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Abstract

Designing and setting manipulator trajectories in a programming system can be a tedious and time-consuming task for manufactur-
ers. In this paper, one kind of six degree-of-freedom (DOF) teaching manipulator is designed and developed for conveniently setting
and recording trajectories for industrial robots. A constrained multi-objective optimization problem is formulated to optimize the
design of the teaching manipulator. Two performance indexes, i.e. the magnitude of the peak operating force and difference be-
tween the maximum and minimum magnitude of operating forces are adopted as the objectives. Two PPS-based (push and pull
search) algorithms, including PPS-MOEA/D and PPS-M2M, are suggested to solve the formulated CMOP. Several state-of-the-art
CMOEAs, including MOEA/D-ACDP, MOEA/D-CDP, NSGA-II-CDP and CM2M, are also tested. The experimental results in-
dicate that PPS-MOEA/D has the best performance among the six compared algorithms, and the PPS-based methods as a group
outperform their counterparts without adopting the PPS framework, which demonstrates the superiority of the PPS framework for
solving real-world optimization problems.
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1. Introduction

Robots are a kind of complex and tightly integrated
mechantronic systems with multiple subsystems. It usually
takes a long time for engineers to handle interactions between
different subsystems to find a feasible and mature design, which
involves a number of repetitive and routing tasks. The ap-
plication of design automation on robots is a promising field,
which involves systematic and iterative modeling and optimiza-
tion efforts. For example, Lipson and Pollack [1] proposed a
study about automatic design and manufacture of robots, which
demonstrates the potential of robot design automation. To re-
duce non-creative and routine processes of design, Tarkian et
al. [2, 3] proposed a kind of high level CAD templates for robot
design, which provides a high fidelity CAD model to help en-
gineers make more comprehensive choices in the early stage of
design.

Optimization is an essential step in robot design automation.
When optimizing a robot, a set of factors should be considered
simutaneously. For example, the compromise between the low
cost and the high performance [4], the high efficiency and the
light weight [5], and the high dexterity and high stiffness [6].
Furthermore, the design of robots often involves a number of

∗Corresponding author
Email address: xinye@nuaa.edu.cn (Xinye Cai)

constraints, such as the limitations of the subsystems [7, 8] ,
the constraints to preserve the geometry properties[9, 10, 11],
the performance requirements [12], etc. A robot design op-
timization can be formulated as a constrained multi-objective
optimization problem (CMOP). Without lose of generality, a
CMOP can be defined as follows [13]:

minimize F(x) = ( f1(x), . . . , fm(x))T

subject to gi(x) ≥ 0, i = 1, . . . , q
h j(x) = 0, j = 1, . . . , p
x ∈ Rn

(1)

where F(x) = ( f1(x), f2(x), · · · , fm(x))T is an objective vector
with m dimensions. gi(x) ≥ 0 is an inequality constraint, and q
is the number of inequality constraints. h j(x) = 0 is an equality
constraint, and p represents the number of equality constraints.
x ∈ Rn is a decision vector with n dimensions. The equality
constraints are usually converted into inequality constraints by
introducing an extremely small positive number σ as follows:

h j(x)′ ≡ σ − |h j(x)| ≥ 0 (2)

Constrained multi-objective evolutionary algorithms
(CMOEAs) are widely used to solve CMOPs in recent years
due to the following reasons.
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1. The first reason is that CMOEAs are population-based al-
gorithms which can obtain a set of optimal solutions in a
single run.

2. CMOEAs are gradient-free methods, and can solve
CMOPs with non-differentiable or discrete objectives and
constraints.

3. CMOEAs can solve CMOPs with mixed variables, i.e.,
both continuous and discrete variables. As CMOEAs are
heuristic algorithms, they can jump out of the local opti-
mal and achieve the global optimal.

Compared with unconstrained multi-objective evolutionary
algorithms (MOEAs), CMOEAs need to maintain not only the
balance between the convergence and diversity of the working
population, but also the balance between minimizing the objec-
tives and satisfying the constraints. The existing CMOEAs can
be classified into two different types according to their selection
mechanisms. The first type is the dominance-based CMOEA,
such as NSGA-II-CDP [14], which uses non-dominated sorting
method to select solutions into the next generation. The other
type is the decomposition-based CMOEA. MOEA/D-CDP [15]
is a representative example of this type, which decomposes a
CMOP into a number of constrained single-objective optimiza-
tion problems(CSOPs) and each CSOP is solved in a collabora-
tive way.

Recently, Fan et al [16] proposed a push and pull search
(PPS) framework for solving CMOPs. PPS framework has
two different search stages — the push and pull search. In the
push stage, a CMOP is optimized without considering any con-
straints, so that the working population can get across infeasible
regions efficiently. The constrained landscape of the CMOP is
also probed and estimated, which can help to set parameters of
constraint-handling mechanisms in the pull search stage. In-
feasible individuals in the working population are pulled to the
feasible and non-dominated regions in the pull stage.

In this paper, we formulate a teaching manipulator design
optimization as a CMOP. Two PPS-based algorithms, including
PPS-MOEA/D and PPS-M2M (embedding multi-objective to
multi-objective decomposition method in the PPS framework),
are suggested to solve the formulated CMOP. The suggested
PPS-MOEA/D [16] and PPS-M2M are compared with four
state-of-the-art CMOEAs, including MOEA/D-ACDP [17],
MOEA/D-CDP [15], NSGA-II-CDP [14] and CM2M [18]. The
experimental results indicate that PPS-MOEA/D has the best
performance among the six compared algorithms, and the PPS-
based methods are better than their counterparts without adopt-
ing PPS framework. The main contributions of the paper are as
follows:

1. A model of a teaching manipulator is built up, and design
optimization of the teaching manipulator is formulated as
a CMOP.

2. A PPS-based algorithm called PPS-M2M is proposed. The
experimental results demonstrate that the PPS-based meth-
ods outperform their counterparts without adopting PPS
framework, which demonstrate the superiority of the PPS
framework for solving real-world optimization problems.

3. Among the six compared CMOEAs, PPS-MOEA/D per-
forms the best on the teaching manipulator design opti-
mization problem.

The rest of this paper is organized as follows. In Section
2, the modeling of the teaching manipulator is detailed, with
its optimization formulated as a CMOP. In Section 3, a mod-
ified PPS-based algorithm called PPS-M2M is proposed. Sec-
tion 4 designs experiments to compare PPS-MOEA/D and PPS-
M2M with four other CMOEAs, including MOEA/D-ACDP,
MOEA/D-CDP, NSGA-II-CDP and CM2M. Finally, conclu-
sions and some future research directions are summarized in
Section 5.

2. Problem formulation

2.1. Design of the teaching manipulator

Designing and setting manipulator trajectories in a program-
ming system is still a tedious and time-consuming task, espe-
cially when the trajectories need to be redesigned and reset fre-
quently to adapt to different applications in a flexible produc-
tion line. To simplify the process, a teaching manipulator is de-
signed and developed in this paper. As shown in Fig.1, a human
operator can hold the end-effector of a teaching manipulator
and conveniently drive it along a proper trajectory. The rotation
of each joint is recorded as a motion sequence while the end-
effector moves along the trajectory. By given the same motion
sequence, one or more manipulators can repeat the trajectory of
the teaching manipulator in the production line. In the teaching
process, the feeling of the motion of the human operator might
be severely influenced if the design of the teaching manipula-
tor is problematic. A large resistance force or variation of the
resistance force from the end effector can make the operator
fail to maneuver the manipulator properly as wanted. Further-
more, the teaching manipulator should be capable of maintain-
ing static balance of the joints when stopping anytime in any
position. However, it is not easy for a human designer to pro-
pose an optimal design of a teaching manipulator considering
all aforementioned aspects simultaneously. Therefore, we con-
duct a robot design optimization process to help the designer
to achieve the optimal design of the robot. In this section, we
build up a model of the teaching manipulator and formulate its
optimization problem as a CMOP.

The proposed teaching manipulator has six DOFs, as illus-
trated in Fig.2. The link lengths of the teaching manipulator are
fixed, which are equal to those of the manipulator in the produc-
tion line, so that the motion data of the teaching manipulator
can be directly used as the motion sequences of manipulators
in the production line. There are no actuators in the teaching
manipulator because it is actuated by a human operator. Six
encoders are mounted in the corresponding joints to record the
rotation of each joint. To reduce the load of the human operator,
specific structures are designed to keep the joints in balance in
static conditions, including two counterweights at Joint 3 and
5, a pneumatic balancer for Joint 2, and three frictional mech-
anisms inside Joint 1, 2 and 3. The mechanism of the pneu-
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Figure 1: The human operator drives the teaching manipulator and demonstrates the trajectory. The computer system collects the motion data from the teaching
manipulator and the motion sequences are transmitted as the command for the manipulator in the production line.
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Figure 2: A 6-DOF teaching manipulator

matic balancer and the frictional mechanisms inside Joint 1 are
as shown in Fig. 3 and 4, respectively.

The forward kinematics of the teaching manipulator is for-
mulated based on the Denavit-Hartenberg (D-H) convention
[19]. The coordinate frame o0x0y0z0 is the reference inertial
coordinate. The coordinate frames oixiyizi (i = 1, 2, · · · , 6) are
assigned based on the design of the manipulator coordinate sys-
tem, which is shown in Fig.5. The D-H parameters are listed in
Table 1. It is notable that we assume that the end-effector and
the Joint 6 share the same coordinate frame.

In this study, the method of Lagrange is utilized to establish
the dynamic model of the teaching manipulator. The Lagrange
equation is given as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) + τ f rc(q̇) = JT fopr(t) + τb (3)

where q̈ ∈ R6 is the generalized angular acceleration, M(q) ∈

Figure 3: The mechanism for the pneumatic balancer

Figure 4: The joint mechanism for Joint 1
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Figure 5: Manipulator coordinate system

Table 1: D-H Parameters of the teaching manipulator.

Jointi αi ai di θi

1 π/2 0.160 0 q1

2 0 0.790 0 q2

3 π/2 0.155 0 q3

4 −π/2 0 0.995 q4

5 π/2 0 0 q5

6 0 0 0 q6

R6×6 is an inertia matrix, which is symmetric and positive defi-
nite. G(q) = [G1,G2, · · · ,G6]T is a six-dimension vector which
represents the gravitational moments acting on joints. More-
over, the mass of counterweights and the length of the rods,
which connect the counterweights and the corresponding joints,
can change the distribution of mass and the inertia of the links,
thus influencing the operating force. C(q, q̇) ∈ R6×6 is the
centripetal and Coriolis matrix [20]. In this matrix, the ele-
ments only involving q̇ are centripetal which are related to the
centripetal force of each joint, while the rest elements involv-
ing q are Coriolis which are related to the Coriolis force of
each joint. J ∈ R6×6 is the Jacobian matrix of the teaching
manipulator with respect to the reference inertial frame, while
fopr(t) = [Fx, Fy, Fz, nx, ny, nz] is the operating force and torque
vector of the human operator, in which Fx, Fy, Fz are the com-
ponents of the operating force, and nx, ny, nz are the components
of the operating torques. The magnitude of the operating torque
is tiny, because the three joints of the spherical wrist are not
equipped with friction disks and the counterweight A can help
keep Joint 5 in balance. Thus, rather than the magnitude of the
operating torque, the magnitude of the operating force should
be a focus in design. τb ∈ R6 is the moment vector of force act-

Figure 6: A sketch of the teaching manipulator

ing on joints by the balancer. τ f rc(q̇) ∈ R6 is a friction moment
vector of the friction disks on joints. A more detailed analysis
of the modeling is given in the supplemental material.

2.2. Design variables
Ten design variables are considered in the optimization prob-

lem, which is defined as:

x = [mA, LA,mB, LB, k,Hb, b,T1,T2,T3]

where, mA and mB denote the masses of the counterweights of
Joint 5 and Joint 3, while LA and LB denote the length of the cor-
responding rods, respectively. k is the stiffness coefficient of the
spring inside the balancer, Hb is the vertical distance between
the lower attachment point of the balancer and the rotational
axis of Joint 2. b is the pulling force of the pneumatic cylinder.
Ti (i = 1, 2, 3) is the kinetic friction moment of the ith friction
disk. All the variables are shown in Fig.6.

2.3. Objective functions
To guarantee that the feeling of the motion of the human op-

erator is not influenced too much during the operation of the
manipulator, two objectives are considered: the magnitude of
the peak operating force and the difference between the maxi-
mum and minimum magnitude of the operating force.

2.3.1. Peak operating force
In the study, we minimize the magnitude of the peak oper-

ating force to ensure that a human operator can easily operate
the teaching manipulator without feeling much resistance. The
magnitude of the operating force can be obtained through the
following equation.

fmag(x) =

√
F2

x + F2
y + F2

z (4)

Thus, the objective function can be written as follows:

f1(x) = max
t

fmag(x, t) (5)
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2.3.2. Difference between the maximum and minimum operat-
ing forces

We also minimize the difference between the maximum and
minimum magnitude of the operating forces, because the feel-
ing of motion of human operators may be influenced by a large
variation of operating force during operation of the teaching
manipulator. The objective function can be written as follows:

f2(x) = ‖max
t

fmag(x, t) −min
t

fmag(x, t)‖ (6)

2.4. Constraints

It is desired that the teaching manipulator is able to maintain
the angular positions of the Joint 1,2 and 3 when it stops in any
position of the trajectory. Thus, we have the following three
constraints:

max
t
|G2(qt,mA, LA,mB, LB) − τb,2(qt, k,Hb, b)| ≤ T2 (7)

where τb,2 is the second element of the moment vector of force
τb, which represents the moment generated from the balancer
acting on Joint 2.

max
t
|G3(qt,mA, LA,mB, LB)| ≤ T3 (8)

To keep the balance of Joint 5, the following constraint has
to be satisfied.

max
t
|G5(qt,mA, LA)| ≤ ε (9)

Here, we give ε = 0.1N � m. A more detailed analysis can be
found in the supplemental material.

Table 2: The ranges of design variables.

Variables Range Units Original design

mA [0, 20] kg 1.5
LA [0, 0.2] m 0.18
mB [0, 50] kg 15
LB [0, 0.8] m 0.46
k [0, 50000] N/m 3730
Hb [0.11, 0.50] m 0.12
b [450, 4000] N 2500
T1 [0, 90] N � m 75.7
T2 [0, 90] N � m 75.7
T3 [0, 90] N � m 75.7

The ranges of the design variables are listed in Table 2, which
are provided by a human engineer. Other relevant constant pa-
rameters are listed in Table 3, which are obtained from the vir-
tual prototype in SolidWorks, where mLi is the mass of Link i,
ρA and ρB are the masses per unit length of the connecting rods
of counterweight A and counterweight B, respectively.

Table 3: The values of the related parameters.

Parameter value Units

mL1 13.0 kg
mL2 11.7 kg
mL3 5.3 kg
mL4 4.5 kg
mL5 2.0 kg
mL6 1.5 kg
ρA 1.8 kg/m
ρB 3.7 kg/m

2.5. Trajectory design

To evaluate a design, a specific trajectory must be defined as
an essential part of the application scenario. We choose a tra-
jectory adopted by the work of [8] and [21], which is commonly
used for performance evaluation of 6-DOF manipulators. The
trajectory can be formulated in the base coordinate system by
the following equations:

Xe f = 1.2 − 0.3 × (1 − cos(
2π
20

t))

Ye f = 0.8 sin(
2π
20

t)

Ze f = 0.3 + 0.5 cos(
2π
20

t)

(10)

The functions are all with unit of m. The Euler angle for
the end-effector are given as [0, π, π], which implies that the
end-effector remains vertical and points at the ground during
the prescribed motion. We equally divide the trajectory into
N = 2000 segments with respect to time and give each seg-
ment 0.01s. It is assumed that the end-effector has uniformly
accelerated motion in each segment.

To figure out the operating force in the segmented posi-
tions of the aforementioned trajectory, we build up a simula-
tion model of teaching manipulator using the Robotics toolbox
for MATLAB [22]. The model of the teaching manipulator in
the simulation environment, and the trajectory design of the end
effector are shown in Fig.7.

3. PPS framework

This section gives a detailed description of the PPS frame-
work. Besides, the details of two instantiation of PPS-based
algorithms, PPS-MOEA/D [16] and PPS-M2M are provided.

PPS framework consists of two different stages: push search
and pull search. In the stage of push search, the constraints are
ignored and the population converges to the unconstrained PF,
so that the population can cross the infeasible region without
being blocked. Once the population in the push stage has not
been changed in a number of generations, the state of search
is switched to the pull stage. In the pull stage, the infeasible
solutions are pulled to the feasible and non-dominated regions
by using constraint-handling mechanisms. Two instantiation of
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Figure 7: The simulation of the manipulator and the trajectory in MATLAB.

PPS-based algorithms are demonstrated in the following sub-
sections.

3.1. PPS-MOEA/D

In PPS-MOEA/D, MOEA/D algorithm is integrated in the
PPS framework. In the push search stage, MOEA/D is em-
ployed to search for non-dominated solutions disregarding any
constraints. The Tchebycheff [23] decomposition method is
adopted in this paper, with the definition of the decomposition
function given as follows.

gte(x, λi, z∗) = max
j=1,...,m

1
λi

j

(| f j(x) − z∗j |) (11)

where λi is a weight vector, and
∑

j=1,...,m λ
i
j = 1, λi

j ≥ 0. z∗ is
the ideal point, and z∗j = mink=1,...,N f j(xk).

In the pull search stage, the infeasible solutions are pulled to
the feasible and non-dominated regions by using an improved
epsilon constraint handling technique [24, 25]. The ε is set as
follows [25]:

ε(k) =

(1 − τ)ε(k − 1), if r fk < α
ε(0)(1 − k

Tc
)cp, if r fk ≥ α

(12)

where r fk represents the proportion of feasible solutions in the
k-th generation. α is is a threshold to control the searching
preference between the feasible and infeasible regions. τ is
a parameter to control the speed of reducing the relaxation of
constraints in the case of r fk < α. cp is a parameter to con-
trol the speed of reducing relaxation of constraints in the case
of r fk ≥ α. The initial value ε(0) is set to the maximum over-
all constraint violation of the working population at the end of
the push search. ε(k) is updated until the generation counter
k reaches the control generation Tc. The pseudocode of PPS-
MOEA/D can be found in [16].

Figure 8: An illustration of the setting of v j and Ωk .

3.2. PPS-M2M

In this section, we introduce a new PPS-based algorithm –
PPS-M2M, in which two basic components are included. The
first component is the M2M decomposition method, and the
second component is the PPS framework.

3.2.1. M2M
M2M is a kind of decomposition-based method for solv-

ing multi-objective optimization problems. Unlike MOEA/D,
M2M decomposes a MOP into a set of simple MOPs. Each
simple MOP is a subproblem which is defined as follows:

minimize F(x) = ( f1(x), ..., fm(x))
subject to x ∈

∏n
i=1[ai, bi]

F(x) ∈ Ωk

(13)

where Ωk is the k-th sub-region, and it is defined as follows:

Ωk = {u ∈ Rm
+ |〈u, v

k〉 ≤ 〈u, v j〉 f or any j = 1, ...,K} (14)

where 〈u, v j〉 is the acute angle between u and v j. v1, ..., vK are
K unit vectors in the first octant of the objective space (Rm

+ ). An
illustration of the setting of v j is shown in Fig. 8.

In M2M, each subpopulation (Pk) maintains S k solutions. If
the number of solutions in Pk is fewer than S k, we select S k −

|Pk | solutions randomly from the entire population and add them
to the subpopulation. If the number of solutions in Pk is greater
than S k, then the best S k solutions are selected according to
non-dominated sorting.

3.2.2. Push and Pull Search
In the push search stage, a CMOP is divided into a set of sub-

problems. Each subproblem is solved by employing a subpop-
ulation. The pseudocode of push search is given in Algorithm
1. In line 2, non-dominated sorting is carried out on the sup-
population Pk. In lines 4-7, a number of solutions are selected
into P

′

k until the number of solutions in P
′

k is greater than S k.
Lines 8-10 select S k − |P

′

k | solutions into P
′

k from Fi. In line 11,
the sup-population Pk is updated by setting Pk = P

′

k.
In the pull stage, we need to prevent the population from

falling into local optima, and balance the search between fea-
sible and infeasible regions. To achieve these goals, an im-
proved epsilon constraint-handling mechanism [25] is used to
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Algorithm 1: Push Subproblems

1 Function PushSubproblems(Pk,S k)
2 F = nondominated-sort(Pk), F = (F1, F2, ...);
3 P

′

k = ∅ and i = 1;
4 while |P′k | + |Fi| ≤ S k do
5 P

′

k = P
′

k
⋃

Fi;
6 i = i + 1;
7 end
8 calculate crowding-distance in Fi;
9 sort solutions in Fi by crowding-distance in a

descending order
10 P

′

k = P
′

k
⋃

Fi[1 : (S k − |P
′

k |)];
11 Pk = P

′

k;
12 end

deal with constraints, and an ε-dominance [26] is employed to
deal with objectives. In the pull search stage, the selection using
the constraint-handling mechanism is described as Algorithm 2.

Algorithm 2: Pull Subproblem

1 Function result = PullSubproblems(Pk,gen,Tmax,ε0)
2 //Tmax: the maximum generation.
3 //e: parameter setting in ε-domination;
4 result = f alse;
5 if gen ≤ 0.9Tmax then
6 for k ← 1 to K do
7 An improved epsilon constraint-handling

mechanism is used to search for
non-dominated and feasible solutions in Pk;

8 end
9 else

10 An improved epsilon constraint-handling
mechanism [25] and the ε-dominance [26] are
used to search non-dominated and feasible
solutions in Pk;

11 end
12 return result;
13 end

3.2.3. An instantiation of PPS-M2M
Combining M2M decomposition method with PPS frame-

work, we can obtain a new algorithm, called PPS-M2M.
The pseudo-code of PPS-M2M is introduced in Algorithm 3.

The algorithm runs repeatedly from line 4 to 40 until the ter-
mination condition is met. Lines 5-13 is used to generate new
solutions for each sub-population. A number of new solutions
are generated at lines 6-10. At lines 11-12, The solution set Q
is allocated to each sub-population according to Eq. (14). The
max rate of change between the ideal and nadir points during
the last l generations rk is calculated at line 14-16. Parameter
ε(k) is updated at lines 18-27. The updating process for each
sub-population is described in lines 28-38. If the size of sub-
population Pk is less than S , then S − |Pk | individual solutions

Algorithm 3: PPS-M2M
Input:

K: the number of the subproblems;
K unit direction vectors: v1,...,vK ;
S : the size of each subpopulation;
Q: a set of individual solutions and their F-values;
Tc: the control generation for ε(k);
ε0: parameter setting in ε-domination;
Tmax: the maximum generation.

Output: a set of non-dominated and feasible solutions.
1 Initialization:
2 Decompose a population into K sub-populations

(P1, ..., PK), each sub-population contains S individuals
according to AllocationS ubPop(Q, S ,K);

3 Set rk = 1.0, εr = 1e − 3, PushS tage = true;
4 while gen ≤ Tmax do
5 for k ← 1 to K do
6 foreach x ∈ Pk do
7 Randomly choose y from Pk;
8 Apply genetic operators on x and y to

generate a new solution z;
9 R := R ∪ {z};

10 end
11 Q := R ∪ (∪K

k=1Pk);
12 Use Q to set P1, ..., PK according to Eq. (14);
13 end
14 if gen >= l then
15 Calculate the rate of change of the ideal rzk and

nadir points rnk as introduced in [16],
respectively;

16 rk ≡ max{rzk, rnk};
17 end
18 if gen < Tc then
19 if rk ≤ εr and PushS tage == true then
20 PushS tage = false;
21 ε(gen) = ε(0) = maxViolation;
22 else
23 Update ε(gen) according to Eq. (12);
24 end
25 else
26 ε(k) = 0;
27 end
28 for k ← 1 to K do
29 if |Pk | ≤ S then
30 randomly select S − |Pk | solutions from Q

and add them to Pk.
31 else
32 if PushS tage == true then
33 result = PushS ubproblems(Pk, S );
34 else
35 result =

PullS ubproblems(Pk, gen,Tmax, ε0);
36 end
37 end
38 end
39 gen = gen + 1;
40 end
41 Find all the non-dominated and feasible solutions and

output them.
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are randomly selected from Q and added to Pk. If the size of
sub-population Pk is greater than S , then S solutions are se-
lected by using the PPS framework. More specifically, at the
push search stage, S individual solutions are selected by em-
ploying non-dominated sorting method without considering any
constraints, as illustrated in line 33. At the pull search stage, S
individual solutions are selected by using an improved epsilon
constraint-handling approach, as illustrated in line 35. The gen-
eration counter is updated at line 39. At line 41, a set of non-
dominated and feasible solutions is output.

3.3. Computational complexity of each tested CMOEA

The computation complexity of NSGA-II-CDP is O(MN2)
[27], while the computation complexity of MOEA/D-CDP is
O(MNT ) [28]. Where M is the number of objectives, N is
the population size, and T is the size of the neighbourhood
in MOEA/D-CDP. MOEA/D-ACDP has the same computation
complexity as that of MOEA/D-CDP. CM2M decomposed a
MOP into K subproblems, and non-dominated sorting is em-
ployed in each subproblem. Therefore, the computation com-
plexity of CM2M is O(KMS 2) = O(MN2/K), where S is the
size of a subpopulation. The computational complexity of PPS-
MOEA/D is the same as that of MOEA/D-CDP, and the compu-
tational complexity of PPS-M2M is the same as that of CM2M.
Therefore, PPS-MOEA/D has a computational complexity with
O(MNT ), while the computation complexity of PPS-M2M is
O(MN2/K).

4. Experimental study

To evaluate the performance of the proposed PPS-MOEA/D
and PPS-M2M, four other CMOEAs, including MOEA/D-
ACDP [17], MOEA/D-CDP [15], NSGA-II-CDP [14], CM2M
[18], PPS-MOEA/D [16] are used to make comparisons. The
detailed parameters are listed as follows:

1. The mutation probability Pm = 1/n (n denotes the dimen-
sion of the decision vector). The distribution index in the
polynomial mutation is set to 20.

2. DE parameters: CR = 1.0, f = 0.5.
3. Population size: N = 200. Neighborhood size: T = 20.
4. Halting condition: each algorithm runs for 30 times inde-

pendently, and stops when 400, 000 function evaluations
are reached.

5. Probability of selecting individuals from its neighborhood:
δ = 0.9.

6. The max number of solutions updated by a child: nr = 2.
7. Parameter setting in PPS-MOEA/D: Tc = 1600, α = 0.95,

τ = 0.05, cp = 2, l = 20.
8. Parameter setting in PPS-M2M: Tc = 1600, α = 0.95,

τ = 0.05, cp = 2, l = 20. The number of sub-regions
K = 10.

9. Parameter setting in CM2M: K = 10.

4.1. Performance metric

To evaluate the performance of the CMOEAs, a popular met-
ric hypervolume (HV) [29] is adopted. HV is a popular per-
formance metric which reflects the closeness of the achieved
non-dominated solutions to the true PF. A larger HV value rep-
resents that the algorithm achieves a non-dominated set closer
to the true PF. The definition of HV is as follows:

HV(S ) = VOL(
⋃
x∈S

[ f1(x), zr
1] × · · · [ fm(x), zr

m]) (15)

where VOL(·) is the Lebesgue measure, m denotes the number
of objectives, and zr = (zr

1, · · · , z
r
m)T is a user-defined reference

point in the objective space. A non-dominated sorting on all
the obtained results of each algorithms, is carried out to achieve
a non-dominated set as a reference PF. The reference point is
placed at 1.2 times the distance to the nadir point of the refer-
ence PF. A larger value of HV may indicate better performance
regarding diversity and/or convergence.

4.2. Experimental results

4.2.1. Performance comparisons
We conduct 30 independent runs for each CMOEA to solve

the optimization problem of the teaching manipulator de-
sign. The statistical results of HV values are listed in Ta-
ble 4. Wilcoxon’s rank sum test at a 0.05 significance level
is performed between PPS-MOEA/D and each of the other
five CMOEAs. In terms of HV metric, the performance of
PPS-MOEA/D is significantly better than those of PPS-M2M,
NSGA-II-CDP, MOEA/D-ACDP, MOEA/D-CDP, CM2M on
the optimization problem of the teaching manipulator design.

The distributions of HV values for the six algorithms in the
30 independent runs are shown in Fig. 9. We can observe
that PPS-MOEA/D has the highest median of HV value and
the smallest interquartile range (IQR), which also indicates that
PPS-MOEA/D outperforms the other five algorithms in solving
the design optimization problem of the teaching manipulator.

Table 5 shows the HV results of PPS-MOEA/D, MOEA/D-
CDP, PPS-M2M, and CM2M. Wilcoxon’s rank sum test at a
0.05 significance level is performed between PPS-MOEA/D
and MOEA/D-CDP, and between PPS-M2M and CM2M, re-
spectively. From Table 5, we can observe that PPS-MOEA/D
is significantly better than MOEA/D-CDP in the HV met-
ric, and PPS-M2M performs significantly better than CM2M
in the HV metric. PPS-based methods (PPS-MOEA/D and
PPS-M2M) outperform their counterparts (MOEA/D-CDP and
CM2M) without adopting PPS framework, which demonstrates
the superiority of the PPS framework for solving the design op-
timization of the teaching manipulator.

Non-dominated solutions achieved by each algorithm on the
design optimization of the teaching manipulator with the best
HV values during the 30 independent runs are plotted in Fig.10.
It can be observed that most of the achieved solutions in PPS-
MOEA/D are located on the reference PF, while the populations
of the other five CMOEAs are trapped in local optima.
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Table 4: HV results of the six CMOEAs on the optimization problem of the teaching manipulator design. Wilcoxon’s rank sum test at a 0.05 significance level is
performed between PPS-MOEA/D and each of the other five CMOEAs. † represents that the performance of the corresponding algorithm is significantly worse
than that of PPS-MOEA/D.

PPS-MOEA/D PPS-M2M NSGA-II-CDP MOEA/D-ACDP MOEA/D-CDP CM2M

mean 217.88 157.17† 61.62† 184.13† 190.32† 109.73†
std 5.13 36.61 57.99 17.65 18.00 30.04

Table 5: HV results of the two PPS-based CMOEAs and their counterparts without PPS framework. Wilcoxon’s rank sum test at a 0.05 significance level is
performed between PPS-MOEA/D and MOEA/D-CDP, and between PPS-M2M and CM2M, respectively. † represents that the performance of the corresponding
algorithm is significantly worse than that of PPS-MOEA/D or PPS-M2M.

PPS-MOEA/D MOEA/D-CDP PPS-M2M CM2M

mean 217.88 190.32† mean 157.17 109.73†
std 5.13 18.00 std 36.61 30.04

0
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Figure 9: HV box plot of PPS-MOEA/D and the other five CMOEAs on the
optimization problem of the teaching manipulator design in 30 independent
runs. To facilitate the display of the box plot, the number 1 - 6 represent
PPS-MOEA/D, PPS-M2M, NSGA-II-CDP, MOEA/D-ACDP, MOEA/D-CDP,
CM2M, respectively.

4.2.2. Analysis of the results

To study the characteristics of the teaching manipulator de-
sign optimization problem, 3, 000, 000 solutions are generated
as shown in Fig. 11, where 600, 000 solutions are gener-
ated randomly, and the rest of the solutions are generated by
PPS-MOEA/D, PPS-M2M, NSGA-II-CDP, MOEA/D-ACDP,
MOEA/D-CDP and CM2M. The approximated landscape of
the teaching manipulator design optimization problem is a nar-
row strip. Some feasible and infeasible solutions are located
on the same regions in the objective space. Its PF is discrete,
which consists of two different segments as shown in Fig. 11.
Therefore, the teaching manipulator design optimization prob-
lem is diversity-hard, which means it is difficult to achieve the
whole PF for a CMOEA.

MOEA/D-based CMOEAs decompose a CMOP into a set of
single constrained optimization problems, which have an in-
trinsic capability to maintain the diversity of working popu-
lation. Because the teaching manipulator design optimization
problem is diversity-hard, MOEA/D-based CMOEAs perform

better than NSGA-II-based CMOEAs, which can also be ob-
served from Table 4. For PPS-MOEA/D and PPS-M2M, PPS-
MOEA/D adopts the MOEA/D framework, while PPS-M2M
employs the NSGA-II framework in each sub-region. The per-
formance of PPS-MOEA/D is better than that of PPS-M2M in
the case of design optimization of the teaching manipulator.

Another feature of the teaching manipulator design optimiza-
tion problem is that the unconstrained PF is close to its con-
strained PF, and the ratio of feasible to infeasible solutions is
small, as illustrated by Fig. 11. To be more specific, AB rep-
resents the distance between the unconstrained PF to the con-
strained PF, and CD denotes the length of infeasible regions
in front of the constrained PF, as illustrated in Fig. 11. Since
AB is much smaller than CD, it is easy for the PPS-based al-
gorithms to pull the infeasible solutions to the constrained PF.
CMOEAs without PPS framework have to get across large in-
feasible region. Therefore, this feature presents more difficulty
for the CMOEAs without PPS framework. Compared with
CMOEAs without PPS framework, the PPS-based algorithms
first find the unconstrained without considering any constraints.
Then at the pull search stage, infeasible solutions located on the
unconstrained PF are pulled to the constrained PF. In contrast,
CMOEAs without PPS framework must traverse large infeasi-
ble regions to approach the constrained PF. Therefore, the PPS-
based CMOEAs performs better than their counterparts without
adopting PPS framework.

From the above discussion, we can conclude that PPS-
MOEA/D outperforms the other five CMOEAs (PPS-M2M,
NSGA-II-CDP, MOEA/D-ACDP, MOEA/D-CDP and CM2M)
significantly on the teaching manipulator optimization prob-
lem. PPS-based methods (PPS-MOEA/D and PPS-M2M) out-
perform their counterparts (MOEA/D-CDP and CM2M) with-
out adopting PPS framework, which demonstrates the superior-
ity of the PPS framework for solving the teaching manipulator
design optimization problem.

4.2.3. The Design of the Teaching Manipulator
The achieved reference PF obtained by six CMOEAs and the

original design suggested by a human expert are shown in Fig.
12. Each solution in the reference PF dominates the original
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Figure 10: Non-dominated solutions achieved by each algorithm on the design optimization of the teaching manipulator with the best HV values during the 30
independent runs are plotted.

Figure 11: The distribution of solutions of the teaching manipulator design optimization problem in the objective space.
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design. The performance of the teaching manipulator is im-
proved significantly by using the proposed PPS-MOEA/D and
PPS-M2M. Since the reference PF is divided into two parts, the
endpoints of each part are selected as representative cases, as
illustrated in Fig. 12. The detailed comparison of the original
design by the human expert and the four representative solu-
tions in the reference PF are listed in Table. 6. The values of
k, b and T3 of case A, B are significantly different from those
of case C, D. A possible reason is that different constraints are
activated in each different segment of the reference PF.

4.2.4. Limitation of PPS
It is worth noting that PPS-based algorithms are not suitable

for solving CMOPs whose unconstrained PFs are degenerated,
which means the dimension of the unconstrained PFs is less
than their constrained counterpart. One possible reason is that,
at the end of the push stage, the populations of PPS-based al-
gorithms are converged to the unconstrained PFs. Since the
unconstrained PFs are degenerated, the diversity of the popula-
tions in PPS-based algorithms is lost, and it is very difficult to
pull the populations to the constrained PFs whose dimensions
are greater than these of their unconstrained counterpart.

5. Conclusion

This paper builds up a model of a teaching manipulator
for recording and setting trajectories for manipulators in pro-
duction lines. The design of the teaching manipulator is for-
mulated as a constrained multi-objective optimization problem
(CMOP). Two kinds of PPS-based algorithms, including PPS-
MOEA/D [16] and PPS-M2M, are employed to solve the for-
mulated CMOP. It is worth noting that PPS-M2M is a new algo-
rithm which combines PPS with M2M decomposition method
to solve CMOPs. To be more specific, PPS-M2M also divides
the search process into two different stages — push and pull
search, as done in PPS-MOEA/D [16]. At the push search stage,
a CMOP is decomposed into a set of simple CMOPs. Each
simple CMOP corresponds to a sub-population and is solved
by using NSGA-II without considering any constraints, which
also can help each sub-population get across infeasible regions
efficiently. Some constrained information can be probed and
collected to help guide the parameter settings of the constraint-
handling mechanisms in the pull search stage. At the begin-
ning of the pull search stage, infeasible solutions in each sub-
population are pulled to the feasible and non-dominated re-
gions by employing an improved epsilon constraint-handling
mechanism. At the last ten percentages of the maximum gen-
erations, each sub-population is merged into one population
which is evolved by using the improved epsilon constraint-
handling method and the epsilon-dominance mechanism. The
experimental results indicate that PPS-MOEA/D outperforms
the other five CMOEAs (PPS-M2M, NSGA-II-CDP, MOEA/D-
ACDP, MOEA/D-CDP and CM2M) significantly on the teach-
ing manipulator optimization problem. PPS-based methods
(PPS-MOEA/D and PPS-M2M) outperform their counterparts

(MOEA/D-CDP and CM2M) without adopting PPS frame-
work, which demonstrates the superiority of the PPS framework
for solving real-world optimization problems.

It is notable that few works have been done by employing
CMOEAs to solving real-world CMOPs. This paper provides
a feasible method. In the future, we will investigate multi-
scenario optimization [30] and conduct additional experiments
with different trajectories to test the performance of PPS-based
CMOEAs. Besides, we will study surrogate-assisted methods
in the framework of PPS to solve problems with expensive fit-
ness evaluation, which is widely existed in the real-world opti-
mization problems.

Appendix .1. Kinematic modeling

The transformation matrix between two adjacent joints from
frame i to frame i + 1 based on the D-H convention is given as
follows:

Ri
i+1 = Rotz(θi) · Transz(di) · Transx(ai) · Rotx(αi) (.1)

where Roti(•) ∈ SE(3) is a homogeneous rotational transforma-
tion matrix about axis i, while Transi(•) ∈ SE(3) is a homoge-
neous translation transformation matrix about axis i. SE(3) rep-
resents the Special Euclidean Group[31], which can represent
an arbitrary rigid transformation including translations and ro-
tations. Multiplying all the link transformation matrices yields
the total transformation matrix from the base of the teaching
manipulator to the end-effector.

Appendix .2. Dynamic modeling

In this study, the method of Lagrange is utilized to establish
the dynamic model of the teaching manipulator. The Lagrange
equation is given as follows:

d
dt

(
∂L
∂q̇

) −
∂L
∂q

= JT fopr(t) + τb − τ f rc(q̇) (.2)

L = K − U =

6∑
i=1

(Ki − Ui) (.3)

where L is the Lagrangian, q ∈ R6 and q̇ ∈ R6 are the general-
ized angular position and velocity, respectively. J ∈ R6×6 is the
Jacobian matrix of the teaching manipulator with respect to the
reference inertial frame, while fopr(t) = [Fx, Fy, Fz, nx, ny, nz]
is the operating force and torque vector of human operator, in
which Fx, Fy, Fz are the components of the operating force, and
nx, ny, nz are the components of the operating torques. The mag-
nitude of the operating torque is tiny, because the three joints
of the spherical wrist are not equipped with friction disks and
the counterweight A can help keep Joint 5 in balance. Thus,
rather than the magnitude of operating torque, the magnitude of
the operating force should be considered as a focus in design.
τb ∈ R6 is the moment vector of force acting on joints by the
balancer. τ f rc(q̇) ∈ R6 is a friction moment vector of the fric-
tion disks on joints. Since frictional moments always resist the
rotation of joints, the sign of the term τ f rc(q̇) is always negative.
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Figure 12: The four endpoints of the reference PF are selected as the representative cases to be compared with the original design by the human expert. The CAD
models of the four solutions are drawn out with the different appearance to the original design.

Table 6: The decision variables, objective and constraint values of the four representative solutions and the original design.

mA LA mB LB k Hb b T1 T2 T3 f1 f2 c1 c2 c3

Case A 0.86 0.20 11.64 0.55 1897 0.19 1008 0.00 0.25 0.02 18.20 17.68 1.17e-6 2.41e-6 6.23e-5
Case B 0.86 0.20 11.64 0.55 682 0.11 1760 5.76 5.61 0.02 20.70 15.70 8.49e-7 3.06e-9 1.08e-5
Case C 0.86 0.20 11.98 0.53 1 0.24 770 0.00 0.19 11.03 28.35 15.70 2.62e-5 10.57 7.46e-4
Case D 0.87 0.20 12.93 0.50 0 0.27 615 0.00 0.88 25.81 44.47 13.93 2.00e-3 24.07 5.91e-3

Original design 1.60 0.19 15.00 0.46 3730 0.12 2500 75.70 75.70 75.70 362.53 266.80 57.62 72.48 2.60e-3

For the ith link, the kinetic energy Ki and the potential energy
Ui are given by Eq.(.4).

Ki =
1
2

miVT
ciVci +

1
2
ωT

i Iiωi (.4)

Ui = migT Pci (.5)

where mi is the mass of the ith link, Vci is the element of linear
velocity vector V and represents the linear velocity of the center
of mass (COM) for link i, ωi is the element of angular velocity
vector ω and represents the angular velocity of link i. Ii denotes
the inertia tensor in the inertial frame. For simplicity, we as-
sume that the mass of all links are uniformly distributed, and
the COMs are located at the center of the links. g = [0, 0,−gz]
is the gravitational acceleration vector and Pci is the position
vector of the COM of link i, measured in the reference inertial
coordinate. V and ω vector can be obtained from the equation
as follows: [

V
ω

]
= Jq̇ (.6)

Integrating equations from Eq.(.3) to (.5), the dynamic model
of the teaching manipulator is given as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) + τ f rc(q̇) = JT fopr(t) + τb (.7)

where q̈ ∈ R6 is the generalized angular acceleration, M(q) ∈
R6×6 is the inertia matrix, which is a symmetric and positive
definite matrix. G(q) ∈ R6 is a six-dimension vector which rep-
resents the gravitational moments acting on joints. Moreover,
the mass of counterweights and the length of the rods, which
connect the counterweights and the corresponding joints, can
change the distribution of mass and the inertia of the links, thus
influencing the operating force. C(q, q̇) ∈ R6×6 is the centripetal
and Coriolis matrix. In this matrix, the elements only involv-
ing q̇ are centripetal which are related to the centripetal force
of each joint, while the rest elements involving q are Coriolis
which are related to the Coriolis force of each joint. The ele-
ments of which is given as follows:

ci j =
1
2

6∑
k=1

(
∂mi j

∂qk
+
∂mik

∂q j
−
∂mk j

∂qi
)q̇k (.8)

where mi j is the element of the inertia matrix in the ith row and
the jth column.

Appendix .3. Balancer model

The balancer consists of a pneumatic cylinder and a linear
elastic spring. The pneumatic cylinder is designed to connect
an air pump with stable pressure, thus we assume the pneumatic
cylinder provides a constant force b in work. The spring with
stiffness k is designed to be in its unloaded position when the
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balancer is vertical to the plane of the horizon, i.e. q2 = π
2 .

In this case, the length of the balancer is in the shortest state,
which can be given by Eq. (.9)

Lk0 = a2 − Hb (.9)

If Joint 2 is in the angular position other than π
2 , the balancer

is elongated. The elongated distance of the balancer is equal to
the compressed distance of the spring. Fig..13 (a) and (c) show
the geometric relation of Link 2 and the balancer. The length of
the balancer is determined by using the law of cosines.

Lk =

√
H2

b + a2
2 − 2Hba2 cos (π/2 − q2) (.10)

The force of the spring can be given as follows:

Fs = k(Ls − Ls0) = k(Lk − Lk0) (.11)

where Ls and Ls0 are the elongated length and the original
length of the spring, respectively, as shown in Fig..13 (b).

Applying the law of sines yields the following equation.

Hb

sin β
=

Lk

sin(π/2 − q2)
(.12)

From Eq.(.12), the moment arm of the force of the balancer
can be determined by the following equation.

r = a2 sin β =
a2Hb sin (π/2 − q2)

Lk
(.13)

From Eq.(.11) and (.13), we can determine the moment of
the balancer acting on Joint 2.

τb,2 = r(Fs + b) (.14)

where τb,2 is the second element of the moment vector τb. b
is the constant pulling force of the pneumatic cylinder, direc-
tion of which is along the longitudinal direction of the cylinder.
Since the moment of the balancer only acts on Joint 2, we have
the following expression of the vector.

τb = [0, τb,2, 0, 0, 0, 0] (.15)

Appendix .4. Friction disk model and balance conditions

The friction disk plays an important role in keeping balance
of the device. A friction disk model considers both kinetic and
static friction. For the friction disk at Joint i, (i = 1, 2, 3), we
have the following equation.

τ f ,i =

{
−τex,i, q̇i = 0
sgn(q̇i)Ti, q̇i , 0 (.16)

where τ f ,i is the frictional moment at Joint ith. τex,i is the resul-
tant moment from all other moments except the friction moment
acting at Joint i. If q̇i is 0, the friction disk provides a moment
with the same size but opposite direction of τex,i to keep the cor-
responding joint in equilibrium. If the joint rotates, the friction
disk provides a kinetic friction moment to resist the motion,
which is denoted by Ti (i = 1, 2, 3).

The teaching manipulator is required to maintain the angular
position of Joint 1,2 and 3 if the device stops in any position
of the trajectory. In this case, the angular velocities and accel-
erations of the three joints are zero, and the human operator
stops driving the end-effector. Substitute q̇ = 0, q̈ = 0, and
fopr(t) = 0 to Eq.(.7), we have Eq.(.17).

G(q) − τb = τ f rc(q) (.17)

where
τ f rc = [τ f ,1, τ f ,2, τ f ,3, 0, 0, 0], (.18)

The three friction disks installed at the Joint 1, 2 and 3 provide
the frictional moment. The design of counterweights and the
rods, as well as the position of the joints influence the mass
distribution, and change the gravitational moment G(q).

To keep balance, given any qt in the trajectory during opera-
tion, the two following relations should be satisfied:

|G2(qt) − τb,2(qt)| ≤ T2 (.19)

|G3(qt)| ≤ T3 (.20)

where Gi is the ith component of the vector of gravity load.
There is no need to consider balance on Joint 1, which is not
sensitive to gravity, since the rotational axis is vertical to the
plane of the horizon.

To keep Joint 5 in balance, we set a counterweight A attached
to the Joint 5. From Eq. (.17), with no torque provided by the
balancer and friction disks, for the Joint 5, we have the follow-
ing equation.

G5(qt) = 0 (.21)

In a real world problem, it is difficult to satisfy such condi-
tion. We therefore transfer the equality constraint Eq. (.21) into
an inequality constraint as follows:

|G5(qt)| ≤ ε (.22)

where ε is a small enough positive constant.
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Figure .13: Force analysis of the Joint 2. (a) A teaching manipulator in one of the position. (b) Force analysis of balancer. (c) Geometric analysis of the arm of the
pulling force acting on Link 2.
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