 cos(𝜑a) −(𝑙 + 𝐿)
√

2 cos(𝜑a)
√

2 sin(𝜑a) 𝑙 + 𝐿
√

2 cos(𝜑a)
√

2 sin(𝜑a) −(𝑙 + 𝐿)
√

2 sin(𝜑a) −
√

2 cos(𝜑a) 𝑙 + 𝐿

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐹 +(𝜑) =

1
4

⎡

⎢

⎢

⎢

⎣

√

2 sin(𝜑a)
√

2 cos(𝜑a)
√

2 cos(𝜑a)
√

2 sin(𝜑a)
−
√

2 cos(𝜑a)
√

2 sin(𝜑a)
√

2 sin(𝜑a) −
√

2 cos(𝜑a)
−1
𝑙+𝐿

1
𝑙+𝐿

−1
𝑙+𝐿

1
𝑙+𝐿

⎤

⎥

⎥

⎥

⎦

,

𝐹̇ (𝜑) = 𝜑̇

⎡

⎢

⎢

⎢

⎢

⎣

√

2 cos(𝜑a)
√

2 sin(𝜑a) 0
−
√

2 sin(𝜑a)
√

2 cos(𝜑a) 0
−
√

2 sin(𝜑a)
√

2 cos(𝜑a) 0
√

2 cos(𝜑a)
√

2 sin(𝜑a) 0

⎤

⎥

⎥

⎥

⎥

⎦

,

𝜑a = 𝜑 + 𝜋
4
.

(11)

By defining the state variable 𝒙 = [𝑥, 𝑦, 𝜑, 𝑥̇, 𝑦̇, 𝜑̇]T and the control input 𝒖 = 𝝉 − 𝐹 (𝜽̇), the state equation of the MWMR
system can be simplified to the following form:

𝒙̇ = 𝐴𝒙 + 𝐵𝒖, (12)
where

𝐴 =
[

0 𝐸
0 −

(

𝐹 +(𝜑)𝐹̇ (𝜑) +𝐷𝜃𝐹 +(𝜑)𝑀−1𝐹(𝜑)
)

]

∈ ℝ6×6,

𝐵 =
[

0
𝑟𝐹 +(𝜑)𝑀−1

]

∈ ℝ6×4,
(13)

and 𝐸 ∈ ℝ3×3 is an identity matrix.
Remark 1: Define the notation 𝒙 and 𝒓 as the system state and the reference state respectively. Then, the tracking error of the

system can be represented as:
𝒆 = 𝒙 − 𝒓. (14)

At this point, the tracking problem in MWMR can be reformulated as the stability problem of (14).

3 HYBRID EVENT-TRIGGERED MPC

3.1 The QP formulation for model predictive controller
It is widely acknowledged MPC falls under the category of optimal control techniques. In this paper, a time series {𝑡𝑘}, 𝑘 ∈ ℕ
is defined to record the triggered moments at which the optimal control problem needs to be addressed. Then, the discrete
expression of the system (12) at one moment could be described as:

𝒙(𝑡𝑘 + 1) = 𝐺𝑘𝒙(𝑡𝑘) +𝐻𝑘𝒖(𝑡𝑘), (15)

where
𝐺𝑘 = (𝐸 + 𝑇𝐴), 𝐻𝑘 = 𝑇𝐵, (16)

and the notation 𝑇 is the sampling time. Define 𝑁p as the prediction horizon of the system. Then, the following cost function
can be formulated:

𝐽 (𝒙(𝑠|𝑡𝑘),Δ𝒖(𝑠|𝑡𝑘)) =
𝑁𝑝
∑

𝑗=1
||𝒙(𝑡𝑘 + 𝑗|𝑡𝑘) − 𝒓(𝑡𝑘 + 𝑗)||2𝑄 +

𝑁𝑝−1
∑

𝑗=0
||Δ𝒖(𝑡𝑘 + 𝑗|𝑡𝑘)||2𝑅,

(17)

where 𝑄 and 𝑅 denote positive definite matrix of corresponding dimension. The input increment vector Δ𝒖(𝑡𝑘 + 𝑗|𝑡𝑘) = 𝒖(𝑡𝑘 +
𝑗|𝑡𝑘) − 𝒖(𝑡𝑘 + 𝑗 − 1|𝑡𝑘), where 𝒖(𝑡𝑘 + 𝑗|𝑡𝑘) is the predicted control input vector.
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Thus, the optimization problem can be established as follows:
Δ𝒖∗(𝑠|𝑡𝑘) = min

Δ𝒖(𝑠|𝑡𝑘)
𝐽 (𝒙(𝑠|𝑡𝑘),Δ𝒖(𝑠|𝑡𝑘)),

s.t.
𝑠 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝑝],
𝒙min ≤ 𝒙(𝑠|𝑡𝑘) ≤ 𝒙max,
𝒖min ≤ 𝒖(𝑠|𝑡𝑘) ≤ 𝒖max,
Δ𝒖min ≤ Δ𝒖(𝑠|𝑡𝑘) ≤ Δ𝒖max,

(18)

where 𝒙min, 𝒙max, 𝒖min, 𝒖max, Δ𝒖min and Δ𝒖max are the corresponding lower and upper bounds of variables. The Δ𝒖∗(𝑠|𝑡𝑘)
obtained by solving the optimal control problem (18) will be used as the control input increment to the system (15).

3.2 Hybrid event-triggered mechanism
A controller capable of solving the trajectory tracking problem can be derived based on Section 3.1. However, solving the
optimization problem (18) frequently can be computationally burdensome, hence the hybrid event-triggered mechanism is intro-
duced in this paper. Initially, after solving the optimal control problem at the moment 𝑡𝑘, the error between the actual system
state and the reference state is defined as:

𝒆(𝑠|𝑡𝑘) = 𝒙(𝑠|𝑡𝑘) − 𝒓(𝑠), 𝑠 ∈ [𝑡𝑘, 𝑡𝑘 +𝑁𝑝]. (19)

Then, two events are defined as:

𝐶 = {𝑠 > 𝑡𝑘 ∣ ||𝒆(𝑠|𝑡𝑘)||𝑃 > 𝜀}, (20a)
𝐹 = {𝜇 > 𝑡𝑘 + 𝑇 ∣ ||𝒆(𝜇|𝑡𝑘) − 𝒆(𝜇 − 𝑇 |𝑡𝑘)||𝑃 > 𝜎}, (20b)

in which the event 𝐶 maintains the system’s adherence to the reference state 𝒓, whereas the event 𝐹 ensures the continuous
approach towards the reference state. Then, the instants for triggering are defined as:

𝑡𝑘+1 ≜ min(𝐶 ∩ 𝐹 ). (21)

Remark 2: Compared to traditional event-triggering condition 𝐶 , the proposed hybrid event-triggered mechanism introduces
the novel condition𝐹 which is determined by evaluating the gradients of the differences between the actual state and the reference
state at two consecutive sample instances.

The solving of the optimization problem also occurs in the case of fixed moments with a period in the prediction time domain
𝑁𝑝. Thus, the next triggered instant for the time series {𝑡𝑘} is finally expressed as:

𝑡𝑘+1 = min{𝑡𝑘+1, 𝑡𝑘 +𝑁𝑝}. (22)

Remark 3: Zeno behavior commonly occurs in event-triggered mechanisms, representing 0 trigger or infinite trigger within a
confined time frame in event-triggered control. In the experiments of this paper, a fixed sampling time 𝑇 is set, i.e., the system
regularly collects the current state and judges whether the triggering condition is satisfied. The interval between two events is
represented by inf{𝑡𝑘+1 − 𝑡𝑘} = 𝑇 for the minimum time and sup{𝑡𝑘+1 − 𝑡𝑘} = 𝑁𝑝, 𝑘 ∈ 𝑁 for the maximum time, respectively.
Therefore, the proposed event-triggered mechanism is Zeno-free.

4 SLIDING MODE OBSERVER

In order to attain the intended control effect, it is necessary to account for unknown disturbances and model uncertainties, referred
to as aggregate disturbances. Within this section, a SMO algorithm is developed to estimate the combined perturbations within
the MWMR kinematic model (3). This perturbation estimation is applied to mitigate the perturbation’s impact on the system,
thus enhancing the system’s robustness. Considering external interferences and model uncertainties, the kinematic model of
MWMR should be derived under the following assumption:

Assumption 1: The unknown disturbances and model uncertainties in the system are all bounded.
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Considering the aggregate disturbances, the relation (1) can be rewritten as:

⎡

⎢

⎢

⎣

𝑣x
𝑣y
𝜔

⎤

⎥

⎥

⎦

= 𝐽r

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1
𝑤2
𝑤3
𝑤4

⎤

⎥

⎥

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑓x
𝑓y
𝑓𝜔

⎤

⎥

⎥

⎦

, (23)

where [𝑓x, 𝑓y, 𝑓𝜔]T denotes the aggregate disturbances in different velocity directions of the robot centroid. Then, the kinematic
model can be written as:

⎡

⎢

⎢

⎣

𝑥̇
𝑦̇
𝜑̇

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

cos(𝜑) −sin(𝜑) 0
sin(𝜑) cos(𝜑) 0
0 0 1

⎤

⎥

⎥

⎦

⎛

⎜

⎜

⎜

⎜

⎝

𝐽r

⎡

⎢

⎢

⎢

⎢

⎣

𝑤1
𝑤2
𝑤3
𝑤4

⎤

⎥

⎥

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑓x
𝑓y
𝑓𝜔

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

. (24)

Then, the kinematic model (24) can be reformulated in the subsequent manner:

𝒛̇ = 𝐵̄𝒗 +𝐷𝒇 , (25)

where

𝐵̄ = 𝑟
4

⎡

⎢

⎢

⎣

cos(𝜑) −sin(𝜑) 0
sin(𝜑) cos(𝜑) 0
0 0 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 1 1 1
−1 1 1 −1
−1
𝑙+𝐿

1
𝑙+𝐿

−1
𝑙+𝐿

1
𝑙+𝐿

⎤

⎥

⎥

⎦

,

𝐷 =
⎡

⎢

⎢

⎣

cos(𝜑) −sin(𝜑) 0
sin(𝜑) cos(𝜑) 0
0 0 1

⎤

⎥

⎥

⎦

,

(26)

𝒗 = [𝑤1, 𝑤2, 𝑤3, 𝑤4]T and 𝒛 = [𝑥, 𝑦, 𝜑]T. Then, the sliding surface can be designed as:

𝒔 = 𝒛 − 𝒛̂, (27)

where 𝒔 = [𝑠1, 𝑠2, 𝑠3]T, and 𝒛̂ = [𝑥̂, 𝑦̂, 𝜑̂]T denote the estimate value of the position and direction angle. Then, the estimated
state equation is considered as:

̇̂𝒛 = 𝐵̄𝒗 +𝐾1(𝒆𝐾2𝒔 − 1) +𝐾3𝐬𝐠𝐧(𝒔), (28)
in which 𝐾𝜄 = diag(𝑘𝜄1, 𝑘𝜄2, 𝑘𝜄3), 𝜄 = 1, 2, 3 is appropriate positive definite matrix, 𝐬𝐠𝐧(𝒔) ≜ [sgn(𝑠1), sgn(𝑠2), sgn(𝑠3)]T is the
symbolic function.

By subtracting (28) from (25), the observation error can be obtained as:

𝒔̇ = 𝐷𝒇 −𝐾1(𝒆𝐾2𝒔 − 1) −𝐾3𝐬𝐠𝐧(𝒔). (29)

Once the system reaches the sliding surface, then
𝒔 = 𝒔̇ = 0. (30)

Combining (29) and (30), yields
𝒇̂ =𝐷−1[𝐾1(𝒆𝐾2𝒔 − 1) +𝐾3𝐬𝐠𝐧(𝒔)]. (31)

Theorem 1: If (27) spontaneously approaches zero, it means that the proposed SMO (28) enables accurate estimation of the
unknown external disturbances and uncertainties affecting the MWMR system (25).

Proof. Consider a Lyapunov function:
𝑉 = 1

2
𝒔T𝒔. (32)
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Obviously, the function 𝑉 is positive definite. Define 𝒅dis = 𝐷𝒇 = [𝑑1dis, 𝑑2dis, 𝑑3dis]. Differentiating Eq. (32) with respect
to time yields:

𝑉̇ = 1
2
𝒔̇T𝒔 + 1

2
𝒔T𝒔̇

= 𝒔T𝒔̇
= 𝒔T [𝐷𝒇 −𝐾1(𝒆𝐾2𝒔 − 1) −𝐾3𝐬𝐠𝐧(𝒔)

]

= 𝒔T𝐷𝒇 − 𝒔T𝐾1(𝒆𝐾2𝒔 − 1) − 𝒔T𝐾3𝐬𝐠𝐧(𝒔)

=
3
∑

𝑖=1
𝑠𝑖𝑑𝑖dis −

3
∑

𝑖=1
𝑘1𝑖(𝑒𝑘2𝑖𝑠𝑖 − 1) −

3
∑

𝑖=1
𝑠𝑖𝑘3𝑖sgn(𝑠𝑖)

≤
3
∑

𝑖=1
𝑠𝑖𝑑𝑖dis −

3
∑

𝑖=1
𝑠𝑖𝑘3𝑖sgn(𝑠𝑖)

≤
3
∑

𝑖=1

|

|

𝑠𝑖|| ||𝑑𝑖dis
|

|

−
3
∑

𝑖=1

|

|

𝑠𝑖|| 𝑘3𝑖

(33)

According to Assumptions 1, it can be deduced that 𝒅dis is bounded, so the nominal values of definite matrix 𝐾3 can be
designed to make |𝑑𝑖dis| < 𝑘3𝑖, 𝑖 = 1, 2, 3. In this case, demonstrating 𝑉̇ < 0 is readily achieved, indicating the convergence of
all sliding mode variables 𝑠𝑖, 𝑖 = 1, 2, 3 towards the internal confines of the boundary layer. As the thickness of the boundary
layer approaches zero, the sliding mode variables 𝑠𝑖 also converge towards zero. Consequently, affirming the system’s stability.

This ends the proof.

In summary, the MPC (18), event-triggered mechanism (20) and SMO (28) form the basis of the sliding mode observer-based
event-triggered model predictive control algorithm, which is formally illustrated in Algorithm 1.

Algorithm 1 SMO-HETMPC algorithm
1: Initialization.
2: while maximum value of set time not reached do
3: Solve the optimization problem at 𝑡𝑘 to obtain △𝒖∗(𝑡𝑘).
4: Apply the disturbance-compensated control input 𝒖∗(𝑡𝑘|𝑡𝑘).
5: Estimate the next moment of disturbance 𝒇̂ .
6: 𝑠 = 𝑡𝑘 + 1.
7: while the event (20) is not triggered do
8: if 𝑠 < 𝑡𝑘 +𝑁𝑝 then
9: Apply the disturbance-compensated control input 𝒖∗(𝑠|𝑡𝑘).

10: Estimate the next moment of disturbance 𝒇̂ .
11: 𝑠 = 𝑠 + 1.
12: else
13: Break.
14: end if
15: end while
16: 𝑡𝑘 = 𝑠.
17: end while

5 EXPERIMENT RESULTS

In this section, in order to demonstrate the advantages of the proposed SMO-HETMPC algorithm, two types of experiments
were conducted. Firstly, comparative simulation experiments are conducted based on Matlab. In which, the results of MPC5,
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ETMPC20, HETMPC, and ESO-ETMPC28 are compared in the case with external disturbance. Secondly, to demonstrate the
effectiveness of the algorithm, a robot experiment based on CoppeliaSim is also set up in this section.

5.1 Comparative simulation experiments
In the simulation case, a lemniscate-shape trajectory is set as:

𝒓1(𝑡) =
⎡

⎢

⎢

⎣

𝑥r(𝑡)
𝑦r(𝑡)
𝜑r(𝑡)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

3cos(0.1𝑡) m
sin(0.2𝑡) m

𝜋
2
sin(0.1𝑡) rad

⎤

⎥

⎥

⎦

. (34)

The parameters are set to: 𝑟 = 0.05m, 𝐿 = 0.35m, 𝑙 = 0.25m. The total control time 𝑇c of the system is 160s and the sampling
time 𝑇 is 0.1s.The parameters of the model predictive controller are chosen as: 𝑁𝑝 = 5, 𝑸 = diag(300, 300, 300, 50, 50, 50),
𝑷 = diag(1, 1, 1, 1, 1, 1). The parameters of SMO (28) are set to: 𝐾1 = 𝐾2 = diag(5, 5, 5) and 𝐾3 = 0.001diag(1, 1, 1). The
lumped disturbances are set as

𝒇 (𝑡) =
⎡

⎢

⎢

⎣

0.2cos(0.01𝑡) + 0.035sin(0.05𝑡)
0.2sin(0.02𝑡)
0.05sin(0.01𝑡)

⎤

⎥

⎥

⎦

. (35)

The initial position and orientation angle of the tracking robot is set to (𝑥, 𝑦, 𝜑) = (2.5 m, 0 m, 0 rad). Fig. 2 shows the visual-
ization tracking outcomes for the lemniscate-shaped trajectory. While Fig. 3 and Fig. 4 illustrate the system’s error fluctuations
and the integral absolute tracking errors (IAE) when employing aforementioned controllers. It is easy to find that those con-
trollers equipped with the observer can better resist the disturbance and track the trajectory. Obviously, the SMO-HETMPC
demonstrates the capacity to reduce the error to nearly zero, thereby affirming its effectiveness. Moreover, Fig. 5 illustrates the
estimations of the lumped disturbances. Although the lumped disturbances change irregularly, the designed SMO retains the
capability to swiftly and precisely estimate the disturbance value, demonstrating minimal estimation errors or chattering. The
triggered times (TT) comparison of the four mentioned MPC strategies are recorded in Fig. 6 and Table 1. It can be observed
from Fig. 6 and Table 1 that, compared with the ETMPC and HETMPC, the observer-based MPC strategy effectively estimates
the overall lumped disturbances, significantly reducing the frequency of event triggers. However, compared to EMO-ETMPC,
the proposed algorithm demonstrates fewer triggering instances while achieving similar tracking performance, showcasing its
advantages.

TABLE 1 Comparison of triggering times.

Method Triggered times Improvement1

MPC 1595 -
ETMPC 1555 2.51%
HETMPC 958 39.9%
ESO-ETMPC 1210 24.1%(22.2%2)
SMO-HETMPC 585 63.3%(38.9%2)
1 The improvement relative to MPC.
2 The improvement of this algorithm relative to

the algorithm without observer.

For further assessment of the algorithm’s stability and reliability, an additional set of 30 independent repeated experiments is
conducted. The experiments are conducted with different initial setpoints for each trial. In the case where the parameters of the
robot and controller remain unchanged, the initial position for the 𝑖th experiment is set to (𝑥, 𝑦, 𝜑) = (2.5 + 0.01𝑖 m, 0 m,
0 rad), with the lumped disturbances configured as

𝒇 (𝑡) = 𝑖
10

⎡

⎢

⎢

⎣

0.2cos(0.01𝑡) + 0.035sin(0.05𝑡)
0.2sin(0.02𝑡)
0.05sin(0.01𝑡)

⎤

⎥

⎥

⎦

. (36)

Table 2 provides a comprehensive summary, outlining statistical metrics and relevant numerical. Besides the mentioned TT
and IAE, we also introduce the integrated square error (ISE) in Table 2, providing the mean values of these three metrics along
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FIGURE 2 Trajectory tracking result comparisons of lemniscate reference trajectory.
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FIGURE 3 Curve graph depicting the errors variation over time.
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FIGURE 4 The integral absolute tracking errors.
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FIGURE 5 Estimations of lumped disturbances.



12 Binghao Yang ET AL.

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

T
im
e(s)

S
M
O
-H
E
T
M
P
C

H
E
T
M
P
C

E
S
O
-E
T
M
P
C

E
T
M
P
C

1
6

1
7

1
8

1
9

2
0

2
1

FIGURE 6 Triggering instants and triggering intervals.

with their 95% confidence intervals. Fig. 7 offers a comparative visualization of IAE and ISE. From Table 2, it can be noted
that the observer-based controllers exhibit better stability when facing various disturbances, while SMO-HETMPC additionally
shows lower trigger frequency, suggesting reduced computational resource consumption. Furthermore, the proposed algorithm
exhibits consistent performance across 30 independent repeated comparative experiments, further demonstrating its stability
and robustness.
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FIGURE 7 Comparisons of multidimensional IAE and ISE in repeated experiments for tracking lemniscate reference trajectory.

5.2 Robot experiment
To further validate the feasibility of the proposed algorithm, this section observes the tracking performance of the SMO-
HETMPC when applied to the robotic platform. The robot utilized in this experiment is a MWMR model autonomously
developed based on the CoppeliaSim platform. The advantage of this platform is its ability to provide a realistic experimen-
tal environment while obtaining accurate position and velocity information of the robot. Meanwhile, in order to validate the
robustness of the proposed algorithm, a different trajectory is employed in this experiment as:

𝒓2(𝑡) =
⎡

⎢

⎢

⎣

𝑥r(𝑡)
𝑦r(𝑡)
𝜑r(𝑡)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

3cos(0.1𝑡) − 2 m
3sin(0.1𝑡) m
𝜋
2
sin(0.1𝑡) rad

⎤

⎥

⎥

⎦

(37)

The scenario setup for the robot experiment is shown in Fig. 8. Fig. 9 and Fig. 10 illustrate the tracking result and the temporal
evolution of error, respectively. It is evident that the robot rapidly converges in minimizing its positional error, consistently
maintaining alignment with the desired trajectory. Moreover, the proposed algorithm effectively reduces the expected MPC
triggers occurrences from 800 to 309, demonstrating its effectiveness and robustness.



14 Binghao Yang ET AL.

TABLE 2 Comparisons of tracking performance of the MWMR in independent repeated experiments.

Method
TT

Direction
IAE ISE

M-TT CI M-IAE CI M-ISE CI

MPC 1595.0 [1595.0, 1595.0]
X-axis 8.109 [6.527, 9.691] 0.659 [0.479, 0.840]

Y-axis 7.359 [5.793, 8.925] 0.578 [0.392, 0.765]

ETMPC 1507.5 [1429.8, 1585.2]
X-axis 8.168 [6.618, 9.719] 0.661 [0.480, 0.841]

Y-axis 7.418 [5.884, 8.953] 0.579 [0.393, 0.765]

HETMPC 943.27 [913.07, 973.47]
X-axis 10.75 [8.766, 12.74] 1.089 [0.791, 1.388]

Y-axis 10.38 [8.235, 12.53] 1.060 [0.722, 1.398]

ESO-ETMPC 1239.9 [1153.2, 1326.6]
X-axis 1.687 [1.635, 1.738] 0.098 [0.082, 0.114]

Y-axis 2.093 [1.847, 2.338] 0.066 [0.060, 0.071]

SMO-HETMPC 692.63 [663.21, 722.06]
X-axis 2.001 [1.895, 2.108] 0.169 [0.131, 0.207]

Y-axis 1.752 [1.634, 1.869] 0.090 [0.086, 0.095]

(a)

Initial position

(b)

FIGURE 8 Motion control scenario. (a) MWMR model. (b) Robot trajectory record.

6 CONCLUSION

This study presents a novel trajectory tracking approach for MWMR by amalgamating SMO with hybrid event-triggered MPC.
To address the frequent triggering issue in conventional ETMPC affected by lumped disturbances, a hybrid event triggering
mechanism is proposed, which determines whether to trigger or not through two types of events together. Additionally, the SMO
is introduced to estimate and counteract the impact of lumped disturbances. This approach reduces communication load, energy
consumption, and computational burden by minimizing the number of times optimization problems need solving. Theoretical
analysis demonstrats the viability of the new method and the stability of the perturbed system. Finally, a series of experiments
confirm the effectiveness and superiority of the proposed algorithm.
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