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Abstract— Recently, many methods based on hand-
designed convolutional neural networks (CNNs) have
achieved promising results in automatic retinal vessel seg-
mentation. However, these CNNs remain constrained in
capturing retinal vessels in complex fundus images. To
improve their segmentation performance, these CNNs tend
to have many parameters, which may lead to overfitting
and high computational complexity. Moreover, the man-
ual design of competitive CNNs is time-consuming and
requires extensive empirical knowledge. Herein, a novel
automated design method, called Genetic U-Net, is pro-
posed to generate a U-shaped CNN that can achieve better
retinal vessel segmentation but with fewer architecture-
based parameters, thereby addressing the above issues.
First, we devised a condensed but flexible search space
based on a U-shaped encoder-decoder. Then, we used an
improved genetic algorithm to identify better-performing
architectures in the search space and investigated the
possibility of finding a superior network architecture with
fewer parameters. The experimental results show that the
architecture obtained using the proposed method offered a
superior performance with less than 1% of the number of
the original U-Net parameters in particular and with signifi-
cantly fewer parameters than other state-of-the-art models.
Furthermore, through in-depth investigation of the experi-
mental results, several effective operations and patterns of
networks to generate superior retinal vessel segmentations
were identified. The codes of this work are available at
https://github.com/96jhwei/Genetic-U-Net.
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I. INTRODUCTION

THE retinal vascular system can be observed non-

invasively in vivo in humans [1]. In addition, changes

in the vasculature are often associated with certain diseases,

leading ophthalmologists and other physicians to consider fun-

dus examination a routine clinical examination [2], [3]. Many

diseases can be diagnosed and tracked [2] by observing the

retinal vascular system. Pathological changes in retinal vessels

can reflect either ophthalmology diseases or other systemic

diseases, such as wet age-related macular degeneration and

diabetes [4]. Diabetic retinopathy can lead to the growth of

new blood vessels, and atherosclerosis [5] associated with

wet age-related macular degeneration can cause the narrowing

of blood vessels. Moreover, the retinal vascular system of

each eye is unique. Without pathological changes, it does not

alter throughout the lifetime. Hence, observation of the retinal

vascular system can also be applied in biometrics [6], [7].

Through retinal vessel segmentation, relevant morphological

information of retinal vascular trees (such as the width,

length, and curvature of blood vessels) can be obtained [8].

Consequently, precise retinal vessel segmentation is signifi-

cant. However, owing to the complexities of retinal vascular

structures, manual inspection is subjective, time-consuming,

and laborious [9], [10]. Therefore, developing an effective

algorithm for the automated segmentation of retinal vessels

to support ophthalmologists in clinical assessment has been

of great interest.

Due to the complexities of fundus images, automated

segmentation of retinal vessels is challenging. First, in fun-

dus images, retinal vessels are difficult to distinguish from

the background because of the subtle difference between

the vascular region and background. Second, the structures

of vascular trees are also complicated, with many cross-

connected and minuscule vessels. Third, other factors such

as pathological exudates and uneven illumination render seg-

mentation difficult. Compared with the methods [11]–[15]

based on traditional image processing or handcrafted features,

the deep convolutional neural network (DNN) methods [16]–

[20] offer advantages in dealing with these complications. In

particular, U-Net [21] and its variants [8]–[10], [22]–[26] have

recently become the mainstream models used in retinal vessel

segmentation.
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However, these U-Net variants are designed manually and

have two main shortcomings that constrain them in clinical

applications. First, they are still deficient in extracting the fea-

tures of vascular trees from fundus images with complex vessel

structures and accompanying phenomena, which limit their

capability to handle challenging cases (e.g., lesion areas and

low contrast micro-vessels). Second, to improve segmentation

performance, these manually designed U-Net variants tend to

have many parameters. However, because constructing vessel

segmentation datasets is laborious and highly dependent on

expertise, only a small amount of annotated data is available.

A network architecture with too many parameters is prone to

overfitting when using insufficient training data and usually

has high computational complexity. Moreover, the original

U-Net and its variants utilize one or two types of identical

blocks to form the architecture. However, different blocks in a

U-shaped network are required to process different patterns

of features in fundus images. Therefore, having the same

structures for different blocks may not be optimal, as it limits

the feature extraction ability and parameter efficiency [27] of

the U-shaped networks.

Conversely, designing improved network architectures man-

ually requires rich domain-specific knowledge and consider-

able time, especially when only a small number of param-

eters is expected. Therefore, this study developed a neural

architecture search (NAS) approach to automatically discover

network architectures tailored for retinal vessel segmentation.

Compared with natural images, fundus images have unique

features [26]; therefore, the success of NAS in natural image

segmentation [28] is not immediately transferable to retinal

vessel segmentation. Several attempts have been made to

deploy NAS in 2D medical image segmentation [29], [30],

but the search spaces of these methods are highly constrained

and usually include the repeated stacking of identical blocks

with no topology optimization. The generated model retains

many parameters, which renders it unsuitable for retinal vessel

segmentation, which, with only a small amount of labeled data

available is much more sensitive to overfitting. For NAS, the

search space designed by human experts is crucial for the

performance of the discovered architectures [31], [32].

In the proposed Genetic U-Net, we first define a specific

search space and then realize the automated design of network

architectures with an improved genetic algorithm (GA). When

designing the search space, two key aspects are considered

1) defining a condensed but flexible search space, and 2)

restricting the total number of architecture-based parameters.

Since it is based on a U-Net backbone architecture, the search

space is condensed to prevent the algorithm from having to

search in an open-ended search space. It is flexible because

different blocks of the U-Net architecture are diversified and

optimized individually. As diverse optimized internal block

topologies can be found in the overall architecture of U-Net,

a model with superior performance yet far fewer parameters

can be identified. Restricting the total number of architecture-

based parameters of the possible architectures in the search

space can reduce the computational requirements (e.g., GPU

memory) and facilitate the acquisition of high-performance

network architectures with even fewer parameters. Moreover,

to improve the search efficiency of NAS, an improved GA is

suggested with enhanced crossover and selection operations.

The importance of this research is described as follows:

First, to our knowledge, this is the first instance of evolutionary

NAS being applied to retinal vessel segmentation. Second,

the proposed method exploits the potential of the U-shaped

encoder-decoder structure and investigates whether a well-

performing DNN can be designed with very few parameters

and without using complex mechanisms (e.g., multiple en-

coders, multiple decoders, cascade structures, and attention

mechanisms). Finally, compared with previous CNNs that

have been applied to retinal vessel segmentation, the proposed

method can reduce the number of redundant parameters,

which is important when training data are limited. Extensive

experiments were performed to show that Genetic U-Net can

design compact architectures that perform better than state-

of-the-art models. The main contributions of the work are

summarized below:

• We propose a novel automated design method for the

U-shaped CNN architecture based on a specific search

space and an improved GA, which enables us to acquire

compact network architectures that outperform existing

ones in retinal vessel segmentation.

• Through observation and analysis of the discovered archi-

tectures, we observed that some patterns and operations

can significantly improve the performance of retinal ves-

sel segmentation. The findings may lead to new insights

into the design of network architecture.

• Compared with state-of-the-art models, the found models

offered superior performance on several public datasets

with the least parameters (less than 1% of the original

U-Net).

II. RELATED WORK

A. Retinal Vessel Segmentation

Originally, researchers used traditional image processing

techniques to segment retinal vessels, such as thresholding

segmentation [12] or certain morphological operations [11],

[13]. Under different circumstances, many of these methods’

hyperparameters had to be re-adjusted to achieve satisfactory

segmentation results. Later, several learning-based methods

[14], [15] incorporating handcrafted features were applied

to this task. Since these handcrafted features do not have

sufficient generalization ability to represent characteristics in

a variety of complicated fundus images, these methods are

misled by extreme cases (e.g., lesion areas and low contrast

microvessels). Compared with the above methods, the DNNs-

based methods [16]–[20] demonstrate particular advantages in

dealing with complexity in fundus images, where the features

are learned directly from the training data.

New state-of-the-art methods [8]–[10], [22]–[26], [33] for

retinal vessel segmentation are dominated by deep learning

models, especially U-Net variants. Yan et al. [33] adopted

a joint loss to provide supervision information for U-Net,

with two parts responsible for pixel-wise loss and segment-

level loss. The joint loss can improve the capability of

the model to balance the segmentation between thick and
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thin vessels. To better capture the diverse morphologies of

vascular trees, Jin et al. [8] proposed DU-Net that replaces

traditional convolution with deformable convolution. Wu et al.

[22] designed a novel inception-residual block for a U-shape

network and introduced four supervision paths with different

convolution kernel sizes to utilize multi-scale features. Alom

et al. [24] proposed R2U-Net with a recursive residual layer

based on cyclical convolutions to capture features. Mou et

al. [9] embedded dense dilated convolutional blocks between

encoder and decoder cells at the same levels of a U-shape

network and used a regularized walk algorithm to post-process

model predictions. Dual U-Net proposed by Wang et al.

[10] had two encoders. One encoder path was for extracting

spatial information and the other was for extracting context

information. A novel module was also proposed to combine

the information of the two paths. Laibacher et al. [23] utilized

pre-trained components of MobileNetV2 [34] on imageNet

[35] as the encoder of U-shape network and introduced novel

contractive bottleneck blocks for the decoder, which achieved

better performance, less computational cost, and faster in-

ference speed. Gu et al. [25] proposed CE-Net by adopting

multiple convolution branches with different receptive fields

to capture more high-level information and preserve spatial

information for segmentation. Mou et al. [26] included a

self-attention mechanism in the U-shape encoder-decoder to

improve the hierarchical representation capture ability of the

model. The abovementioned networks, which are character-

istically complex and have many parameters, were manually

designed. To increase the feature extraction capability, some

networks must be pre-trained with external datasets. In this

study, we automatically design the network architectures that

can perform well in extracting features from fundus images

but require fewer parameters and no pre-training.

B. Neural Architecture Search

Neural architecture search (NAS) is an effective technique

that assists end-users to design effective deep networks auto-

matically. At present, depending on the optimization methods

used, the three main categories of NAS are: (1) The methods

based on reinforcement learning [36]–[38] that formulate NAS

as a Markov decision process. A controller is used to sample

the architecture and learn to generate improved architectures

from a process of continuous trial and error; (2) The methods

based on evolutionary algorithms [39], [40] that formulate

NAS as an optimization problem and encode the architectures.

Increasingly competitive architectures are generated by apply-

ing some genetic operations (e.g., crossover, and mutation)

and will be retained as offspring in the next generation. The

architectures are optimized from generation to generation until

those with satisfactory performance are obtained; (3) For dif-

ferentiable neural architecture search [41], [42], each operation

option is assigned a weight coefficient. The parameter weights

of the architecture and the weights of the operation options are

optimized alternately by gradient descent. NAS has achieved

great success in the natural image and medical image analysis

[29], [30], [43]–[46], including some works that apply NAS

to medical image segmentation. In the works of [30], [43],

[44], for medical image segmentation, the hyperparameters and

operations of each layer of the building blocks were optimized,

but the topology of the block was relatively fixed. Additionally,

in the works [29], [46], the structure and operations of one

or two types of building blocks were optimized, and then

the architecture was constructed by repeatedly stacking them.

However, in our work, the topology and operations of each

block could be different yet simultaneously be optimized

flexibly.

C. Genetic Algorithms

Genetic Algorithms (GAs) [47], one of the evolutionary

algorithms, are metaheuristics inspired by evolution. They are

widely used to find high-quality solutions for optimization

problems (e.g., TSP [48], neuroevolution [49], [50], NAS

[39]) by executing operators such as mutation, crossover, and

selection. In addition, GAs have been applied to many medical

image analysis tasks, such as segmentation [51], registration

[52], detection of symptoms [53], and image denoising [45].

Fan et al. [51] used GA to overcome numerical instability

of the active model-based volumetric segmentation of brain

images. Matsopoulos et al. [52] employed GA to optimize the

parameters of affine transform to better register multimodal

retinal images. Quellec et al. [53] adopted GA to optimize

the parameters of wavelet transform for the detection of

micro-aneurysms in retina photographs. Recently, Liu et al.

[45] utilized GA to find optimal hyperparameters and CNN

architectures for medical image denoising. However, to our

knowledge, there are still no works on applying GAs to

optimize CNN architectures for vessel segmentation in medical

image analysis.

III. THE PROPOSED METHOD

In this section, we present the proposed method in detail.

We first introduce the search space of the architectures, then

explain the method of encoding an architecture into a binary

string, and finally explain the genetic algorithm with evolu-

tionary operations (e.g., crossover, mutation, and selection)

searching for competitive architectures.

A. The search space and encoding

1) Backbone of the Search Space: As shown in Fig. 1(a),

U-Net is composed of an encoder E and a decoder D. Both en-

coder E and decoder D contain several blocks, such as ei (i =
0, 1, 2, 3) and dj (j = 0, 1, 2). From top to bottom, U-Net is

divided into different stages Sk (k = 0, 1, 2, 3), and the feature

dimensions are constant at the same stage. Skip connections

are adopted in all, except for the last, stages to provide features

with different semantic information extracted by the encoder

to the decoder, which strengthens the connections between

the encoder and the decoder and alleviates the vanishing

gradient problem [54] [55] in model training. Decoder D must

fuse features from the skip connections and up-samplings,

and the two commonly used feature fusion operations are:

concatenation or element-wise addition. Although the original

U-Net employs concatenation for feature fusion, some U-

Net variants [56] achieve good results using element-wise
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addition. Fig. 1(b) illustrates their main differences. Compared

with element-wise addition, concatenation generates larger

feature maps, which increase computational complexity. To

mitigate such complexity in this study, we selected the addition

operation for feature fusion.

Fig. 1. (a) The backbone of U-Net. It is composed of an encoder E

and a decoder D and has four stages S0, S1, S2, and S3. Encoder E
has four building blocks (e0, e1, e2, and e3). Decoder D contains three
building blocks (d0, d1, and d2); (b) The operations for feature fusion,
element-wise addition, and concatenation.

The successful applications of U-Net and its variants reveal

that the U-shaped encoder-decoder structure is highly applica-

ble. Therefore, herein, we used the U-shaped encoder-decoder

structure as the backbone. As shown in Fig. 1(a), it consists of

seven blocks and four stages. Using this structure, satisfactory

architectures can be found by adjusting the internal structures

of these building blocks.

2) The Building Blocks and Their Encoding: In original U-

Net, the internal structure of each block is composed of two

basic layers (3×3 conv + ReLU). Usually, the U-Net variants

[24], [25], [57], [58] improve their performance by adjusting

the internal structures of blocks (e.g., ResNet block [59],

DenseNet block [27] and InceptionNet block [60]), which

illustrates the importance of the internal structures of blocks.

The internal structures of the building blocks are represented

similarly to Genetic CNN [39], which is sufficiently flexible to

represent many network styles, even including those that are

well-known, such as VGG [61], ResNet [59], and DenseNet

[27]. Each block can be regarded as a directed acyclic graph

consisting of edges and nodes. Each node represents an oper-

ation unit or an operation sequence, and the edges represent

the connections between nodes. A directed edge between two

nodes transforms the output feature map of the pre-node to the

post-node. Because the dimensions of all feature maps inside

a block are set to be the same, a mismatch is impossible. If

a node has more than one edge as the input, the feature maps

from these edges will be summed by its elements.

Fig. 2 shows four examples of connections between nodes in

a block, and a string with binary encoding represents the inter-

node connections. Assuming the maximum allowed number of

intermediate nodes is K, then 1+2+3+...+(K−1) = K(K−1)
2

bits are employed to encode the inter-node connections. The

first bit stands for the connection between (node1, node2),

the following two represent the connection between (node1,

node3) and (node2, node3), etc. If the corresponding bit

is 1, the two nodes are connected. For valid encoding, the

default input node (marked white in Fig. 2) connects to the

intermediate nodes with a successor but without a predecessor.

The default output node (marked green in Fig. 2) connects

to the intermediate nodes with a predecessor but without a

successor. An intermediate node without both a predecessor

and a successor, (such as node2 in Fig. 2(a)) is moved out of

network architecture, meaning that the number of valid nodes

in a block is not fixed.

0-00-000-1111

3

1

4

2

5

(c)

0-10-000-0011

2

3

4

1 5

(a)

0-11-101-0010

5

3 4

1

2

(d)

1-00-101-0101

5

3

4

1 2

(b)

Fig. 2. Four encoding examples of the inter-node connections in a
block. The white node, the green node, and the yellow nodes represent
the default input node, the default output node, and the intermediate
nodes (node1, node2, ..., nodeK (K = 5 in these four examples)).
The numbers in the intermediate nodes indicate their orders for encod-
ing. There is a possible maximum of seven nodes in a block in these four
examples, and binary encoding with 10 bits represents the connections
between nodes in a block. See Section III-A.2 for detailed descriptions
of the encoding schemes of the inter-nodal connections.

All nodes in Genetic CNN [39] have a fixed operation

sequence (3 × 3 conv + BN [62] + ReLU). In this work, the

sixteen operation sequences shown in Table I are provided

as options for the nodes. We simultaneously search for the

optimal structures and operations of the blocks. Each oper-

ation sequence has a unique ID and consists of some basic

operational units, including 3 × 3 conv, 5 × 5 conv, ReLU

[63], Mish [64] and instance normalization (IN) [65]. ReLU is

a generic activation function that performs well on many tasks

and is highly applicable. Mish, a relatively recently proposed

activation function with similarities to ReLU, also adds con-

tinuous differentiability, non-monotonic and other properties,

and demonstrates superiority in many tasks. Therefore, both

are included in the search space. The above operation units

are some commonly used CNN operations, and our goal is

to find the most effective sequences of operations for retinal

vessel segmentation. The differences between these operation

sequences are reflected by the convolutional kernel size,

activation functions, activation types (pre-activation or post-

activation), and normalization types (e.g., whether instance

normalization is utilized). Therefore, four-bit binary encoding
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is utilized to represent the operation sequences shown in Table

I. We assume that each node in one block has the same

operation sequence; therefore, each block gene consists of an

operation gene with four bits (to represent sixteen different

operation sequences) and a connection gene (as shown in

Fig. 3(a)). Overall, seven block genes together constitute

the genotype of architecture (as shown in Fig. 3(b)), which

indicates that the different blocks can have diverse structures

and operations. Therefore, the designed search space is highly

flexible.

TABLE I

THE OPERATION SEQUENCES FOR THE NODES.

ID Operation sequence ID Operation sequence

0 3× 3 conv → ReLU 8 ReLU → 3× 3 conv
1 3× 3 conv → Mish 9 Mish → 3× 3 conv
2 3× 3 conv → IN → ReLU 10 IN → ReLU → 3× 3 conv
3 3× 3 conv → IN → Mish 11 IN → Mish → 3× 3 conv
4 5× 5 conv → ReLU 12 ReLU → 5× 5 conv
5 5× 5 conv → Mish 13 Mish → 5× 5 conv
6 5× 5 conv → IN → ReLU 14 IN → ReLU → 5× 5 conv
7 5× 5 conv → IN → Mish 15 IN → Mish → 5× 5 conv

IN represents the instance normalization, ReLU indicates Rectified Linear
Unit, and Mish is a self-regularized non-monotonic neural activation
function.

1  1  0  1 0 – 1 0 – 0 0 0 – 0 0 1 1

Operation gene Connection gene

(a) 

(b) 

e
0

e
1 e

2 e
3 d

2
d
1 d

0

Fig. 3. (a) A block gene; (b) Genotype of an architecture consisting of
seven block genes.

The proposed approach has four fundamental differences

from Genetic CNN [39]. First, the search space is different.

The U-shaped encoder-decoder structure is employed as the

backbone in our work but not utilized in Genetic CNN.

In addition, the operations of the nodes can be optimized

instead of a fixed operation in Genetic CNN. Second, the

number of architecture-based parameters in the search space,

herein, is constrained to be less than a relatively small value,

which is dedicated to searching for architectures with fewer

parameters. Third, an improved GA is proposed to promote

search efficiency. Last, the studied task is different. Genetic

CNN is applied to natural image classification, while the

proposed method is designed for retinal vessel segmentation.

3) Number of Architecture-based Parameters: The number

of the architecture parameters in the search space is closely

related to the number of stages in the U-shape backbone,

the number of intermediate nodes in each block, and the

number of channels for convolution operations in the nodes.

After selecting the backbone adopted for the search space to

constrain the number of the architecture parameters and main-

tain architectural flexibility, the maximum allowed number of

intermediate nodes in each block and the number of channels

for convolution operations in the nodes are set to 5 and 20,

relatively compromised or small values, respectively. Most

network architectures in this search space have fewer than 0.4

million parameters, while normal architectures used for retinal

vessel segmentation have more than several million or even

dozens of million parameters. By restricting the number of

architecture-based parameters of the possible architectures to

be less than a relatively small value allows better architectures

with greater parameterization efficiency to be found.

B. Evolutionary Algorithm

Genetic U-Net follows an iterative evolutionary process to

generate a continuously improved population. In the popula-

tion, each individual stands for architecture, and its fitness

depends on the performance of the corresponding architecture

in particular applications. The Genetic U-Net flowchart is

summarized in Fig. 4, and the pseudocode of the proposed

method is detailed in Algorithm 4. It starts with a randomly

initialized population of N individuals. After initialization, we

evolve T generations, each of which contains three evolu-

tionary operations (e.g., crossover, mutation, and selection).

Once the new individuals are generated, we evaluate them

by training the architectures they encode from scratch on the

provided dataset.

Algorithm 1: Framework of the Proposed Method

Input: The population size N , the maximal

generation number T , the crossover probability

pc, the mutation probability pm, the mutation

probability pb of each bit.

Output: The discovered best architectures.

1 P0 ← Randomly initialize a population of N by the

designed encoding strategy;

2 Evaluate the fitness of individuals in P0;

3 for t = 1 to T do

4 Qt ← ∅;
5 while |Qt| < N do

6 o1, o2 ← Generate two offspring by the

designed difference-guided crossover

operation with the probability pc from Pt−1;

7 o1, o2 ← Apply the mutation with the mutation

probability pm and a flipping probability of pb
to o1 and o2;

8 Qt ← Qt ∪ o1 ∪ o2;

9 end

10 Evaluate the fitness of individuals in Qt;

11 Pt ← Select N individuals from Pt−1 ∪Qt using

the proposed environmental selection;
12 end

13 return the individuals with the best fitness in Pt.

1) Crossover Operation: Crossover is intended to exchange

information between individuals, and effective information

exchange can improve the performance of the algorithm.

Many studies [66], [67] have shown the benefits of crossover

operators involving a higher number of crossover points;
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Fig. 4. The overall framework of the proposed method.

consequently, a multi-point crossover is adopted herein. To im-

prove search efficiency, we design a method named difference-

guided crossover to choose two relatively different parent

individuals for crossover. Algorithm 2 shows the details of

the crossover operation. Initially, two individuals, p1 and p2,

are chosen by binary tournament selection [68]. Next, the

Hamming distance [69] between p1 and p2 is calculated and

normalized to [0, 1] and denoted diff. If diff is larger than the

pre-defined threshold µ, p1 and p2 are designated as parents.

Otherwise, p1 and p2 will be re-selected by again using binary

tournament selection. If ten re-selections of p1 and p2 do not

meet the requirement, the last selection will be designated as

parents. After that, the designated parents will mate with the

probability pc.

2) Mutation: Mutation can promote population diversity and

prevent the algorithm from being trapped in a local optimum.

In the proposed method, the offspring generated via crossover

have the probability of pm for mutation, and each bit has the

probability of pb for flipping independently. pb is a relatively

small value (e.g., 0.05) , which prevents an individual from

being altered too much by mutation.

3) Environmental Selection: Typically, GAs select the next

population by tournament or roulette selection. Both selection

methods may miss the best individual, resulting in perfor-

mance degradation [47], which considerably impacts the final

optimization results. Conversely, if we explicitly select the top

N individuals as the next generation, a premature phenomenon

[70], [71] is more likely to trap the algorithm in a local

optimum [72] because of the heavy loss of population diver-

sity. Hence, when choosing the next population, both elitist

and non-elitist individuals are selected, thereby improving the

convergence of the algorithm while maintaining the population

diversity.

Algorithm 3 shows the process of environmental selection

for the algorithm. First, given the current population Pt and the

generated offspring population Qt, the top five best individuals

Algorithm 2: Difference-guided Crossover Operation

Input: The population Pt, the probability for

crossover operation pc, the difference threshold

of crossover operation µ.

Output: Two offspring o1, o2.

1 o1, o2 ← ∅
2 for j = 1 to 10 do

3 p1, p2 ← Select two individuals from Pt by binary

tournament selection;

4 diff← Compute the difference between p1 and p2;

5 if diff > µ then

6 break;

7 end

8 end

9 r ← Randomly generate a number from (0, 1);

10 if r < pc then

11 len← Compute the length of p1 and p2;

12 ints← Randomly choose ten different integers

from [0, len) and sort them;

13 (i0, i1), (i2, i3), (i4, i5), (i6, i7), (i8, i9)← Divide

ints into five pairs in order;

14 for k = 1 to 5 do

15 p1, p2 ← Exchange p1[i2k−2 : i2k−1] and

p2[i2k−2 : i2k−1];
16 end

17 o1, o2 ← p1, p2;

18 else

19 o1, o2 ← p1, p2;

20 end

21 return o1, o2.
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are selected into the next population Pt+1 and removed from

Pt∪Qt. Second, |Pt|−5 individuals are selected from Pt∪Qt

using the binary tournament selection, and then placed into

Pt+1. The size of the next population Pt+1 is thus kept to

that of the current population Pt.

Algorithm 3: Environmental Selection

Input: The parent population Pt, the offspring

population Qt.

Output: The population for the next generation Pt+1.

1 Pt+1 ← ∅;
2 Pbest ← Select the best five individuals from Pt ∪Qt;

3 Pt ∪Qt ← Remove Pbest from Pt ∪Qt;

4 Pt+1 ← Pt+1 ∪ Pbest;

5 while |Pt+1| < |Pt| do

6 p← Select an individual from Pt by binary

tournament selection;

7 Pt+1 ← Pt+1 ∪ p;

8 end

9 return Pt+1.

4) Fitness Evaluation: In Genetic U-Net, the fitness of an

individual is the F1 (as explained in section IV-C) based on the

architecture the individual represents and the data for valida-

tion because the F1 is a comprehensive metric for retinal vessel

segmentation that helps resolve the problem of imbalanced

samples. Algorithm 4 summarizes the procedure for evaluating

individuals in the population. For evaluation, each individual

transforms itself into an architecture, which is an inverse

binary encoding process. Before training, He initialization

[73] is used to initialize the architecture’s weights. Then, on

the training data, the architecture is trained by Lookahead

[74], which uses Adam [75] as the base optimizer. After 80

training epochs, the validation data are used to validate the

trained architecture after each epoch until the 130th epoch,

and the best F1 during this process is set as the fitness of the

corresponding individual.

IV. MATERIALS FOR EXPERIMENTS

A. Loss Function

In fundus images, the ratio of vessel pixels is less than 0.1,

and most pixels belong to the non-vessel class. Therefore, the

problem of imbalanced samples must be resolved. For this

purpose, focal loss [76] originally proposed to alleviate the

sample imbalance problem in object detection is utilized as

the loss function in this work, which is given as

Loss = −
m∑

n=1

(αyn (1− ŷn)
ω
logŷn

+(1− α) (1− yn) ŷ
ω
n log (1− ŷn))

(1)

where y, ŷ, n, m, α, and ω respectively indicate the ground

truth, model prediction, nth sample, sample total, balance

factor between positive and negative samples, and balance

factor between simple and hard samples.

Algorithm 4: Evaluate Fitness

Input: The population Pt for fitness evaluation,

training data Dtrain, validation data Dvalid.

Output: The population Pt with fitness.

1 foreach individual in Pt do

2 arch← Transform the individual to its

corresponding architecture;

3 Apply weight initialization to arch;

4 F1best ← 0;

5 for epoch = 1 to 130 do

6 Train arch on Dtrain by gradient descent for

an epoch;

7 if epoch > 80 then

8 F1← Evaluate the trained arch on Dvalid;

9 if F1 > F1best then

10 F1best ← F1;

11 end

12 end

13 end

14 Set F1best as the fitness of individual;

15 end

16 return Pt.

B. Datasets

Four public datasets DRIVE [11], CHASE DB1 [77],

STARE [12], and HRF [78] were used in our experiments.

Descriptions of these datasets are given in Table II. The images

of these datasets were captured by different devices and with

different image sizes. DRIVE, STARE, and CHASE DB1 have

different annotations from two experts but only the annotations

of the first expert were taken as the experimental ground truth.

HRF has annotations from only one expert. The training and

test datasets were split using the same method as in [18], [24],

[33]. DRIVE has an officially determined training-testing split,

20 images for training and 20 for testing. For STARE, leave-

one-out was used to divide the dataset. For CHASE DB1, the

first 20 images were used for training, and the remaining 8

images were assigned to the test set. The 45 images in HRF

are divided into three categories; healthy, diabetic retinopathy,

and glaucomatous, each of which contains 15 images. The

first five images of every category were used for training

and the remainder were used for testing. Binary field of view

(FOV) masks are offered for the DRIVE and HRF datasets.

FOV masks for the STARE and CHASE DB1 datasets were

generated following [16] because they were not provided.

TABLE II

DESCRIPTIONS OF THE DATASETS.

Dataset Quantity Resolution training-testing split

DRIVE 40 565× 584 20/20
STARE 20 700× 605 leave one out

CHASE DB1 28 999× 960 20/8
HRF 45 3504× 2336 15/30

Authorized licensed use limited to: Shantou University. Downloaded on September 12,2021 at 04:11:59 UTC from IEEE Xplore.  Restrictions apply. 



0278-0062 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2021.3111679, IEEE

Transactions on Medical Imaging
8 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

C. Evaluation Metrics

Retinal vessel segmentation is a binary classification prob-

lem that classifies each pixel in the fundus image as either a

vessel or a non-vessel. The output of the model is a probability

map, which to each pixel assigns the probability of belonging

to the class of vessels. In the experiments, the probability

threshold was set to 0.5 to obtain the results. If a vessel pixel

is correctly classified, it is a true-positive (TP); if not, it is a

false-positive (FP). If a non-vessel pixel is precisely classified,

it is a true-negative (TN); if not, it is a false-negative (FN). As

shown in Table III, five metrics were selected for evaluation.

Unless otherwise specified, we only used pixels inside FOVs

to calculate the performance metrics.

TABLE III

METRICS FOR EVALUATION IN OUR WORK.

Metrics Description

ACC (accuracy) ACC = (TP + TN) / (TP + TN + FP + FN)
SE (sensitivity) SE = TP / (TP + FN)
SP (specificity) SP = TN / (TN + FP )
F1 (F1 score) F1 = (2× TP ) / (2× TP + FP + FN)
AUROC Area Under the ROC Curve.

V. EXPERIMENTS

The experiments in the study consisted of two stages. In the

first stage, the neural architectures were sought by GA. In the

second stage, the found architectures were trained from scratch

(validated) to establish their performances on retinal vessel

segmentation. In this section, the stages of the experiments

are explained and their results analyzed.

A. Experimental Setup

Dataset for searching: We sought the architectures using

DRIVE. In the architecture search stage (first stage), the last

five images of its training set were selected for validation,

while the remaining fifteen images were for training. We also

tested the architectures found using DRIVE on other datasets

(STARE, CHASE DB1, and HRF) in the second stage.

Genetic U-Net hyper-parameters: The generic up-

sampling and down-sampling operations (max pooling and

transpose convolution) were adopted as for the original U-Net

[21]. The probability of crossover and mutation operations (pc
and pm) was set to 0.9 and 0.7 respectively, and the difference

threshold µ was set to 0.2. The probability Pb in the mutation

process was 0.05. The population size N was 20, and the

number of the generations T was 50.

Network training during search: For data argumentation,

horizontal flipping, vertical flipping, and random rotation from

[0°, 360°] were employed to increase the training data, which

prevented the models from overfitting. The pixels of the

images were normalized to [−0.5, 0.5]. We took the full image

as the input instead of patches, and only one image was input

into the model per iteration. Lookahead [74] and Adam [75]

took the default parameters (e.g., α = 0.5, k = 6, β1 = 0.9,

β2 = 0.999) for optimization. The learning rate was initialized

as 0.001. The architectures were trained on two NVIDIA

TITAN RTX GPUs implementing PyTorch 1.5.0.

Network training after search: In the second stage, the

training settings were similar to those used in the architecture

search stage (e.g., optimizer, loss function, and data argumen-

tation). The main difference was that the number of training

epochs was expanded to 900 to ensure the convergence of the

training. The data split was as described in section IV-B. In

addition, due to the GPU memory limitation, during training,

the images in HRF were randomly cropped out of a region

1000 × 1000 in size and used as the architecture input but the

complete images were adopted as the input during testing.

B. Experimental Results of the Discovered Model

1) Comparison with Existing Methods: We report the test

results of the architectures searched for on DRIVE on all four

public datasets (DRIVE, STARE, HRF, and CHASE DB1) and

compare them with other existing methods (mostly are CNN-

based methods).

The experimental results are summarized in Tables IV, V,

VI, and VII. In these tables, the results of existing methods

except CE-Net [25] and CS2-Net [26] are obtained from

the original papers. The results of CE-Net and CS2-Net are

obtained using the same training settings as the discovered

architecture. The existing methods marked with stars calculate

the performance metrics with FOVs, while those without

stars were not explicitly claimed in the papers. Here, we

report the performance of the discovered architecture both

with FOVs and without FOVs. For fairness, our method

used the same data split as the other methods. For all the

datasets, the proposed method dominates all the methods of

comparison on two comprehensive metrics (F1 and AUROC),

which means that the discovered architecture achieves the best

overall performance without post-processing or special pre-

processing. Additionally, the proposed method outperformed

the other methods in SE (sensitivity) by some margin, which

indicates that the discovered architecture is more capable of

detecting vessels. ACC is a trade-off between SE and SP.

Since the non-vessel region is much larger than the vessel

region in fundus images, ACC is more susceptible to SP. The

ACC of the proposed method also compares well against the

other methods. Moreover, the parameters of the discovered

architecture are the least among these methods (0.27 M). We

utilized only a few data augmentations such as flipping and

rotation that are simpler and less diverse than those used

by most other methods. The architecture searched for on

DRIVE also successfully transferred to the other three datasets,

STARE, HRF, and CHASE DB1.

2) Comparison with the Baseline Models: As this work uses

the U-shaped encoder-decoder structure as the backbone, we

comprehensively compared the discovered architecture with

the baseline models, the original U-Net [21], and FC-Densenet

[58], which is also a U-shaped network. For a fair comparison,

we trained the original U-Net and FC-Densenet with the

same parameter settings as the discovered architecture. Table

VIII reveals that the discovered architecture outperformed the

original U-Net and FC-Densenet on all four datasets.

Some examples of the results are also presented in Fig. 5,

Fig. 6, and Fig. 9. The blue pixels in the images indicate false
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TABLE IV

COMPARISON WITH EXISTING METHODS ON DRIVE DATASET.

Methods Year ACC SE SP Fl AUROC Params(M)

Vega et al. [17] 2015 0.9412 0.7444 0.9612 0.6884 N/A N/A
Li et al.∗ [18] 2015 0.9527 0.7569 0.9816 N/A 0.9738 N/A
Orlando et al.∗ [14] 2016 N/A 0.7897 0.9684 0.7857 N/A N/A
Fan and Mo [20] 2016 0.9612 0.7814 0.9788 N/A N/A N/A
Liskowski et al.∗ [16] 2016 0.9535 0.7811 0.9807 N/A 0.9790 48.00
Mo and Zhang [19] 2017 0.9521 0.7779 0.9780 N/A 0.9782 7.63
Yan et al.∗ [33] 2018 0.9542 0.7653 0.9818 N/A 0.9752 31.35
Alom et al.∗ [24] 2019 0.9556 0.7792 0.9813 0.8171 0.9784 1.07
Jin et al.∗ [8] 2019 0.9566 0.7963 0.9800 0.8237 0.9802 0.88
Bo Wang et al.∗ [10] 2019 0.9567 0.7940 0.9816 0.8270 0.9772 N/A
Yicheng Wu et al. [22] 2019 0.9578 0.8038 0.9802 N/A 0.9821 1.70
Mou Lei et al. [9] 2019 0.9594 0.8126 0.9788 N/A 0.9796 56.03
CE-Net∗ [25] 2019 0.9545 0.8276 0.9735 0.8243 0.9794 15.28

CS2-Net∗ [26] 2021 0.9553 0.8154 0.9757 0.8228 0.9784 8.91

Genetic U-Net w/ FOVs - 0.9577 0.8300 0.9758 0.8314 0.9823 0.27

Genetic U-Net w/o FOVs - 0.9707 0.8300 0.9843 0.8314 0.9885 0.27

’W/’ and ’W/o’ mean ’with’ and ’without’, respectively.

TABLE V

COMPARISON WITH EXISTING METHODS ON THE STARE DATASET.

Methods Year ACC SE SP Fl AUROC

Vega et al. [17] 2015 0.9483 0.7019 0.9671 0.6614 N/A
Li et al.∗ [18] 2015 0.9628 0.7726 0.9844 N/A 0.9879
Orlando et al.∗ [14] 2017 N/A 0.7680 0.9738 0.7644 N/A
Fan and Mo [20] 2016 0.9654 0.7834 0.9799 N/A N/A
Liskowski et al.∗ [16] 2016 0.9566 0.7867 0.9754 N/A 0.9785
Mo and Zhang [19] 2018 0.9674 0.8147 0.9844 N/A 0.9885
Yan et al.∗ [33] 2018 0.9612 0.7581 0.9846 N/A 0.9801
Alom et al.∗ [24] 2019 0.9712 0.8292 0.9862 0.8475 0.9914
Jin et al.∗ [8] 2019 0.9641 0.7595 0.9878 0.8143 0.9832
CE-Net∗ [25] 2019 0.9656 0.8406 0.9813 0.8363 0.9871

CS2-Net∗ [26] 2021 0.9670 0.8396 0.9813 0.8420 0.9875

Genetic U-Net w/ FOVs - 0.9719 0.8658 0.9846 0.8630 0.9921

Genetic U-Net w/o FOVs - 0.9792 0.8658 0.9886 0.8630 0.9942

TABLE VI

COMPARISON WITH EXISTING METHODS ON THE CHASE_DB1

DATASET.

Methods Year ACC SE SP Fl AUROC

Li et al.∗ [18] 2015 0.9581 0.7507 0.9793 N/A 0.9716
Fan and Mo [20] 2016 0.9573 0.7656 0.9704 N/A N/A
Yan et al.∗ [33] 2018 0.9610 0.7633 0.9809 N/A 0.9781
Alom et al.∗ [24] 2019 0.9634 0.7756 0.9820 0.7928 0.9815
Bo Wang et al.∗ [10] 2019 0.9661 0.8074 0.9821 0.8037 0.9812
Yicheng Wu et al. [22] 2019 0.9661 0.8132 0.9814 N/A 0.9860
CE-Net∗ [25] 2019 0.9641 0.8093 0.9797 0.8054 0.9834

CS2-Net∗ [26] 2021 0.9651 0.8329 0.9784 0.8141 0.9851

Genetic U-Net w/ FOVs - 0.9667 0.8463 0.9845 0.8223 0.9880

Genetic U-Net w/o FOVs - 0.9769 0.8463 0.9857 0.8223 0.9914

TABLE VII

COMPARISON WITH EXISTING METHODS ON THE HRF DATASET.

Methods Year ACC SE SP Fl AUROC

Orlando et al.∗ [14] 2016 N/A 0.7794 0.9650 0.7341 N/A
Yan et al.∗ [33] 2018 0.9437 0.7881 0.9592 N/A N/A
Jin et al.∗ [8] 2019 0.9651 0.7464 0.9874 N/A 0.9831
CE-Net∗ [25] 2019 0.9613 0.7805 0.9798 0.7895 0.9766

CS2-Net∗ [26] 2021 0.9618 0.7890 0.9795 0.7935 0.9758

Genetic U-Net w/ FOVs - 0.9667 0.8220 0.9818 0.8179 0.9872

Genetic U-Net w/o FOVs - 0.9715 0.8220 0.9839 0.8179 0.9891

negatives, which are from the vessel regions not detected. It

shows that there are more blue pixels in the results of the

original U-Net and FC-Densenet, in both the overall view and

the locally magnified view. It further shows that the original

U-Net and FC-Densenet have limitations in extracting com-

plicated structural features, while the discovered architecture

extracts them more effectively.

The computational efficiency of the discovered architec-

ture is also analyzed, and the results are provided in Table

IX. Based on Table IX, the parameters in the discovered

architecture total approximately 0.27 million, which is a

115×/34× reduction compared to the 31.03 million/9.32 mil-

lion parameters for U-Net/FC-Densenet. The model size of

the discovered architecture is 1.2 MB, which is approximately

a 100×/32× reduction compared to the 120MB/38MB of

U-Net/FC-Densenet. The execution time and Multiplication

Accumulation operations (MACs) results on DRIVE were ob-

tained with an input dimension 3×565×584. The total number

of MACs in the discovered model in one forward propagation

is 41 Billion, which is a 3.2×/2.0× reduction compared to the

142 Billion/83 Billion MACs in U-Net/FC-Densenet. For the

execution time, the discovered architecture also achieved an

approximately 1.3×/2.9× reduction compared to U-Net/FC-

Densenet.

TABLE VIII

COMPARISON WHIT U-NET AND FC-DENSENET ON FOUR DATASETS.

Datasets Models ACC SE SP F1 AUROC

DRIVE

U-Net 0.9550 0.8091 0.9720 0.8191 0.9795

FC-Densenet 0.9555 0.8231 0.9743 0.8235 0.9799

Genetic U-Net 0.9577 0.8300 0.9758 0.8314 0.9823

STARE

U-Net 0.9654 0.8187 0.9798 0.8273 0.9862

FC-Densenet 0.9673 0.8276 0.9805 0.8369 0.9872

Genetic U-Net 0.9719 0.8658 0.9846 0.8630 0.9921

CHASE DB1

U-Net 0.9650 0.8298 0.9829 0.8092 0.9859

FC-Densenet 0.9654 0.8307 0.9789 0.8144 0.9862

Genetic U-Net 0.9667 0.8463 0.9818 0.8223 0.9880

HRF

U-Net 0.9647 0.8212 0.9794 0.8101 0.9849

FC-Densenet 0.9652 0.8098 0.9811 0.8125 0.9851

Genetic U-Net 0.9667 0.8220 0.9818 0.8179 0.9872

TABLE IX

COMPARISON OF MODEL SIZE, PARAMETERS, MACS, AND EXECUTION

TIME FOR U-NET AND FC-DENSENET. THE MACS AND EXECUTION

TIME ARE CALCULATED BASED ON AN INPUT SIZE OF 3×565×584.

Models Model size Params MACs Execution time

U-Net 120 MB 31.03 M 142 B 35.4 ms
FC-Densenet 38 MB 9.32 M 83 B 80.7 ms
Genetic U-Net 1.2 MB 0.27 M 41 B 27.5 ms

C. Experimental Analysis of Architecture Search

The evolutionary trajectory of Genetic U-Net is the blue

line shown in Fig. 8., The fitness of the best individual

gradually increases from the first generation and converges

at approximately the 50th generation. Thus, we terminate the
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Fig. 5. Overall view visualization of the segmentation results. The green pixels indicate true positive, red pixels indicate false positive, and blue
pixels indicate false negative.

architecture search after the 50th generation and select the best

individual from the last population as the result.

1) Observations and Findings: The results of the evolution-

ary algorithm usually contain some useful information for us

to further improve our work. To find some patterns for more

efficient architecture design, we observe and analyze the top

five architectures of the last generation.

Topology structure: We observe the topology within each

block of these architectures displayed in the supplementary

material. Almost all these blocks have the allowed maximum

number of nodes, and their internal structures are relatively

complex. Several skip connections can be found between

the nodes. In addition, all blocks have two or three parallel

branches within that resemble InceptionNet [60] blocks. Op-

erations and operation sequences: We obtain the statistics

of the frequency of occurrence of all operation sequences

listed in Table I. Fig. 7 shows that the operation sequence

with ID 11 has the highest frequency. To further verify the

effect of this operation sequence, we use it to replace the basic

convolutional layer (3 × 3 conv + ReLU) of the U-Net [21]

blocks, which almost do not change parameters and MACs

of U-Net, and conduct experiments on DRIVE. The result is

reported in the eighth row of Table X. As expected, after U-Net

used this operation sequence, its performance of retinal vessel

segmentation on DRIVE significantly improved. Surprisingly

though, its performance surpassed existing methods listed
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Fig. 6. Locally magnified view visualization of the segmentation results.
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Fig. 7. Frequency of the operation sequences.

in Table IV, except the discovered architecture using the

proposed approach in this study. It is important to explore the

reasons why only changing some operations of U-Net blocks

can lead to such a significant improvement of its performance.

After replacing the original basic convolution layer in U-Net

with the operation sequence with ID 11, U-Net has a differ-

ent activation function (Mish [64]) and activation type (pre-

activation) and instance normalization, which further boosts

its performance. To discover which factor or factors will have

a greater impact on U-Net, we conducted six additional sets of

experiments with the results listed in the second to the seventh

row in Table X. From the data in the second to the fourth

rows, adding instance normalization or using pre-activation is

shown to improve the performance somewhat. In particular,

the effect of adding instance normalization is apparent. U-Net

is not improved by only changing the activation function to

Mish. Furthermore, the data of the fifth to the eighth rows

in Table X show that adding instance normalization or using

pre-activation is useful for promoting better performance.

When instance normalization and pre-activation are employed

together, the effect is more notable. In addition, pre-activation

with Mish is slightly more effective than pre-activation with

ReLU.

TABLE X

EXPERIMENTAL RESULTS OF VERIFYING THE OPERATIONS OR

OPERATION SEQUENCES.

No. Experiments Params F1 AUROC AUROC ∗

1 U-Net-ReLU 31.03 M 0.8191 0.9795 0.9863
2 U-Net-Mish 31.03 M 0.7921 0.9670 0.9801
3 U-Net-IN-ReLU 31.03 M 0.8288 0.9814 0.9882
4 U-Net-ReLU(P) 31.03 M 0.8260 0.9808 0.9881
5 U-Net-Mish(P) 31.03 M 0.7920 0.9669 0.9797
6 U-Net-IN-Mish 31.03 M 0.8284 0.9812 0.9879
7 U-Net-IN-ReLU(P) 31.03 M 0.8294 0.9814 0.9882
8 U-Net-IN-Mish(P) 31.03 M 0.8296 0.9818 0.9884

9 Genetic U-Net 0.27 M 0.8314 0.9823 0.9885

1 ”ReLU” and ”Mish” indicate the activation function used in the U-Net block
and ”P” represents pre-activation. ”IN” means adding instance normaliza-
tion.

2 ”∗” indicates that the metric is calculated without FOVs.

Genetic U-Net can obtain multiple competitive network

architectures from these evolutionary results. We can extract

knowledge and several principles of network architecture

design for retinal vessel segmentation through the observations

and the statistical analyses of these network architectures,

which may potentially be important knowledge bases to further

improve our future work.

D. Ablation Study

Difference-guided crossover: To verify the effect of uti-

lizing the difference-guided crossover, we compare the per-

formances of the algorithms searching with and without the

difference-guided crossover. We conduct this experiment with

the same settings for both algorithms. We obtain the fitness of

the best individual in the population of each generation. As

shown in Fig. 8, the difference-guided crossover improves the

performance.

Environmental selection: To improve search efficiency and

simultaneously prevent premature convergence, we adopted
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a selection scheme that considers both elitism (size=5) and

diversity. Here, we demonstrate the benefits of this scheme by

comparing it with the top N selection [79] and elitist selection

(size=1) [80]. The experiments were conducted with the same

initial population and other settings (e.g., the same crossover

operation.). Fig. 8 also clearly reveals the advantage of the

proposed selection scheme. The top N selection results in

premature convergence of the algorithm.
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Fig. 8. Evolutionary trajectories in four different situations. ’W/’, ’W/o’,
and ’DGC’ mean ’with’, ’without’, and ’difference-guided crossover’,
respectively. Top N selection [79] is to explicitly select the top N best
individuals for the next generation given the current population and the
last population, and the population size is N .

VI. DISCUSSION

A. Performance on Challenging Cases

The images provided in the third and fourth columns of

Fig. 5 and the second column of Fig. 9 all show lesions,

and the image in the third column of Fig. 5 is disrupted

by severely uneven illumination. In these cases, fewer red

pixels (false positive or misidentified vessel regions) of lesion

areas are seen in the resulting output images of the discovered

architecture than those of the other models. This shows that the

discovered architecture is less sensitive to lesions and uneven

illumination. Similarly, as shown in the magnified view of Fig.

6, there are fewer blue pixels (false-negative or undetected

vessel regions) of the cross-connected and tiny vessel areas in

the resulting output images of the discovered architecture than

those of the other models. This demonstrates that the discov-

ered architecture can capture more cross-connected vessels and

low-contrast tiny vessels than the experimental competitors.

Overall, among the methods compared in Fig. 5, Fig. 9,

and Fig. 6, the vascular trees segmented by the discovered

architecture best match the ground truth. This indicates that

the discovered architectures are beneficial to the segmentation

of these challenging regions.

B. Performance on High-Resolution Fundus Images

Compared with STARE, DRIVE, and CHASE DB1, the

HRF dataset includes fundus images with much higher res-

olutions. Several experimental results are displayed in Fig. 9.

The quantitative results are shown in Table VIII and Table VII.

Both qualitative and quantitative results on HRF demonstrate

that the discovered architecture achieves better segmentation

results than the state-of-the-art methods and the baseline

models (the original U-Net and FC-DenseNet). This indicates

that the discovered architecture can also achieve promising

performance on high-resolution fundus images.

C. Adjusting the Number of Architecture-based

Parameters

To explore the effect of model capacity further, we ad-

justed the channels of convolutional operations c within the

nodes of the discovered architecture from 20 to 2, 3, 4, 5,

10, and 30 (thus changed the number of architecture-based

parameters) and trained the adjusted models from scratch. We

evaluated their performance on DRIVE and CHASE DB1 and

analyzed their computational complexity. The performance

of the adjusted models is reported in Table XI. When c

is increased from 20 to 30, compared with the original

model, the adjusted model has more parameters and higher

computational complexity (approximately a 125% increase on

MACs and Params). However, its performance was almost

not improved (On DRIVE, there was an approximately 0.04%

increase in F1 and almost no increase in AUROC). When c

is decreased, the adjusted models have fewer parameters and

lower computational complexity, and their performance does

not degrade distinctly. For instance, when c = 5 or 10, there is

approximately a 94% or 75% reduction in MACs and Params,

respectively. On DRIVE, however, F1 only degenerates by ap-

proximately 0.20% or 0.91%, and AUROC by approximately

0.13% or 0.15%. When c = 5, the adjusted model with

fewer architecture-based parameters (about 0.06%/0.19% of

the original U-Net/FC-Densenet) can still achieve competitive

performance with the original U-Net, FC-Densenet, and the

other methods listed in Table IV and Table VI. Even if

c = 2 and the model only contains 0.0028 million (2.8 K)

parameters, the performance is still comparable with some

existing methods. These results confirm that decreasing the

capacity of the discovered architecture does not significantly

influence its performance, which is beneficial for practical

clinical applications. This reveals that the discovered archi-

tecture has strong parameter efficiency and is not sensitive to

reductions in the number of architecture-based parameters.

TABLE XI

MODEL PERFORMANCE AFTER ADJUSTING THE NUMBER OF

ARCHITECTURE-BASED PARAMETERS.

DRIVE CHASE DB1

Model configs Params MACs F1 AUROC F1 AUROC

c = 20 0.2724 M 41.35 B 0.8314 0.9823 0.8223 0.9880
c = 30 0.6117 M 92.77 B 0.8317 0.9824 0.8228 0.9880
c = 10 0.0685 M 10.42 B 0.8306 0.9815 0.8214 0.9871
c = 5 0.0173 M 2.65 B 0.8297 0.9810 0.8179 0.9863
c = 4 0.0111 M 1.71 B 0.8275 0.9806 0.8134 0.9856
c = 3 0.0063 M 0.97 B 0.8229 0.9791 0.8033 0.9833
c = 2 0.0028 M 0.44 B 0.8138 0.9746 0.7914 0.9804

The MACs are calculated based on an input size of 3×565×584.
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Fig. 9. Segmentation results from HRF dataset. The green pixels
indicate true positive, red pixels indicate false positive, and blue pixels
indicate false negative.

D. Performance using Reduced Training Data

To verify the performance of the discovered architecture

after reducing the training data, we evaluated it on the reduced

training data of DRIVE and CHASE DB1. In the previous

data split, both DRIVE and CHASE DB1 had 20 images for

model training. Here, we reduced the number of images used

for model training from 20 to 2, 5, and 10 in both datasets and

conducted multiple experiments on the discovered architecture

and the baseline models (the original U-Net and FC-Densenet).

The F1 changed with the number of training images as shown

in Fig. 10 and Table XII. On DRIVE and CHASE DB1, both

the discovered architecture and the baseline models suffered

performance degradation; however, for the baseline models,

the degradation is more apparent. For example, when the

training data on DRIVE/CHASE DB1 consisted of only 5

images, the F1 of the discovered architecture decreased from

0.8314/0.8223 to 0.8270/0.8063 (0.52%/1.94% degradation),

the F1 of the original U-Net decreased from 0.8191/0.8092

to 0.8043/0.7881 (1.80%/2.61% degradation), and the F1 of

FC-Densenet decreased from 0.8235/0.8144 to 0.8073/0.7827

(1.97%/3.89% degradation). Even with only 5 training im-

ages, the performance of the discovered architecture is still

comparable with the existing methods listed in Table IV and

Table VI. This confirms that the discovered architecture has

more stable performance under reduced training data, which

is crucial when using the limited annotated data available for

retinal vessel segmentation.

TABLE XII

F1 CHANGING WITH THE NUMBER OF TRAINING IMAGES.

DRIVE CHASE DB1

Models Training samples F1 AUROC F1 AUROC

Genetic U-Net

20 0.8314 0.9823 0.8223 0.9880
10 0.8303 0.9813 0.8154 0.9861
5 0.8270 0.9786 0.8063 0.9831
2 0.8122 0.9730 0.7886 0.9792

FC-Densenet

20 0.8235 0.9799 0.8144 0.9862
10 0.8213 0.9789 0.8057 0.9828
5 0.8073 0.9717 0.7827 0.9764
2 0.7789 0.9603 0.7601 0.9604

U-Net

20 0.8191 0.9795 0.8092 0.9859
10 0.8161 0.9754 0.7996 0.9824
5 0.8043 0.9700 0.7881 0.9806
2 0.7597 0.9514 0.7687 0.9707
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Fig. 10. F1 changing with the number of training images.

E. Generalization Ability

To further evaluate the generalization ability of the discov-

ered architecture, we tested it (searched on DRIVE) on the

challenging task of cell membrane (boundary) segmentation,

which is an application similar to vessel segmentation. In this

experiment, the regions of the cell membranes (boundaries) are

the segmented areas (positive). The adopted EM dataset [81]

contains 30 training images and 30 test images 512 × 512 in

size, but the ground truth of the 30 test images is not public.

The original 30 training images were therefore randomly split

into a training set of 20 images and a test set of 10. Based on

the same hyperparameters and computing environment as the

above experiments, we used the original sized images of the
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EM dataset to train the discovered architecture, the original U-

Net, FC-Densenet, CE-Net, and CS2-Net. Their performance

was tested on the test set. The ACC, SE, SP, F1, and AUROC

metrics were used for statistical comparison. Table XIII, shows

that the discovered architecture also outperformed the other

models on all five metrics. Fig. 11 confirms that the discovered

architecture achieved superior results to the other models,

especially in challenging cases with irregular shapes or tiny

and ambiguous boundaries, thus indicating the discovered

architecture’s strong generalization ability in the cell boundary

segmentation task.

TABLE XIII

COMPARISONS ON CELL MEMBRANE (BOUNDARY) SEGMENTATION.

Models ACC SE SP F1 AUROC

U-Net 0.9112 0.8179 0.9401 0.8097 0.9587
FC-Densenet 0.9132 0.8291 0.9361 0.8167 0.9627

CE-Net 0.9099 0.8253 0.9233 0.8161 0.9645

CS2-Net 0.9109 0.8263 0.9272 0.8163 0.9634
Genetic U-Net 0.9171 0.8376 0.9446 0.8212 0.9666

F. Future work

Even though the network architecture obtained by the

proposed method is capable of segmenting vessels closer to

the ground truth than other models, it may fail in some

very challenging cases. To improve the performance of the

proposed approach further, a better design of the search space

will be investigated. We must also extend the application of

the proposed method to other scenarios to further verify its

efficacy and generality.

VII. CONCLUSION

In this study, a novel neural architecture search (NAS)

for retinal vessel segmentation, named Genetic U-Net, is

proposed based on the U-shaped encoder-decoder structure.

The existing CNN methods for retinal vessel segmentation

can make hardly any further improvements and usually have

profuse architecture-based parameters. Genetic U-Net em-

ploys an improved GA to evolve a model that outperforms

existing mainstream methods in retinal vessel segmentation

using a condensed but flexible search space that limits the

number of architecture-based parameters within a range of

small values. Therefore, the resulting architecture achieves

a significant reduction in the number of parameters and the

computational cost. This indicates that it is feasible to design

an exceptional network architecture with fewer parameters for

vessel segmentation that would facilitate its deployment for

clinical applications and overcome the insufficiency of training

data. Furthermore, by analyzing the evolved results, we found

that utilizing several effective operations and patterns in the

model’s building blocks greatly enhanced the performance

in vessel segmentation, which provides instrumental domain

knowledge for use in future studies.
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Fig. 11. Visual results of cell boundary segmentation. The green pixels
indicate true positive, the red pixels indicate false positive, and the blue
pixels indicate false negative.
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