
1057-7149 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIP.2018.2885495, IEEE
Transactions on Image Processing

1

A Hierarchical Image Matting Model for Blood
Vessel Segmentation in Fundus Images

Zhun Fan, Senior Member, IEEE, Jiewei Lu, Caimin Wei,
Han Huang, Xinye Cai, Xinjian Chen∗, Senior Member, IEEE,

Abstract—In this paper, a hierarchical image matting model
is proposed to extract blood vessels from fundus images. More
specifically, a hierarchical strategy is integrated into the image
matting model for blood vessel segmentation. Normally the
matting models require a user specified trimap, which separates
the input image into three regions: the foreground, background
and unknown regions. However, creating a user specified trimap
is laborious for vessel segmentation tasks. In this paper, we
propose a method that first generates trimap automatically
by utilizing region features of blood vessels, then applies a
hierarchical image matting model to extract the vessel pixels from
the unknown regions. The proposed method has low calculation
time and outperforms many other state-of-art supervised and
unsupervised methods. It achieves a vessel segmentation accuracy
of 96.0%, 95.7% and 95.1% in an average time of 10.72s, 15.74s
and 50.71s on images from three publicly available fundus image
datasets DRIVE, STARE, and CHASE DB1, respectively.

Index Terms—Image matting, hierarchical strategy, fundus,
trimap, region features, segmentation, vessel.

I. INTRODUCTION

RETINAL blood vessels generally show a coarse to fine
centrifugal distribution and appear as a wire mesh-

like structure or tree-like structure [1]. Their morphological
features, such as length and width, is of great importance in
the early detection and therapy of different angiocardiopathy
and ocular diseases such as stroke, vein occlusions, diabetes
and arteriosclerosis [2]–[4]. The analysis of morphological
features of retinal blood vessels is conducive to detecting and
treating a disease in time when it is still in its early stage. Since
angiocardiopathy and ocular diseases have a serious impact on
human’s life, the analysis of retinal blood vessels is of great
significance in many clinical applications to reveal important
information of systemic diseases and support diagnosis and
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treatment. As a result, the requirement of vessel analysis
system grows rapidly, in which vessel segmentation is the first
and one of the most crucial steps.

Vessel segmentation has become an important research field
in recent years [5]. Broadly speaking, existing vessel seg-
mentation approaches include two categories: supervised and
unsupervised. In supervised methods, a number of different
features are extracted from fundus images, and applied to train
the effective classifiers with the purpose of extracting retinal
blood vessels. In [6], Staal et al. extract 27 features for each
image pixel with ridge profiles, and perform feature selection
by using sequential forward selection method to choose the
pixels that can generate better segmentation performance by
a K-Nearest Neighbor classifier. Soares et al. [7] introduce
a feature-based Bayesian classifier with Gaussian mixtures,
which makes use of the intensity information and Gabor
wavelet transform responses to build a 7-D feature vector
for each pixel. In [8], Lupascu et al. train an AdaBoost
classifier with 41 features which incorporates various structure
and geometry information. Marin et al. [9] extract 7 features
including intensity and geometry information, and then train a
neural network classifier for vessel extraction. Roychowdhury
et al. [10] extract the major vessel from the fundus images
and use a Gaussian classifier for vessel segmentation with
8 features, which consists of intensity features and gradient
features. Liskowski et al. [11] employ a deep neural network
to extract vessel pixels from fundus images. Daniele et al.
[12] use an U-Net [13] to achieve blood vessel segmentation.
In unsupervised methods, the researchers try to discover
latent vessel properties for vessel segmentation. Unsupervised
methods can be further divided into multiscale approaches,
matched filtering, vessel tracking, mathematical morphology
and model based methods [5]. The multiscale approach intro-
duced by [14] develops a vessel enhancement filter for vessel
extraction with the analysis of image structure. The matched
filtering method described by [15] employs different threshold
probes to draw vessel pixels from the filtered images. The
methodology based on vessel tracking [16] applies a wave
propagation and traceback mechanism to label each pixel the
likelihood of belonging to vessels in angiography images.
The mathematical morphology with the extraction of vessel
centerlines [17] is also developed to find the morphological
characteristics of retinal blood vessels. Model based methods
generally use geometric deformable models [18], parametric
deformable models [19], vessel profile models [20] and active
contour models [21] for blood vessel segmentation.

Image matting means precisely segmenting the foreground
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(a) (b) (c)

Fig. 1. The process of image matting. (a) An image. (b) A trimap generated
by the user. The white, black and gray regions belong to the foreground,
background and unknown regions, respectively. (c) A result achieved by [22].

from an image. Generally image matting includes two main
steps. The first step is generating a user specified trimap.
Fig.1(b) gives an example of a user specified trimap. Trimap
is a hand-drawn segmented image, which is composed of the
foreground, background and unknown regions. The second
step is employing the matting model to pick the pixels
belonging to the foreground from the unknown regions, on
the basis of the samples of foreground and background pixels
annotated by the observers. Fig.1(c) gives an exemplary result
achieved by [22]. Image matting is of great importance in
many applications, such as, image (or video) segmentation,
video production, new view synthesis, and film making. To
the best of our knowledge, image matting has rarely been
employed previously to extract blood vessels from fundus
image, and so far we have only found [23], which uses Hu’s
moment features [9] and KNN matting [24] to perform blood
vessel segmentation. The major reason is that generating a user
specified trimap for vessel segmentation is an extremely labo-
rious and time-consuming task. In other words, it is not appro-
priate to obtain a trimap manually for vessel segmentation. In
addition, a proper image matting model needs to be designed
carefully to improve the vessel segmentation performance. In
order to address these issues, region features of blood vessels
are employed to generate the trimap automatically. Then a
hierarchical image matting model is proposed to draw the
vessel pixels from the unknown regions. The proposed model
is evaluated on the public available datasets DRIVE, STARE,
and CHASE DB1, which have been extensively used by other
scientists to develop their own methods. The segmentation
performance verifies the efficiency and effectiveness of the
proposed hierarchical image matting model.

The remainder of this paper is constructed as follows:
Section II introduces some background knowledge of image
matting. Section III details the process of generating the
trimap of a fundus image automatically, and the proposed
hierarchical image matting model. Section IV introduces the
public available datasets and the commonly used evaluation
metrics. The experimental results are detailed in Section V.
The conclusion is provided in Section VI.

II. IMAGE MATTING

As aforementioned, image matting aims to accurately ex-
tract the foreground given a trimap of an image. Concretely,
the input image I can be considered as a linear aggregation
of a foreground image F and a background image B:

I = αzF + (1− αz)B (1)

(a) (b) (c)

Fig. 2. An example to illustrate the bounding box and convex hull. (a) The
exemplary image. (b) The image for the illustration of bounding box. The red
boxes are the bounding boxes. (c) The image for the illustration of convex
hull. The red polygons are the convex hulls.

where alpha matte αz indicates the probability of the fore-
ground, which ranges from 0 to 1.

After obtaining the user specified trimap, to derive the
αz in the unknown regions, Chuang et al. [25] uses sets
of Gaussian distribution to obtain the color models of the
foreground and background colors, and estimates the optimal
alpha value by using a maximum-likelihood criterion. In [26],
Levin et al. derives an effective objective function based on
the color smooth hypothesis, and employs this function to
obtain the optimum of the alpha matte. Zheng et al. [22]
performs image matting based on the local and global learning
methods. In [27], Kaiming et al. solves a large kernel matting
Laplacian, and achieves a fast matting algorithm. In [28],
Shahrian and Rajan use an effective cost function to select
the optimal (F,B) couple for alpha matte evaluation. In [24],
Qifeng et al. proposes a matting technique, and obtains an
efficient result by leveraging on the preconditioned conjugate
gradient method. Shahrian et al. [29] expands the sampling
range of foreground and background regions, and collects a
representative set of samples for image matting. In [30], Cho et
al. presents an image matting method to assess alpha mattes on
sub-images of a light field image. Karacan [31] et al. proposes
a sampling method, and employs a new distance metric to
obtain the results of image matting. In [32], Cho et al. utilizes
a deep convolutional neural network to achieve image matting.
Li et al. [33] designs a novel feature and three-layer graph
framework for image matting. Aksoy et al. [34] designs an
inter-pixel information flow to achieve image matting. In [35],
Lee et al. performs parallel image matting on large images
with multiple processing cores.

III. METHODOLOGY

In this section, the process of generating the trimap of an
input fundus image automatically is introduced, followed by
detailing the proposed hierarchical image matting model.

A. Trimap Generation

Region features of blood vessels have been used for blood
vessel segmentation and performed well on segmentation
accuracy and computational efficiency [36]. In this paper, the
trimap of an input fundus image is generated automatically by
by utilizing region features of blood vessels. The definitions
of regions features are given as follows:

• Area indicates the number of pixels in the region.
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• Bounding Box specifies the smallest rectangle incorpo-
rating the region. Fig.2(b) gives an example of bounding
box.

• Extent represents the region proportion in the bounding
box.

• VRatio represents the ratio of the length to the width of
the bounding box.

• Convex Hull means the smallest convex polygon incor-
porating the region. Fig.2(c) gives an example of convex
hull.

• Solidity represents the region proportion in the convex
hull.

TABLE I
THE DEFAULT THRESHOLD VALUES OF REGION FEATURES:Extent, VRatio,

Solidity AND THEIR RECOMMENDED RANGES USED IN THIS WORK

Threshold values e1 e2 r s
Default values 0.35 0.25 2.2 0.53

Recommended Ranges [0.2, 0.4] [0.15, 0.3] [2, 6] [0.4, 0.6]

The default threshold values of region features: Extent,
VRatio, Solidity and their recommended ranges used in this
work are reported in Table I. e1 and e2 are two threshold
values of Extent features used in this work; r is the threshold
value of V Ratio feature; s is the threshold value of Solidity
feature. For Area feature, two threshold values: a1 = fi × 2
and a2 = fi× 35 are used in this work. fi, called the internal
factor, is calculated as d× max(h,w)

min(h,w) , where d = 21 is roughly
the diameter of the biggest vessels in fundus images [37], h
and w are the height and width of the fundus image.

The proposed model is not sensitive to the above mentioned
region features. In other words, these region features can
be selected in a relatively large range without sacrificing
the performance. In Section V(D)-”Sensitivity analysis of
threshold values of region features and the weight parameter”,
empirical study is directed to demonstrate the insensitivity of
the proposed model to the threshold values of region features.

Creating the trimap of the input fundus image automatically
includes two main steps: 1) Image Segmentation and 2) Vessel
Skeleton Extraction. The process of trimap generation is given
in Fig.3.

1) Image Segmentation: Image segmentation aims to sepa-
rate the input image into three regions: the vessel (foreground),
background and unknown regions. Firstly the enhanced vessel
image Imr generated by morphological reconstruction [37]
is segmented into three regions: the background regions (B),
unknown regions (U ) and preliminary vessel regions (V1)

Imr =

 B if 0 < Imr < p1
U if p1 6 Imr < p2
V1 if p2 6 Imr

(2)

where p1 = 0.2 and p2 = 0.35 restrict the unknown region as
thin as possible in order to achieve the better matting result
[28], [38]. In order to remove the noise regions in V1, the
regions with Area > a1 in V1 are extracted firstly (V ∗

1 ). Then
regions in V ∗

1 whose Extent ≤ e1 && V Ratio ≤ r &&
Solidity ≥ s are abandoned, resulting in the denoised pre-
liminary vessel regions V2. Fig.4 gives an exemplary process
of image segmentation.

Fig. 3. The process of trimap generation. B represents the background regions;
U represents the unknown regions; V2 represents the denoised preliminary
vessel regions; S represents the skeleton of blood vessels; V represents the
vessel regions.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Image segmentation. (a) The fundus image I . (b) The green plane of
the fundus image Ig . (c) The enhanced vessel image Imr . (d) The background
regions B. (e) The unknown regions U . (f) The denoised preliminary vessel
regions V2

2) Vessel Skeleton Extraction: Vessel Skeleton Extraction
aims to further distinguish the unknown regions and provide
more information on blood vessels. In Section V(B)-”Vessel
Segmentation Performance”, the effectiveness of vessel skele-
ton extraction will be presented. Firstly, a segmented image T
is generated by thresholding the enhanced vessel image Iiuwt

generated by the isotropic undecimated wavelet transform [39].

T =

{
1 Iiuwt > t
0 Iiuwt 6 t

(3)

where t = Otsu(Iiuwt)−ε, ε is set as 0.03. Then T is divided
into three regions according to the Area feature:

T =

 T1 if 0 < Area < a1
T2 if a1 ≤ Area ≤ a2
T3 if a2 < Area

(4)

In vessel skeleton extraction, the regions in T3 are preserved
while the regions in T1 are abandoned. Then the regions in
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Vessel skeleton extraction. (a) The green plane of the fundus image
Ig . (b) The vessel enhanced image Iiuwt. (c) The binary image T . (d) The
background regions T1. (e) The candidate regions T2. (f) The vessel regions
T3. (g) T4: The preserved regions in T2. (h) The combined regions of T3
and T4. (i) The vessel skeletons S.

T2 with Extent > e2 && V Ratio ≤ r are preserved as T4.
Finally skeleton extraction [40] is performed on the combined
regions of T3 and T4 in order to obtain the vessel skeleton S.
Fig.5 gives an exemplary process of vessel skeleton extraction.

After performing image segmentation and vessel skeleton
extraction, the trimap of the input fundus image is generated
(as shown in Fig.6(b)), which is composed of the background
regions (B), unknown regions (U ) and vessel (or foreground)
regions (V = V2 ∪ S).

B. Hierarchical Image Matting Model
Hierarchical image matting model is proposed to label the

pixels in the unknown regions as vessels or background in
an incremental way. Specifically, after stratifying the pixels in
unknown regions (called unknown pixels) into m hierarchies
by a hierarchical strategy, let uji indicates the ith unknown
pixel in the jth hierarchy, the segmented vessel image Iv(u

j
i )

is modeled as follows:

Iv(u
j
i ) =

{
1 if β(uji , V ) > β(uji , B)
0 else

(5)

where β indicates the correlation function (depicted in E-
quation (8)). The implementation of the hierarchical image
matting model consists of two main steps:

Step 1 Stratifying the unknown pixels: Stratify pixels in the
unknown regions into different hierarchies.

Step 2 Hierarchical update: Assign new labels (V or B) to
pixels in each hierarchy.

The pseudocode implementing this model is shown in Algo-
rithm 1.

(a) (b) (c)

Fig. 6. (a) An input image. (b) A trimap generated by the proposed method.
The white, black and red regions belong to the foreground, background
and unknown regions, respectively. (c) The result achieved by the proposed
hierarchical image matting model.

Algorithm 1: Implementing the hierarchical image matting
model
Input: Trimap composed of B, U , V
Output: The segmented vessel image Iv
Step 1: Stratifying the unknown pixels:

a) For i = 1, . . . , nU , set D(i) = di, where nU
is the number of unknown pixels in U , di is the
Euclidean distance between the ith unknown pixel and
the closest vessel pixel in V , D is the set of di.

b) Sort the unknown pixels in U in an ascending order
according to the distances D , cluster the pixels
with the same distance into one hierarchy, stratify
the pixels into m hierarchies and denote them as
an hierarchical order set: H = {H1, H2, . . . ,Hm},
Hj = {uji |i ∈ 1, 2, . . . , ni}, where ni is the number
of unknown pixels in the jth hierarchy Hj .

Step 2: Hierarchical Update
For j = 1, . . . ,m, do

For i = 1, . . . , ni, do
a) Compute the correlations (Defined in Equation (8))

between uji and its neighboring labelled pixels(vessel
pixels and background pixels) included in a 9×9 grid.

b) Choose the labelled pixel with the closest correlation,
and assign its label (V or B) to uji .

end for
end for

Stratifying the unknown pixels: In this stage, the unknown
pixels are stratified into different hierarchies. For the ith
unknown pixel in U , its Euclidean distances with all vessel
pixels in V are calculated first. Then the closest distance
di is chosen and assigned to the ith unknown pixel. After
that, the unknown pixels are stratified into different hierarchies
according to the closest distances. The first hierarchy has the
lowest value of the closest distance while the last hierarchy
has the highest value of the closest distance. The unknown
pixels reside in low hierarchy suggests that they are close
to blood vessels; The unknown pixels stay in high hierarchy
indicates that they are far away from blood vessels. Fig.7 gives
an exemplary process of stratifying the unknown pixels.

Correlation Function: In step 2 of Algorithm 1, given an
unknown pixel uji and its neighboring labelled pixel kjl , a color
cost function βc is defined to describe the fitness of uji and
kjl first:

βc(u
j
i , k

j
l ) = ||cuj

i
− ckj

l
|| (6)
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(a) (b) (c)

Fig. 7. An exemplary process of stratifying the unknown pixels. (a) An exemplary image (green pixels represent vessel pixels, red pixels represent unknown
pixels). (b) Calculating the closest distance for each unknown pixel (di means the closest distance for the ith unknown pixel). (c) Stratifying unknown pixels
into different hierarchies.

(a) (b)

(c) (d)

Fig. 8. An example for the illustration of assigning a label (V or B) to
an unknown pixel. (a) An exemplary image (green triangles represent vessel
pixels, blue pluses represent background pixels, red points represent unknown
pixels). vi indicates the ith vessel pixel, bi indicates the ith background pixel.
(b) Calculating the correlation functions between a unknown pixel and its
neighboring labelled pixels (vessel pixels and background pixels) (βi means
the correlation between the unknown pixel and the ith labelled pixel). (c)
Assigning a label (V or B) to the unknown pixel. (d) The resultant image.

where cuj
i

and ckj
l

are intensity level of uji and kjl in Imr. A
spatial cost function βs is further defined:

βs(u
j
i , k

j
l ) =

||xuj
i
− xkj

l
|| − xmin

xmax − xmin
(7)

where xuj
i

and xkj
l

are the spatial coordinates of uji and

kjl . The terms xmax = maxj ||xuj
i
− xkj

l
|| and xmin =

minj ||xuj
i
− xkj

l
|| are the maximum and minimum distance

of the unknown pixel uji to the labelled pixel kjl . The normal-
ization factors xmin and xmax ensure that βs is independent
from the absolute distance.

Our final correlation function β is a combination of the
color fitness and the spatial distance:

β(uji , k
j
l ) = βc(u

j
i , k

j
l ) + ωβs(u

j
i , k

j
l ) (8)

where ω is a weight parameter to trade off the color fitness
and spatial distance. ω is assigned as 0.5 in our experiment.
Generally a small β indicates that the labelled pixel has a
close correlation with the unknown pixel, and they have a
high probability of belonging to the same class.

Hierarchical Update: After performing initialization with
the hierarchical strategy, in each hierarchy, the correlations
between each unknown pixel and its neighboring labelled
pixels (vessel pixels and background pixels) included in a
9 × 9 grid are computed. Then the labelled pixel with the
closest correlation is chosen, and its label is assigned to the
unknown pixel. After all unknown pixels in one hierarchy are
updated, they are used for updating the next hierarchy. The
unknown pixels are updated from the first hierarchy to the
last hierarchy. An example to illustrate the process of updating
unknown pixels in one hierarchy is shown in Fig.8.

C. Postprocessing

Since some non-vessel regions may still exist in the final
segmented vessel image Iv , the regions whose Area < a2
&& Extent > e2 && V Ratio < r in Iv are abandoned to
remove these non-vessel regions.

IV. DATASETS AND EVALUATION METRICS

In this section, three publicly available datasets are intro-
duced. These datasets have been extensively used by other
scientists to develop their own methods. Then some commonly
used evaluation metrics are presented, which are also utilized
in our experiment to make a comparison between the proposed
model with several other approaches.

A. Datasets

The proposed model is evaluated on three standard datasets:
DRIVE [6], STARE [15] and CHASE DB1 [37].

DRIVE1 consists of 40 fundus images. These images are
taken by a Canon camera at 45◦ field of view (FOV). Each
image is of 584×565 pixels. The DRIVE dataset is separated
into two sets: a training set and a test set each including 20
fundus images. The training set is marked by two observers;
The test set is marked by two independent observers.

1http://www.isi.uu.nl/Research/Databases/DRIVE/
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TABLE II
COMPARISON BETWEEN THE PROPOSED MODEL AND OTHER METHODS

Test Datasets DRIVE STARE

Methods Acc AUC Se Sp Time Acc AUC Se Sp Time System

Supervised Methods
Staal et.al [6] 0.944 - - - 15min 0.952 - - - 15min 1.0 GHz, 1-GB RAM
Soares et.al [7] 0.946 - - - ∼3min 0.948 - - - ∼3min 2.17 GHz, 1-GB RAM
Lupascu et.al [8] 0.959 - 0.720 - - - - - - - -
Marin et.al [9] 0.945 0.843 0.706 0.980 ∼90s 0.952 0.838 0.694 0.982 ∼90s 2.13 GHz, 2-GB RAM
Roychowdhury et.al [10] 0.952 0.844 0.725 0.962 3.11s 0.951 0.873 0.772 0.973 6.7s 2.6 GHz, 2-GB RAM
Liskowski et.al [11] 0.954 0.881 0.781 0.981 - 0.973 0.921 0.855 0.986 - NVIDIA GTX Tian GPU
Daniele et.al [12] 0.956 0.875 0.767 0.983 15.31s 0.972 0.896 0.806 0.986 23.2s NVIDIA Tian XP GPU

Unsupervised Methods
Hoover et.al [15] - - - - - 0.928 0.730 0.650 0.810 5min Sun SPARCstation 20
Mendonca et.al [17] 0.945 0.855 0.734 0.976 2.5min 0.944 0.836 0.699 0.973 3min 3.2 GHz, 980-MB RAM
Lam et.al [41] - - - - - 0.947 - - - 8min 1.83 GHz, 2-GB RAM
Al-Diri et.al [19] - - 0.728 0.955 11min - - 0.752 0.968 - 1.2 GHz
Lam and Yan et.al [20] 0.947 - - - 13min 0.957 - - - 13min 1.83 GHz, 2-GB RAM
Perez et.al [42] 0.925 0.806 0.644 0.967 ∼2min 0.926 0.857 0.769 0.944 ∼2min Parallel Cluster
Miri et.al [43] 0.943 0.846 0.715 0.976 ∼50s - - - - - 3 GHz, 1-GB RAM
Budai et.al [44] 0.957 0.816 0.644 0.987 - 0.938 0.781 0.580 0.982 - 2.3 GHz, 4-GB RAM
Nguyen et.al [45] 0.941 - - - 2.5s 0.932 - - - 2.5s 2.4 GHz, 2-GB RAM
Yitian et.al [21] 0.954 0.862 0.742 0.982 - 0.956 0.874 0.780 0.978 - 3.1 GHz, 8-GB RAM
Annunziata et.al [46] - - - - - 0.956 0.849 0.713 0.984 <25s 1.9 GHz, 6-GB RAM
Orlando et.al [47] - 0.879 0.790 0.968 - - 0.871 0.768 0.974 - 2.9 GHz, 64-GB RAM
Proposed 0.960 0.858 0.736 0.981 10.72s 0.957 0.880 0.791 0.970 15.74s 2.5 GHz, 4-GB RAM

6.25s 9.66s NVIDIA GTX Tian GPU

STARE2 consists of 20 fundus images. These images are
taken by a TopCon camera at 35◦ FOV. Each image is of 605×
700 pixels. The STARE dataset is marked by two independent
observers.

CHASE DB13 consists of 28 fundus images acquired from
multiethnic school children. These images are captured by a
Nidek camera at 30◦ FOV. Each image is of 960×999 pixels.
The CHASE DB1 is marked by two independent observers.

For the DRIVE, STARE and CHASE DB1 datasets, the
manual segmentations of the first observer are used in this
work, which is a common choice for these datasets [5], [11],
[21], [46].

B. Evaluation Metrics

For vessel segmentation, each pixel is classified as vessels
or background, thereby resulting in four events: two correct
(true) classifications and two incorrect (false) classifications
(as shown in Table III).

TABLE III
FOUR EVENTS OF VESSEL CLASSIFICATION

Vessel present Vessel absent
Vessel detected True Positive (TP) False Positive (FP)
Vessel not detected False Negative (FN) True Negative(TN)

To evaluate the performance of the vessel segmentation

2http://www.ces.clemson.edu/ ahoover/stare/
3https://blogs.kingston.ac.uk/retinal/chasedb1/

algorithms, three commonly used metrics are applied.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity (Se) and Specificity (Sp) reflect the algorithm’s
ability to detect vessel pixels and background pixels. Accura-
cy (Acc) is a global measure of classification performance
combing both Se and Sp. The performance of the vessel
segmentation method is also measured by the area under a
receiver operating characteristic (ROC) curve (AUC). The
conventional AUC is calculated from a number of operating
points, and normally used to evaluate the balanced data
classification problem. However, in practice the researchers
need to select an operating point to compare their method
with other methods. In addition blood vessel segmentation is
an imbalanced classification problem, in which the number of
vessel pixels is much smaller than the number of background
pixels. In order to evaluate the performance of blood vessel
segmentation properly, AUC = (Se + Sp)/2 [21], [48] is
applied to indicate the overall vessel segmentation perfor-
mance, which is suitable to describe the overall performance of
imbalanced data classification problem and specifically for the
case when only one operating point is used. The calculation
time of extracting blood vessels from a fundus images is also
stored.

In addition, the Dice scores (D) [21] is applied to evaluate
the similarity between the manual segmentations and results
of vessel segmentation algorithms: D = 2(M ∩ S)/(M + S),
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TABLE IV
THE SEGMENTATION PERFORMANCE OF THE PROPOSED MODEL ON THREE TEST DATASETS

Dataset Method Acc AUC Se Sp D Time(s)

DRIVE
Trimap (Treating the unknown regions as background regions) 0.959 0.833 0.679 0.986 0.765 5.841

The proposed hierarchical matting model without vessel skeleton extraction 0.960 0.837 0.688 0.986 0.771 11.959
The proposed hierarchical matting model with vessel skeleton extraction 0.960 0.859 0.736 0.981 0.780 10.720

STARE
Trimap (Treating the unknown regions as background regions) 0.958 0.853 0.728 0.977 0.737 7.741

The proposed hierarchical matting model without vessel skeleton extraction 0.959 0.862 0.748 0.976 0.745 16.563
The proposed hierarchical matting model with vessel skeleton extraction 0.957 0.881 0.791 0.970 0.752 15.740

CHASE DB1
Trimap (Treating the unknown regions as background regions) 0.948 0.771 0.565 0.977 0.598 21.088

The proposed hierarchical matting model without vessel skeleton extraction 0.954 0.789 0.597 0.981 0.650 60.847
The proposed hierarchical matting model with vessel skeleton extraction 0.951 0.815 0.657 0.973 0.665 50.710

(a) (b)

(c) (d)

Fig. 9. Ground truth (left) and segmentation result (right): (a) and (b) are the images from DRIVE dataset, (c) and (d) are the images from the STARE dataset

where M represents the manual segmentation and S represents
the segmentation result.

V. EXPERIMENTS AND RESULTS

In this section, four experiments are conducted to evaluate
the proposed hierarchical image matting model. In the first
experiment, the comparison between the proposed model and
other state-of-art methods was presented. In the second exper-
iment, the vessel segmentation performance of the proposed
model was analyzed. In the third experiment, the proposed
hierarchical image matting model was compared with several
other conventional image matting models. In the last exper-
iment, the sensitivity analysis of the threshold values of the
region features and the weight parameter ω used in the work
was given.

A. Comparison with other methods

In this section, the proposed model is compared with other
methods on two most popular public datasets: DRIVE and
STARE. The CHASE DB1 dataset is not employed here since
it is relatively new and has relatively few results in the
literature. The segmentation performance and calculation time

of the proposed model in comparison with other methods on
the DRIVE and STARE datasets are given in Table II. The
Dice scores is not introduced in Table II since it is not given
by other methods. For the DRIVE dataset, the accuracy of the
proposed model is the highest among all existing methods
with Acc = 0.960, Se = 0.736 and Sp = 0.981. On
the STARE dataset, the accuracy and AUC of the proposed
model are the highest among unsupervised methods with
Acc = 0.957, AUC = 0.880. In addition, the proposed model
has a low calculation time compared with other segmentation
methods. Although the supervised method [11] has the best
performance on STARE dataset, the method is computationally
more complex due to the use of deep neural networks, which
may need retraining for new datasets. The supervised method
[12] obtains excellent segmentation results on DRIVE and
STARE datasets, and has a low computational time with a
powerful system. However, it may need retraining for new
datasets. And the proposed method has a lower calculation
time.
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TABLE V
SEGMENTATION PERFORMANCE OF EIGHT DIFFERENT IMAGE MATTING MODELS AND THE PROPOSED MODEL

Dataset Metrics Anat Model Zheng Model Shahrian Model Improving Model Karacan Model Cho Model Li Model Aksoy Model Proposed

DRIVE

Acc 0.958 0.958 0.921 0.958 0.958 0.959 0.958 0.958 0.960
AUC 0.862 0.862 0.903 0.862 0.862 0.859 0.860 0.862 0.859

Se 0.746 0.746 0.881 0.746 0.746 0.738 0.741 0.746 0.736
Sp 0.978 0.978 0.925 0.978 0.978 0.980 0.979 0.978 0.981
D 0.774 0.774 0.656 0.774 0.774 0.777 0.774 0.774 0.780

Time(s) 10.036 11.837 120.552 360.000 482.569 118.057 80.905 41.407 10.720

STARE

Acc 0.944 0.954 0.912 0.954 0.954 0.954 0.955 0.954 0.957
AUC 0.839 0.883 0.906 0.883 0.883 0.884 0.882 0.883 0.881

Se 0.714 0.799 0.899 0.799 0.799 0.802 0.796 0.800 0.791
Sp 0.964 0.966 0.913 0.966 0.966 0.966 0.967 0.966 0.970
D 0.690 0.744 0.638 0.744 0.744 0.745 0.745 0.744 0.752

Time(s) 11.376 14.185 145.860 381.923 563.494 95.968 93.143 43.221 15.740

CHASE DB1

Acc 0.944 0.944 0.918 0.944 0.944 0.944 0.945 0.944 0.951
AUC 0.820 0.820 0.858 0.820 0.815 0.823 0.819 0.817 0.815

Se 0.675 0.675 0.790 0.675 0.676 0.682 0.673 0.668 0.657
Sp 0.964 0.964 0.927 0.965 0.954 0.964 0.965 0.965 0.973
D 0.641 0.641 0.588 0.641 0.641 0.644 0.642 0.638 0.665

Time(s) 29.047 40.587 340.899 797.960 2710.425 225.102 238.169 114.782 50.710

B. Vessel Segmentation Performance

The segmentation performance of the proposed method on
three public available datasets is given in Table IV. Fig.9
presents Some exemplary segmentation results.

When treating the unknown regions as background regions,
trimap can achieve segmentation results of Acc = 0.959,
AUC = 0.833, Se = 0.679, Sp = 0.986, D = 0.765 on the
DRIVE dataset, Acc = 0.958, AUC = 0.853, Se = 0.728,
Sp = 0.977, D = 0.737 on the STARE dataset, Acc = 0.948,
AUC = 0.771, Se = 0.565, Sp = 0.977, D = 0.598 on
the CHASE DB1 dataset, respectively. These segmentation
performances show that trimap can already have fairly good
segmentation performance, which indicates that the selection
of region features is effective in segmenting blood vessels.

However, the performance is still not satisfactory enough
when compared with other methods. A hierarchical image
matting model is proposed to improve the segmentation per-
formance. AUC = 0.837, 0.862, 0.789 achieved by the pro-
posed hierarchical matting model on the DRIVE, STARE and
CHASE DB1 are 0.4%, 0.9% and 1.8% higher than that of
trimap, respectively. Se = 0.688, 0.748, 0.597 achieved by the
proposed hierarchical matting model on the DRIVE, STARE
and CHASE DB1 are 0.9%, 2% and 2.8% higher than that
of trimap, respectively. In addition, D = 0.771, 0.745, 0.650
obtained by the proposed hierarchical matting model on the
DRIVE, STARE and CHASE DB1 are 0.6%, 0.8% and 5.2%
higher than that of trimap, respectively.

The segmentation performance can be further improved by
applying vessel skeleton extraction. From Table IV, it can
be observed that compared with the proposed image matting
model without vessel skeleton extraction, the matting model
with vessel skeleton extraction can achieve 4.8% increase of
Sensitivity, 2.2% increase of AUC and 0.9% increase of D
on the DRIVE dataset, 4.3% increase of Sensitivity, 1.9%
increase of AUC and 0.7% increase of D on the STARE
dataset, 6% increase of Sensitivity, 2.8% increase of AUC
and 1.5% increase of D on the CHASE DB1 dataset, which
demonstrates the effectiveness of applying the mechanism of
vessel skeleton extraction.
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0 2 4 6 8 10
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0.4 0.6 0.8

s

0.95

0.956

0.962
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(d)

Fig. 10. Sensitivity analysis of threshold values of region features used in
the work. (a) Variations in mean segmentation accuracy by varying e1 when
r = 2.2, s = 0.53, e2 = 0.25. (b) Variations in mean segmentation accuracy
by varying e2 when r = 2.2, e1 = 0.35, s = 0.53. (c) Variations in mean
segmentation accuracy by varying r when e1 = 0.35, s = 0.53, e2 = 0.25.
(d) Variations in mean segmentation accuracy by varying s when r = 2.2,
e1 = 0.35, e2 = 0.25.

C. Comparison with image matting models

The effectiveness of the proposed model in blood vessel seg-
mentation has been validated through previous experiments.
In order to further verify the effectiveness of our model,
the proposed model is compared with eight other state-of-
art image matting models: Anat Model [26], Zheng Model
[22], Shahrian Model [28], Improving Model [29], Karacan
Model [31], Cho Model [32], Li Model [33] and Aksoy Model
[34]. The segmemtation results of these models on the DRIVE,
STARE, and CHASE DB1 datasets are given in Table V. The
proposed model outperforms these image matting models in
terms of Acc and Sp in the DRIVE, STARE and CHASE DB1
datasets.
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Fig. 11. Variations in mean segmentation accuracy by varying ω.

D. Sensitivity analysis of threshold values of region features
and the weight parameter

The default threshold values of region features: e1 = 0.35,
r = 2.2, s = 0.53, e2 = 0.25 are applied in this experiment.
To demonstrate the insensitivity of the proposed model to
these threshold values, the variations in Acc by varying e1,
e2, r and s are given in Fig.10.(a), (b), (c) and (d). From
Fig.10, it can be observed that the proposed model can
maintain high segmentation accuracy on the DRIVE, STARE
and CHASE DB1 datasets as e1 varies in [0.2, 0.6] or e2 varies
in [0.15, 0.3]; For r and s, the proposed model can maintain
high segmentation accuracy as r varies in [2, 10] or s varies
in [0.4, 0.8]. In addition, the variation in Acc by varying ω
is given in Fig.11. From Fig.11, it can be observed that the
proposed model can maintain high segmentation accuracy on
the DRIVE, STARE and CHASE DB1 datasets as ω varies in
[0.4, 0.8]. From the above observation, it can be seen that the
proposed model is not sensitive to these threshold values of
region features and the weight parameter ω.

VI. CONCLUSION

Image matting means precisely segmenting the foreground
from an image, which is crucial in many important ap-
plications. However, to the best of our knowledge, image
matting has rarely been employed previously to extract blood
vessels from fundus image. The major reason may be that
generating a user specified trimap for vessel segmentation is
an extremely laborious and time-consuming task. In addition,
a proper image matting model needs to be designed carefully
to improve the vessel segmentation performance. In order
to address these issues, region features of blood vessels are
first employed to generate the trimap automatically. Then a
hierarchical image matting model is proposed to extract the
vessel pixels from the unknown regions. More specifically, a
hierarchical strategy is integrated into the image matting model
for blood vessel segmentation.

The proposed model is very efficient and effective in blood
vessel segmentation, which achieves a segmentation accuracy
of 96.0%, 95.7% and 95.1% on three public available datasets
with an average time of 10.72s, 15.74s and 50.71s, respective-
ly. The experimental results show that it is a very competitive
model compared with many other segmentation approaches.
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