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Abstract—In real-world applications, there are some con-
strained multi-objective problems where the evaluation of ob-
jectives is expensive and the evaluation of constraints is cheap.
Currently, few studies have focused on solving expensive con-
strained multi-objective optimization problems (ECMOPs), and
they usually assume that the constraints of ECMOPs are also ex-
pensive. In this paper, we propose a surrogate-ensemble assisted
coevolutionary algorithm (SEACoEA) for ECMOPs with inex-
pensive constraint evaluation. First, a feasible sampling strategy
is designed to initialize the population in the feasible regions.
Next, two populations are set to optimize the original ECMOP
and the problem without considering constraints, respectively.
To improve the search efficiency, we redesigned the objective
function of the surrogate-ensemble model. Finally, a new infill
strategy is proposed to select candidate individuals from each
population for real evaluation. Experimental results show that
the proposed algorithm performs significantly better on most
MW problems compared to several state-of-the-art algorithms.

Index Terms—Expensive Constrained multi-objective opti-
mization, Inexpensive constraints, Coevolution, Surrogate En-
semble

I. INTRODUCTION

In practical applications, many multi-objective optimization
problems require expensive physical experiments or time-
consuming simulation to evaluate candidate solutions, such
as computational fluid dynamics (CFD) simulations [1] and
structural optimization [2], which are called expensive multi-
objective optimization problems (EMOPs). Surrogate assisted
evolutionary algorithms (SAEA) provides an effective method

to solve EMOPs. In general, the procedure of SAEA is to
build a surrogate model based on the data obtained from ex-
pensive evaluations, then use multi-objective evolutionary al-
gorithms to optimize the EMOPs by using the surrogate model,
thus reducing the computational cost. Although SAEA has
made great progress on expensive multi-objective optimization
problems, most studies [3]–[9] only consider unconstrained
EMOPs, and only a few studies [10]–[14] consider constrained
ECMOPs, and these algorithms assume that each objective
function and constrained function are expensive. However,
there are some constrained multi-objective optimization prob-
lems where the evaluation of objectives is expensive and the
evaluation of constraints is cheap. For example, in the neural
architecture search task, due to the large amount of time
required to train the neural network, it is very expensive to
evaluate the accuracy, generalization, and other metrics that
need to be tested on the validation set, but not expensive to
compute its constraints, such as whether the model satisfies
constraints like model size or model structure. It does not need
to go through a network training stage, but can be evaluated
after the model is built [15]. This class of problems also needs
to be studied because if the optimization algorithm of EMOPs
is used directly without considering the constraints, no matter
how good the solutions obtained by the search is, it cannot
be applied in practice if the constraints are not satisfied. If
the inexpensive constraints are assumed to be expensive, the
complexity of the optimization problem will be increased and



the search efficiency of the algorithm will be reduced.
In recent years, ECMOPs have attracted the attention of

some researchers and achieved some research results [16],
[17]. For example, Deb et al. [10] proposed six algorithm
frameworks, namely M1-M6, which include methods such
as constructing a surrogate model for each objective and
constraint function, aggregating multiple objective functions or
constraint functions into one objective function and construct-
ing a surrogate model for it. Wang et al. [18] used random
forest as a surrogate model and combined with NSGA-II [19]
to solve expensive constrained multi-objective combinatorial
optimization problems. R. de Winter et al. [13] proposed
SAMO-COBRA using RBF as a surrogate model and using
hypervolume contribution as an optimization indicator. Blank
et al. [20] proposed IC-SA-NSGA-II. IC-SA-NSGA-II uses
Riesz s-Energy Sampling [21] to initialize the population in
the feasible region. Then RBF is used as a surrogate model
and NSGA-II as an optimizer to search for new promising
solutions.

Since the ECMOPs studied in this paper is characterized
by expensive objectives and inexpensive constraints, it can be
studied by combining the techniques of constrained multi-
objective evolutionary algorithm and the expensive multi-
objective evolutionary algorithm. As mentioned above, the
main technique to deal with the expensive multi-objective
problem is the surrogate model. The surrogate-ensemble model
has better accuracy and robustness [7], [22] compared to
a single surrogate model. There are many researches on
constrained multi-objective problems [23]–[27], among which
coevolutionary algorithms are very popular in recent years.
Coevolutionary algorithms can search the Pareto front of a
problem more efficiently by setting multiple coevolutionary
populations.

For example, Tian et al. [28] proposed CCMO, which helps
the population to jump out of the local optimum and helps
the population to get across the infeasible region by setting
an auxiliary population to search the unconstrained Pareto
front. Liu et al. proposed BiCo [29], which searches from the
infeasible region to the constrained Pareto front (CPF) and
from the feasible region to the CPF by an archive population
and a main population, respectively, so that the algorithm can
search the CPF faster by the information exchange between
the two populations. Based on this, this paper proposes a
surrogate-ensemble assisted coevolutionary algorithm, namely
SEACoEA. First, the proposed feasible sampling strategy
is used to initialize the populations in the feasible region
and keep them well-diversified in the decision space. Next,
a surrogate-ensemble model is built for each objective, the
CCMO is used as an optimizer to search, and a new fit-
ness evaluation function is designed to improve the search
efficiency of the population. Finally, candidate solutions are
selected for real evaluation, and these candidates are integrated
into the archive set and the surrogate-ensemble model is
updated. The main contributions of this paper are summarized
as follows:

1) A surrogate-ensemble assisted coevolutionary algorithm

is proposed which can converge to Pareto fronts in small
feasible regions under a limited computational budget.

2) A feasible sampling strategy is proposed to initialize the
population in the feasible region and maintain a good
distribution in the decision space.

3) A new proxy function is designed for each objective to
balance the efficiency of exploitation and exploration in
the evolutionary process by combining RBF and Kriging
model

The remainder of this paper is organized as follows. In
Section II, the surrogate model and CCMO algorithm are
introduced briefly. Section III describes the proposed SEA-
CoEA algorithm in detail. Section IV shows the experimental
results of the SEACoEA algorithm and several state-of-the-
art algorithms on MW1-14 problems. Finally, conclusions are
drawn in Section V.

II. PRELIMINARIES

A. Radial Basis Function

Radial basis function (RBF) is an interpolation method that
has been widely used in science and engineering [30]. RBF
predicts the output y of the input x by a weighted sum of
basis functions. Given a data set {(xi, yi),xi ∈ RD, yi ∈
R, i ∈ {1, ..., N}}, the RBF prediction f̂(x) for the input x
is as follows:

f̂(x) =

N∑
i=1

ωiϕ(x− xi) (1)

where ω = {ω1, ω2, ..., ωN} is the weight coefficient, ϕ(·)
represents the basis function. The weight vector ω is calculated
by the following equation:

ω = (ΦTΦ)−1ΦTy (2)

where y = (y1, y2, ..., yN )T is the output vector of the data-
set, and Φ is defined as follows:

Φ =

ϕ(x1 − x1) · · · ϕ(x1 − xN )
...

. . .
...

ϕ(xN − x1) · · · ϕ(xN − xN )

 (3)

B. Kriging Model

The Kriging model is also known as a Gaussian process.
The Kriging model considers the inputs x and outputs y as
random variables subject to a Gaussian distribution N (µ, σ),
where µ is the mean of the prediction, and σ is the variance
of prediction, also known as uncertainty. Given a data set
{(xi, yi),xi ∈ RD, yi ∈ R, i ∈ {1, ..., N}}, the predicted
value of the Kriging model for the input x can be expressed
as follows:

f̂(x) = µ̂+ rTC−1y − 1µ̂

σ̂(x) = σ̂2

(
1− rTC−1r+

1− (rTC−1r)2

1TC−11

) (4)



where C represents the covariance matrix of the data set, and
r is the covariance vector of input x and training data X. µ̂
and σ̂ are calculated as follows:

µ̂ =
1TC−1y

1TC−11

σ̂ =
(y − 1µ̂)TC−1(y − 1µ̂)

N

(5)

C. CCMO

CCMO is a coevolutionary framework that sets up two
populations, Population1 and Population2, to search for
the original CMOP and helper problem, respectively. The two
populations perform coevolution by combining their offspring
populations to search the Pareto front of the original CMOP.
The process of CCMO is shown in figure 1. Specifically,
CCMO chooses a MOEA as the search algorithm, and in this
paper NSGA-II is selected. First, it initializes Population1
and Population2, respectively. Then, the offsprings are gen-
erated by using the MOEA operators. During the evolutionary
process, Population1 and Population2 are combined with
the offspring of the two populations, respectively, and then
Population1 and Population2 are updated using a MOEA’s
environmental selection mechanism. Finally, Population1 is
output.

Fig. 1. The framework of CCMO [28]

III. THE PROPOSED ALGORITHM

In this paper, we propose a surrogate-ensemble assisted
coevolutionary algorithm called SEACoEA for CMOPs with
inexpensive constraints and expensive objectives. First, a fea-
sible sampling strategy is used to initialize the population so
that the initial population are feasible solutions. The initialized
population is assigned to Population1 and Population2.
Next, a surrogate-ensemble model is built by using the real
evaluated population. Then the surrogate-ensemble model and
CCMO are used to guide the coevolution of Population1
and Population2. The candidate solutions are selected by
the proposed selection strategy for real evaluation. Finally,
the real evaluated individuals are added to the archive and
the surrogate-ensemble model is updated by using these indi-
viduals. Population1 and Population2 are then updated by
environmental selection mechanism, respectively. The feasible

sampling strategy is described in Section III.A. The surrogate-
ensemble assisted optimization is described in Section III.B.
The infill strategy is described in Section III.C.

A. Feasible Sampling Strategy

Blank et al. first proposed IC-SA-NSGA-II [20] for CMOPs
with inexpensive constraints and expensive objectives. IC-
SA-NSGA-II uses three methods to initialize the population,
including rejection based sampling, niching genetic algorithm
and Riesz s-Energy optimization. However, the rejection sam-
pling method is difficult to guarantee a better distribution of the
population. The niching genetic algorithm needs to constantly
adjust the niche size and run iteratively until enough feasible
solutions are searched, which usually takes a long time to
complete the sampling. The Riesz s-Energy optimization is
difficult to extract enough feasible solutions in an acceptable
time when the constraints are complex.

In view of this, this paper proposes a sampling strategy
which can sample enough feasible solutions in a short time
and maintain a good distribution of the initial population in
the decision space. First, the constraint violation value is used
as the optimization objective, and the genetic algorithm (GA)
is used for optimization. An archive set is used to record
the feasible individuals obtained during the search. Since
the constraint violation value of the problem is used as the
optimization objective, the sampling of the initial population
becomes a single objective optimization problem. In order
to maintain the distribution of the population in the decision
space, a niche range Sizeniche is set for each individual in the
archive set, and the offspring in this range will be eliminated
to ensure the distribution of the sampled population in the
decision space. When the number of feasible solutions in the
population exceeds the population size, some individuals will
be eliminated according to the descending order of generation
that individuals enter the population, that is, the earlier feasible
individual enter the population, the more probability it is to
eliminate. Finally, a set of feasible individuals is selected
from the archive set by K-means clustering algorithm. The
pseudocode of the feasible sampling strategy is shown in
Algorithm 1.

The population is initialized by Latin Hypercube sampling
and the feasible solutions are merged into archive (lines 1
to 3). The offspring are generated using genetic operators
and their constraint violations are evaluated using inexpensive
constraint functions (line 6 to 7). We first select the feasible
individuals and calculate the Euclidean distance between each
offspring individual and each individual in the archive in the
decision space. The offspring whose distance is less than the
Sizeniche is deleted and then are merged into the archive
(lines 8 to 10). When the population has more than N
feasible solutions, individuals are selected according to the
generation of the individual entering the population (lines 11
to 16). After the stopping criterion is met, the set of feasible
solution archives is divided into Ninit classes by the K-Means
clustering algorithm, and one individual from each class is



Algorithm 1: Feasible Sampling Strategy
Input: Sizeniche(threshold of Euclidean distance),

Gen(maximum evolution generation),
N (Feasible Sampling Strategy population size),
Ninit(output population size),
FA(feasible archive), FP (feasible population),
problem

Output: Popinit
1 pop← LatinHyperCubeSampling(N, problem);
2 gen← 0;
3 FA← SelectFeasibleInds(Pop);
4 FP ← ϕ;
5 while gen < Gen do
6 off ← Generate offspring based on pop by the

operators of GA;
7 Evaluate(off, problem,′ CV ′);
8 off ← SelectFeasibleInds(off);
9 off ← DeleteCloseInds(FA, off, Sizeniche);

10 FA← FA ∪ off ;
11 FP ← SelectFeasibleInds(off ∪ pop);
12 if FP > N then
13 pop← FitnessSurvival(FP,′ gen′, N)
14 else
15 pop← FitnessSurvival(pop ∪ off,′ CV ′, N)
16 end
17 gen← gen+ 1;
18 end
19 clusters← KMeansCluster(FA,Ninit);
20 Popinit ← RandomSelect(clusters);

randomly selected to form the initial population (lines 19 to
20).

B. Surrogate-ensemble Model
In this paper, the surrogate-ensemble model applied by the

proposed SEACoEA is composed of RBF model and Kriging
model. In addition, not only to balance between exploitation
and exploration in the process of population evolution, but
also to make full use of the advantages of Kriging model in
the predicting uncertainty, the proposed SEACoEA applies the
combination of RBF model and Kriging model to calculate
the lower confidence bound (LCB) of each individual as its
objective value. The i-th objective value of each individual is
calculated as follows:

f̂i(x) = λ1f̂
RBF
i (x) + λ2f̂

Kriging
i (x)− γσ̂i(x) (6)

where f̂RBF
i represents the i-th objective value predicted

applying the RBF model; f̂Kriging
i and σ̂i represents the

mean and variance of the i-th objective predicted applying
the Kriging model; λ1 and λ2 represent the weights of f̂RBF

i

and f̂Kriging
i respectively, and need to satisfy λ1 +λ2 = 1. γ

is a trade-off constant of exploitation and exploration.
It is worth noting that, in the assisted optimization process

using the surrogate-ensemble model, CCMO is used as a

coevolutionary framework to solve ECMOPs and NSGA-II is
used as an optimizer to evolve two populations. When the
optimization reaches the maximum evolutionary generation,
two populations are taken as output.

C. Infill Strategy

It is necessary to balance the relationship between exploita-
tion and exploration, when selecting candidate solutions for
expensive evaluation. To this end, in the assisted optimization
process, the proposed LCB is used to calculate the objective
value, which balances between exploitation and exploration
during optimization. In addition, when selecting candidate so-
lutions for expensive evaluation, the non-dominated solutions
of two populations are divided into Ncandidate classes ap-
plying the K-means clustering algorithm, respectively, which
can enhance the diversity of population. In order to further
improve the exploration of the proposed algorithm, one of the
non-dominated solutions in each class is randomly selected ac-
cording to the crowding distance as candidate solutions, which
may reduces the negative impact caused by the estimation error
of the model.

IV. EXPERIMENTAL COMPARISON

In this section, the MW test suite [31] is adopted as test
problems. The decision variable dimension of MW test suite
is 15. The above problems are considered under the condition
that the objectives are expensive and the constraints are in-
expensive. Several state-of-the-art constrained multi-objective
evolutionary algorithms for expensive problems, including IC-
SA-NSGA-II [20], SA-NSGA-II [20], MOEA/D-EGO [32] ,
are employed. Since the proposed algorithm adopts the CCMO
framework [28] to deal with CMOPs with expensive objectives
and inexpensive constraints, CCMO is also employed as a
comparison algorithm.

A. Experimental Setting

In the experiment, population size of each compared al-
gorithm is set to 100, the maximum number of expensive
evaluation is 600, and each algorithm runs 11 times separately.
The initial number of individuals is 11n+25 (n is the decision
variable dimension), and 100 individuals are select as initial
population. For the feasible sampling strategy in this paper,
the initial population size is set to 500, and the maximum
evolutionary generation is set to 100. The compared algorithms
apply Latin Hypercube sampling method. For SEACoEA, λ1,
λ2 and γ are set to 0.5, 0.5 and 3, respectively. Both the
generation of surrogate model and the generation of CCMO-
guide evolution are set to 20. The number of individuals
updated is set to 10, in which the number of candidate
solutions selected by population1 and population2 are set
to 5 and 5, respectively. For the comparison algorithms, the
default parameters of the original paper are used, except for the
number of expensive evaluation, population size and the initial
individual number. The code of IC-NSGA-II and SA-NSGA-
II can be obtained from Julian Blank’s personal homepage1;

1https://julianblank.com/static/misc/pycheapconstr.zip



TABLE I
IGD INDICATOR OF CCMO, MOEA/D-EGO-CDP, SA-NSGA-II, IC-SA-NSGA-II AND SEACOEA. HIGHLIGHT THE BEST RESULT PER ROW ”N/A”

MEANS THAT NO FEASIBLE SOLUTION HAS BEEN FOUND ”+”, ”−” AND ”≈” INDICATE SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE AND
STATISTICALLY SIMILAR COMPARED TO SEACOEA, RESPECTIVELY.

Problems M CCMO MOEA/D-EGO-CDP SA-NSGA-II IC-SA-NSGA-II SEACoEA

MW1 2 N/A N/A 0.05993 (0.02363) − 0.04149 (0.00252) − 0.02163 (0.00274)
MW2 2 N/A N/A 0.05604 (0.01073) + 0.03816 (0.00334) + 0.06762 (0.01032)
MW3 2 N/A 0.89008 (0.21726) − 0.03254 (0.02312) − 0.02097 (0.00390) − 0.01332 (0.00124)
MW4 3 N/A N/A 0.11015 (0.01936) ≈ 0.07230 (0.00453) + 0.09921 (0.00538)
MW5 2 N/A N/A 0.31571 (0.02724) − 0.24447 (0.02071) − 0.16660 (0.03335)
MW6 2 N/A N/A 0.53490 (0.16442) − 0.29538 (0.16933) ≈ 0.20654 (0.20555)
MW7 2 N/A 0.52199 (0.15301) − 0.05020 (0.01100) − 0.11147 (0.15382) − 0.02703 (0.00365)
MW8 3 N/A N/A 0.15068 (0.03956) ≈ 0.10051 (0.00442) + 0.12402 (0.00539)
MW9 2 N/A N/A 0.13350 (0.00809) − 0.10887 (0.01657) − 0.08698 (0.01403)

MW10 2 N/A N/A 0.15905 (0.06021) − 0.07335 (0.02217) ≈ 0.07003 (0.01685)
MW11 2 N/A 0.52677 (0.03172) − 0.47998 (0.16205) − 0.20640 (0.15445) ≈ 0.27962 (0.19521)
MW12 2 N/A N/A 0.18575 (0.01194) − 0.12395 (0.03400) − 0.06560 (0.01603)
MW13 2 N/A N/A 0.17575 (0.00963) − 0.18000 (0.01463) − 0.09509 (0.00291)
MW14 3 N/A N/A 0.69143 (0.12153) − 0.70182 (0.09645) − 0.20658 (0.09023)

+ / ≈ / − 0 / 0 / 0 0 / 0 / 3 1 / 2 / 11 3 / 3 / 8

MOEA/D-EGO and CCMO are implemented by PlatEMO.
The code can be obtained from PlatEMO’s Github homepage2.

B. Experimental Results

Table I shows the mean and variance of IGD values for
CCMO, MOEA/D-EGO-CDP, SA-NSGA-II, IC-SA-NSGA-II
and SEACoEA after 11 independent runs on MW test suite.
The proposed SEACoEA outperforms the comparison algo-
rithms, including IC-SA-NSGA-II, SA-NSGA-II, MOEA/D-
EGO-CDP, CCMO in most MW problems, as shown in Table
I. Table I also shows Wilcoxcon statistical test results. It can
be observed that the proposed SEACoEA has significantly
better performance than IC-SA-NSGA-II in 8 test problems
and significantly better performance than SA-NSGA-II in 11
test problems. In addition, it is easy to find that the proposed
SEACoEA is significantly better than MOEA/D-EGO-CDP in
all the tested problems. To this end, it can be concluded that
the proposed SEACoEA improves the search ability of CCMO
to deal with expensive constrained multi-objective problems.

In addition, Fig. 2 shows the feasible non-dominated so-
lutions of the proposed SEACoEA and the compared al-
gorithms on MW1, MW3, MW7 and MW9 test problems,
respectively. Fig. 2 clearly shows that the proposed SEACoEA
has better convergence and diversity than the compared algo-
rithms. Some possible reasons are as follows: (1) CCMO is
applied to coevolve two populations, so that knowledge can
be transferred between the two populations, which improves
the search efficiency. (2) When selecting candidate solutions
for expensive evaluation, feasible non-dominated solutions
and infeasible non-dominated solutions are selected, which
allows the surrogate-ensemble model to have better prediction
accuracy not only in the feasible region, but also in the
infeasible region, so that the population can maintain better
diversity during the evolutionary process. (3) The surrogate-
ensemble model is used to guide the population evolution,

2https://github.com/BIMK/PlatEMO

which can provide higher prediction accuracy and robustness
than using only one surrogate model. In addition, the proposed
LCB is used to calculate the objective value, which has a
good balance between exploitation and exploration. (4) The
proposed feasible sampling strategy allows the population to
be initialized in the feasible regions, which improves the
search efficiency.

V. CONCLUSIONS

In this paper, a surrogate-ensemble assisted coevolutionary
algorithm, named SEACoEA, is proposed to solve CMOPs
with expensive objective and inexpensive constraints. The
core idea of the proposed SEACoEA is to transfer the excel-
lent search ability of coevolutionary algorithm in CMOPs to
ECMOPs. SEACoEA applies the proposed feasible sampling
strategy, surrogate-ensemble model and infill strategy com-
bined with the CCMO framework to obtain Pareto solutions
in a limited number of expensive evaluations. The experimen-
tal results show that the proposed SEACoEA has efficient
searching ability in the CMOPs with expensive objective and
inexpensive constraints. In other words, compared with other
algorithms, the proposed SEACoEA has good convergence
and diversity, which can obtain a set of Pareto solutions in
CMOPs with expensive objective and inexpensive constraints.
Based on the above comparative experimental results, several
conclusions can be summarized as follows: (i) SEACoEA can
search for the Pareto solution set of constrained multi-objective
problem in a limited number of expensive evaluation, and
has well convergence and diversity. (ii) Coevolution can be
used to solve expensive constrained multi-objective problems.
However, how to make populations cooperate more efficiently
under expensive conditions is still a problem worth consider-
ing. Since a main feature of inexpensive constraint problems
is that the Pareto solutions are usually on the boundaries of
the constraints. How to combine the surrogate model to search
non-dominated solutions on the constraint boundaries to assist
the search of the original problem is a future work.



Fig. 2. Feasible and non-dominated solutions with median IGD value among 11 runs obtained by CCMO, MOEA/D-EGO-CDP, SA-NSGA-II, IC-SA-NSGA-II
and SEACoEA on MW1, MW3, MW7 and MW9.
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multi-objective optimization with a limited budget of function evalua-
tions,” Memetic Computing, vol. 14, no. 2, pp. 151–164, 2022.

[14] Q. Gu, Q. Wang, N. N. Xiong, S. Jiang, and L. Chen, “Surrogate-assisted
evolutionary algorithm for expensive constrained multi-objective discrete
optimization problems,” Complex & Intelligent Systems, vol. 8, no. 4,
pp. 2699–2718, 2022.

[15] X. Zhou, A. K. Qin, Y. Sun, and K. C. Tan, “A survey of advances
in evolutionary neural architecture search,” in 2021 IEEE Congress on
Evolutionary Computation (CEC), 2021, pp. 950–957.

[16] R. Datta and R. G. Regis, “A surrogate-assisted evolution strategy for
constrained multi-objective optimization,” Expert Systems with Applica-
tions, vol. 57, pp. 270–284, 2016.

[17] J. Blank and K. Deb, “Handling constrained multi-objective optimiza-
tion problems with heterogeneous evaluation times: proof-of-principle
results,” Memetic Computing, vol. 14, no. 2, pp. 135–150, Jun 2022.

[18] H. Wang and Y. Jin, “A random forest-assisted evolutionary algorithm
for data-driven constrained multiobjective combinatorial optimization of
trauma systems,” IEEE Transactions on Cybernetics, vol. 50, no. 2, pp.
536–549, 2020.

[19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[20] J. Blank and K. Deb, “Constrained bi-objective surrogate-assisted opti-
mization of problems with heterogeneous evaluation times: Expensive
objectives and inexpensive constraints,” in Evolutionary Multi-Criterion
Optimization, H. Ishibuchi, Q. Zhang, R. Cheng, K. Li, H. Li, H. Wang,
and A. Zhou, Eds. Cham: Springer International Publishing, 2021, pp.
257–269.

[21] D. Hardin and E. Saff, “Minimal riesz energy point configurations for
rectifiable d-dimensional manifolds,” Advances in Mathematics, vol.
193, no. 1, pp. 174–204, 2005.

[22] J.-Y. Li, Z.-H. Zhan, H. Wang, and J. Zhang, “Data-driven evolutionary
algorithm with perturbation-based ensemble surrogates,” IEEE Transac-
tions on Cybernetics, vol. 51, no. 8, pp. 3925–3937, 2021.

[23] J. Liang, X. Ban, K. Yu, B. Qu, K. Qiao, C. Yue, K. Chen, and K. C. Tan,
“A survey on evolutionary constrained multi-objective optimization,”
IEEE Transactions on Evolutionary Computation, pp. 1–1, 2022.

[24] F. Ming, W. Gong, L. Wang, and C. Lu, “A tri-population based co-
evolutionary framework for constrained multi-objective optimization
problems,” Swarm and Evolutionary Computation, vol. 70, p. 101055,
2022.

[25] K. Qiao, K. Yu, B. Qu, J. Liang, H. Song, and C. Yue, “An evolutionary
multitasking optimization framework for constrained multiobjective op-
timization problems,” IEEE Transactions on Evolutionary Computation,
vol. 26, no. 2, pp. 263–277, 2022.

[26] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, and E. Goodman,
“Push and pull search for solving constrained multi-objective optimiza-
tion problems,” Swarm and Evolutionary Computation, vol. 44, pp. 665–
679, 2019.

[27] J. Wang, Y. Li, Q. Zhang, Z. Zhang, and S. Gao, “Cooperative multiob-
jective evolutionary algorithm with propulsive population for constrained
multiobjective optimization,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 52, no. 6, pp. 3476–3491, 2022.

[28] Y. Tian, T. Zhang, J. Xiao, X. Zhang, and Y. Jin, “A coevolutionary
framework for constrained multiobjective optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 25, no. 1, pp. 102–116,
2021.

[29] Z.-Z. Liu, B.-C. Wang, and K. Tang, “Handling constrained multi-
objective optimization problems via bidirectional coevolution,” IEEE
Transactions on Cybernetics, vol. 52, no. 10, pp. 10 163–10 176, 2022.

[30] Y. Wang, D.-Q. Yin, S. Yang, and G. Sun, “Global and local surrogate-
assisted differential evolution for expensive constrained optimization

problems with inequality constraints,” IEEE Transactions on Cybernet-
ics, vol. 49, no. 5, pp. 1642–1656, 2019.

[31] Z. Ma and Y. Wang, “Evolutionary constrained multiobjective opti-
mization: Test suite construction and performance comparisons,” IEEE
Transactions on Evolutionary Computation, vol. 23, no. 6, pp. 972–986,
2019.

[32] Q. Zhang, W. Liu, E. Tsang, and B. Virginas, “Expensive multiobjective
optimization by moea/d with gaussian process model,” IEEE Transac-
tions on Evolutionary Computation, vol. 14, no. 3, pp. 456–474, 2010.


