
Mechatronics 13 (2003) 851–885
Toward a unified and automated
design methodology for multi-domain
dynamic systems using bond graphs and

genetic programming

Kisung Seo a, Zhun Fan a, Jianjun Hu a, Erik D. Goodman a,*,
Ronald C. Rosenberg b

a Genetic Algorithms Research and Applications Group (GARAGe), Michigan State University,

East Lansing, MI 48824, USA
b Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA

Received 28 December 2001; accepted 18 July 2002
Abstract

This paper suggests a unified and automated design methodology for synthesizing designs

for multi-domain systems, such as mechatronic systems. A multi-domain dynamic system

includes a mixture of electrical, mechanical, hydraulic, pneumatic, and/or thermal compo-

nents, making it difficult use a single design tool to design a system to meet specified per-

formance goals. The multi-domain design approach is not only efficient for mixed-domain

problems, but is also useful for addressing separate single-domain design problems with a

single tool. Bond graphs (BGs) are domain independent, allow free composition, and are

efficient for classification and analysis of models, allowing rapid determination of various

types of acceptability or feasibility of candidate designs. This can sharply reduce the time

needed for analysis of designs that are infeasible or otherwise unattractive. Genetic pro-

gramming is well recognized as a powerful tool for open-ended search. The combination of

these two powerful methods is therefore an appropriate target for a better system for synthesis

of complex multi-domain systems. The approach described here will evolve new designs

(represented as BGs) with ever-improving performance, in an iterative loop of synthesis,

analysis, and feedback to the synthesis process. The suggested design methodology has been

applied here to three design examples. The first is a domain-independent eigenvalue placement

design problem that is tested for some sample target sets of eigenvalues. The second is in the

electrical domain––design of analog filters to achieve specified performance over a given
* Corresponding author.

E-mail address: goodman@egr.msu.edu (E.D. Goodman).

0957-4158/03/$ - see front matter � 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0957-4158(03)00006-0

mail to: goodman@egr.msu.edu


852 K. Seo et al. / Mechatronics 13 (2003) 851–885
frequency range. The third is in the electromechanical domain––redesign of a printer drive

system to obtain desirable steady-state position of a rotational load.

� 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Automated design; Bond graph; Genetic programming; Multi-domain dynamic system
1. Introduction

Multi-domain dynamic system design differs from conventional design of elec-

tronic circuits, mechanical systems, and fluid power systems in part because of the

need to integrate several types of energy behavior as part of the basic design. Multi-

domain design is difficult because such systems tend to be complex and most current

simulation tools operate over only a single domain. In order to automate design of

multi-domain systems, such as mechatronic systems, a new approach is required [1].
The goal of the work reported in this paper is to develop a unified and automated

procedure capable of designing mechatronic systems to meet given performance

specifications, subject to various constraints. The most difficult aspect of the research

is to develop a method that can explore the design space in a topologically open-

ended manner, yet can find appropriate configurations efficiently enough to be useful

and can be applied to multiple domains using a single tool. Our approach combines

bond graphs (BGs) for representing the mechatronic system models with genetic

programming (GP) as a means of exploring the design space.
BGs [2–6] allow us to capture the energy behavior underlying the physical aspects

(as opposed to the information aspects) of mechatronic systems in a uniformly ef-

fective way across domains. They enable the analysis of multi-energy-domain sys-

tems with a unified inter-domain tool. Being topological structures, they are also

ideal for representing a structured design space for open-ended generation and ex-

ploration. Finally, BGs allow efficient and rapid evaluation of individual designs,

using a two-stage procedure––causal analysis of the graph followed, only if needed,

by appropriate detailed calculation using a derived state model.
Sharpe and Bracewell [7] present the use of BG reasoning for the design of in-

terdisciplinary schemes. They describe how conceptual scheme synthesis may be

assisted and structured by the use of functions-mean trees developed by the appli-

cation of BG-inspired rules. Youcef-Toumi [8] introduces an algorithm which

identifies automatically the physical components and/or subsystems that are re-

sponsible for zero dynamics. Redfield [9] demonstrates the value of using BGs as a

conceptual or configurational design tool for dynamic systems, using as an example a

continuously variable transmission. Tay et al. [10] use a genetic algorithm to vary
BG models. This approach adopts a variational design method, which means they

make a complete BG model first, then change the BG topologically using a GA,

yielding new design alternatives. Their goal is to provide a wider range of possible

designs, and is closely related to that presented here, but within a topologically more

limited search space.



K. Seo et al. / Mechatronics 13 (2003) 851–885 853
GP is an effective way to generate design candidates in an open-ended, but sta-

tistically structured, manner. A critical aspect of the procedure is a fitness (or per-

formance) measure, which must guide the evolution of candidate designs toward a
suitable result in a reasonable time. There have been a number of research efforts

aimed at exploring the combination of GP with physical modeling to find good

engineering designs. Perhaps most notable is the work of Koza et al. [11–14]. He

presents a single uniform approach using GP for the automatic synthesis of both the

topology and sizing of a suite of various prototypical analog circuits, including low-

pass filters, operational amplifiers and controllers. This system has already shown

itself to be extremely promising, having produced a number of patentable designs for

useful artifacts, and is the most closely related approach to that proposed here;
however, it works in a single energy domain. That means his approach requires a

different simulation code or tool for each application. Writing a simulation code for

an application is a very time-consuming job. If the design applications or domains

are different, one must write or link to a simulation code for each new application.

The approach described here includes the potential advantages of both BGs and

GP, with a powerful synergistic effect for automated, multi-domain, and topologi-

cally open-ended design. We use a unified evaluation tool based on BGs, most of

which can be used for every application, even if they are in different domains, with
relatively minor supplemental codes to provide any additional functionality re-

quired.

In this paper, we have not attempted to duplicate the results of other researchers

such as Koza et al. for a specific problem; rather, we have demonstrated the effec-

tiveness of our design methodology for applications in each of several different

domains. As our first class of design problems, we chose one in which the objective

is to realize a design having a specified set of eigenvalues. Since the problem can

be studied effectively using linear components with constant parameters, we only
needed to introduce one-port (generalized) resistance, capacitance, and inductance

elements in our designs. Section 2 discusses the inter-domain nature, efficient evalua-

tion and graphical generation of BGs. Section 3 describes evolution of BGs by GP.

Sections 4–6 presents some results for an eigenvalue design, electric filter design and

printer drive redesign problem, and Section 7 concludes the paper.
2. A design methodology based on bond graph and genetic programming

2.1. Unified and automated methodology and multi-domain dynamic systems

Due to the complexity of the engineering design problem, the need for efficiency in

the design methodology is greatly increased. The most critical issues are automation
of the design process and use of a unified design tool. Most design tools or meth-

odologies require user interaction, so users must make many decisions during the

design process. This makes the design procedure more complex and often introduces

the need for trial-and-error iterations. The other issue is the need for a unified design

tool that can be applied to several domain areas––electrical, mechanical, hydraulic,



Fig. 1. Key features of the BG/GP design methodology.

Fig. 2. Example single-domain systems: (a) mechanical, and (b) electrical.

854 K. Seo et al. / Mechatronics 13 (2003) 851–885
etc. Designers sometimes have to consume large amounts of time to prepare new

analysis tools or methods. A design methodology that combines BGs and GP can

provide both capabilities––an automated and unified approach (Fig. 1). The pro-

posed BG/GP (bond graph with genetic programming) design methodology requires

only an embryo model and fitness (performance) definition in its initial stage; the

remaining procedures are automatically executed by GP search.

Multi-domain system design differs from conventional design of electronic cir-

cuits, mechanical systems, and fluid power systems in part because of the need to
integrate several types of energy behavior as part of the basic design. For example, in

addition to appropriate ‘‘drivers’’ (sources), lumped-parameter dynamical mechan-

ical systems models typically include at least masses, springs and dampers (Fig. 2(a))

while ‘‘RLC’’ electric circuits include resistors, inductors and capacitors (Fig. 2(b)).

Fig. 3 shows a drive system for a printer that involves a drive shaft and a load, with

important physical properties modeled. The input is the driving torque generated

through the belt coupling back to the motor. Fig. 2 shows examples of single-domain

systems, while Fig. 3 represents a mixed-domain system.

2.2. Bond graphs

The BG is a modeling tool that provides a unified approach to the modeling and

analysis of dynamic systems. BG models can describe the dynamic behavior of



Fig. 3. Schematic diagram of an example mechatronic system––the printer drive.

K. Seo et al. / Mechatronics 13 (2003) 851–885 855
physical systems by the connection of idealized lumped elements based on the

principle of conservation of power.

BGs consist of elements and bonds. There are several types of elements, each of

which performs analogous roles across energy domains. The first type––C, I, and R

elements––are passive one-port elements that contain no sources of power, and

represent capacitors, inductors, and resistors (in the electrical domain). The second

type, Se and Sf , are active one-port elements that are sources of power, and that
represent effort sources and flow sources, respectively (for example, sources of

voltage or current, respectively, in the electrical domain). The third type, TF and

GY, are two-port elements, and represent transformers and gyrators, respectively.

Power is conserved in these elements. A fourth type, denoted as 0 and 1 on BGs,

represents junctions, which are three-port (or more) elements. They served to in-

terconnect other elements into subsystems or system models. Some example BG

models are shown below. Fig. 4 consists of Se, 1-junction, C, I, and R elements, and

that same BG represents either a mechanical mass, spring and damper system (Fig.
2(a)), or an RLC electric circuit (Fig. 2(b)). Se corresponds with force in mechanical,
voltage in electric. The 1-junction implies a common velocity for (1) the force source,

(2) the end of the spring, (3) the end of the damper, and (4) the mass in the
Fig. 4. BG model for Fig. 2(a) and (b).



Fig. 5. BG model for printer drive of Fig. 3.

856 K. Seo et al. / Mechatronics 13 (2003) 851–885
mechanical system, and implies that the current in the RLC loop is common. The R,
I, and C represent the damper, inertia (of mass), and spring in the mechanical sys-

tem, or the resistor, inductor, and capacitor in the electrical circuit.

Besides the basic R, I and C elements, two-port elements TF and GY are used in

the printer drive system in Fig. 5. Transformers TF relate efforts to efforts and flows

to flows, while gyrators GY relate the effort at one port to the flow at the other. In

this model, TF corresponds to a gear ratio or signal ratio, while GY relates gain to

voltage or current in a motor to mechanical rotation.

One of the important concepts in BG theory is causality. If two components are
bonded together in a BG, we can think of one effort as causing one component to

respond with a flow while the flow causes the first component to respond with an

effort. Thus the cause–effect relations for efforts and flows are represented in opposite

directions. A single mark on a bond, which is called the causal stroke, indicates how e

and f simultaneously are determined causally on a bond (Fig. 6). This concept plays

a great role in determining the feasibility of a design very simply at an early stage (see

Section 3.3).

BGs have three embedded strengths for design applications––the wide scope of
systems that can be created because of the multi- and inter-domain nature of BGs,

the efficiency of evaluation of design alternatives, and the natural combinatorial

features of bond and node components for generation of design alternatives. First,

multi-domain systems (electrical, mechanical, hydraulic, pneumatic, thermal) can be

modeled using a common notation, which is especially important for design of

mechatronic systems. For example, the mechanical system and the electrical circuit
Fig. 6. The meaning of causal stroke.



K. Seo et al. / Mechatronics 13 (2003) 851–885 857
in Fig. 2 have the same BG model (Fig. 4). Second, this representation of dynamic

systems is also efficient for computational implementation. The evaluation stage is

composed of two steps: (1) causality analysis, and, when merited, (2) dynamic
simulation. In causality analysis, the causal relationships and power flow among

elements and subsystems can reveal various system properties and inherent char-

acteristics that can make the model unacceptable, and therefore make dynamic

simulation unnecessary. While the strong typing used in the GP system (see below)

will not allow the GP system to formulate ‘‘ill-formed’’ BGs, even ‘‘well-formed’’

BGs can have causal properties that make it undesirable or unnecessary to derive

their state models or to simulate the dynamics of the systems they represent. Cau-

sality analysis is fast, and can rapidly eliminate further costs for many models that
are generated by the GP system, by performing assignment of effort and flow vari-

ables and making checks for violations of the appropriate constraints. This simple

filtering cuts the evaluation workload dramatically. For systems passing causal

analysis, state equations are easily and systematically derived from BG models. Then

various analyses (of eigenvalues, for example) or simulation, based on the state

model, allow computation of the desired performance measures. Third, the graphical

(topological) structure characteristic of BGs allows their generation by combination

of bond and node components, rather than by specification of equations. This means
that any system model can be generated by a combination of bond and node com-

ponents, because of their free composition and unbounded growth capabilities.

Therefore it is possible to span a large search space, refining simple designs dis-

covered initially, by adding size and complexity as needed to meet complex re-

quirements. The particular procedures used for synthesis of BG models are a

developing and crucial part of this work, since they determine the search space

within which design solutions will be contained.

2.3. Combining bond graphs with genetic programming

GP is an extension of the genetic algorithm, using evolution to optimize actual

computer programs or algorithms to solve some task [15,16], typically involving a

graph-type (or other variable-length) representation. The most common form of GP
is due to John Koza [11–13], and uses trees to represent the entities to be evolved. GP

can manipulate variable-sized strings and can be used to ‘‘grow’’ trees that specify

increasingly complex BG models, as described below. If the scope and analysis ef-

ficiency of the BG model can be successfully integrated with the impressive search

capability of GP when utilized to its full potential, an extremely capable automated

synthesis procedure, without need for user intervention, should result.

As with any fairly general system for design automation, the user must, as part of

the specification of the problem to be solved, indicate the target performance that is
desired and how it is to be evaluated. That generally includes identifying some input

variable(s) or driver(s) and some output(s) at which the desired behavior is to be

observed, and the desired relationships among them. For a system to be represented

as a BG, this amounts to specifying an ‘‘embryonic’’ physical model for the target

system, which will remain invariant during the design process. That embryo should



858 K. Seo et al. / Mechatronics 13 (2003) 851–885
include any exogenous inputs, usually specified as time-varying sources of effort or

flow (e.g., voltages, currents, forces, velocities, pressures, etc.). It must include any

outputs required to evaluate fitness (for example, voltages across a given load re-

sistance, flow rates through pipes, etc.). That these components should NOT be
allowed to be changed/eliminated during design evolution is obvious––the problem is

not defined without their presence. When the user has formulated the problem (i.e.,

the external boundaries of the physical model with its environment and the per-

formance measures to be used), the user must specify it as an embryonic BG model

and a ‘‘fitness’’ function (objective function to be extremized). The user also specifies

one or more ‘‘sites’’ in the embryo model where modifications/insertions are allowed.

Then an initial population of trees is created at random, using that embryo as a

common starting point. For each tree (‘‘individual’’), the BG analysis is performed.
This analysis, including both causal analysis and (under certain conditions) state

equation analysis, results in assignment of a fitness to the individual. Then genetic

operations––selection, crossover and mutation––are performed on the evaluated

population, generating new individuals (designs) to be evaluated. The loop, in-

cluding BG analysis and GP operation, is iterated until the termination condition is

satisfied. The result is one or more ‘‘best’’ BGs ready for physical realization (there

is, of course, no basis for asserting the global optimality of any solution that arises––

it is simply the best generated, and the procedure is considered successful if the
quality of that design is adequate for the designer�s purposes).
3. Evolutionary design with bond graphs

3.1. Bond graph construction

A typical GP system (like the one used here) evolves GP trees, rather than more

general graphs. However, BGs can contain loops, so we do not represent the BGs

directly as our GP ‘‘chromosomes’’. Instead, a GP tree specifies a construction pro-

cedure for a BG. BGs are ‘‘grown’’ by executing the sequence of GP functions

specified by the tree, using the BG embryo as the starting point.

Initial studies were reported in Seo et al. [17] and Fan et al. [18]. The following set
of BG elements: {C, I, R; 0, 1}, plus any sources in the embryo, are used in the

studies reported here. This set is sufficient to allow us to achieve designs that have

practical meaning in engineering terms, while still permitting other methods to be

used for comparison, as an aid in assessment of our work.

We define the GP functions and terminals for BG construction as follows. There

are four types of functions: first, add functions that can be applied only to a junction

and which add a C, I, or R element; second, insert functions that can be applied to a

bond and which insert a 0-junction or 1-junction into the bond; third, replace
functions that can be applied to a node and which can change the type of element

and corresponding parameter values for C, I, or R elements; and fourth, arithmetic

functions that perform arithmetic operations and can be used to determine the

numerical values associated with components (Table 1).



Fig. 7. The add_R function.

Table 1

GP terminals and functions

Name #Args Description

add_C 4 Add a C element to a junction

add_I 4 Add an I element to a junction

add_R 4 Add an R element to a junction

insert_J0 3 Insert a 0-junction in a bond

insert_J1 3 Insert a 1-junction in a bond

replace_C 2 Replace the current element with a C element

replace_I 2 Replace the current element with an I element

replace_R 2 Replace the current element with an R element

þ 2 Add two ERCs

) 2 Subtract two ERCs

enda 0 End terminal for add element

endi 0 End terminal for insert junction

endr 0 End terminal for replace element

erc 0 ERC

K. Seo et al. / Mechatronics 13 (2003) 851–885 859
Some typical operations––add_R (a 1-port resistor) and insert_J0 (a 0-junction)––

are explained in detail as follows. In Fig. 7, the R element is added to an existing

junction by the add_R function. This function adds a node with a connecting bond.

An R element also requires an additional parameter value (ERC––ephemeral ran-

dom constant). The insert_J0 function can be applied only at a bond, and performs

insertion of a 0-junction at the given modifiable site (Fig. 8). Inserting a 0-junction

between node R and a 1-junction yields a new BG (the right side of Fig. 8). As a
result, three new modifiable sites are created in the new BG. At each modifiable site,



Fig. 8. The insert_J0 function.

860 K. Seo et al. / Mechatronics 13 (2003) 851–885
various bond growth functions can be applied, in accordance with its type. In GP

terminology, this is a strongly typed GP.

Fig. 9 shows an example of a GP tree, generated at random from the embryo root

node. There are three modifiable embryo sites, denoted ‘‘1’’ (BG node), ‘‘a’’ (bond),

and ‘‘2’’ (BG node). Each is denoted by an edge of the GP tree. If we follow edge 1
Fig. 9. Example of a GP tree.



Fig. 10. BG generated by the example GP tree.

K. Seo et al. / Mechatronics 13 (2003) 851–885 861
first, we see that an I element is added by add_I to the 1-junction (11) of the BG, I3 in
Fig. 10, together with its parameter value and a new bond. The result is to preserve
modifiable site ‘‘1’’ and to add modifiable sites ‘‘b’’ and ‘‘3’’. The next set of oper-

ations under add_I in the GP tree show that all three sites happen to be made un-

modifiable by appending of end functions.

Turning next to the edge labeled ‘‘a’’, we see that the first function applied to it is

end. That bond site is thereby made unmodifiable. On the other hand, site ‘‘2’’ is the

locus of additional BG growth. A C element is added by add_C to the 0-junction

(02), C4 in Fig. 10. For the next operation of insert_J1, a 1-junction (15) is inserted
between the 0-junction (02) and C4. After the remaining operations, the BG of Fig.
10 is generated from the GP tree of Fig. 9.
3.2. Overall design procedure

The flow of the entire algorithm is shown in Fig. 11. The user must specify the

embryonic physical model for the target system (i.e., its interface to the external

world, in terms of which the desired performance is specified). That determines an

embryonic BG model and corresponding embryo (starting) element for a GP tree.

From that, an initial population of GP trees is randomly generated. BG analysis is

then performed on the BG specified by each tree. This analysis consists of two

steps––causal analysis and (if justified) state equation analysis. Based on those two

steps, the fitness function is evaluated. For each evaluated and sorted population,
genetic operations––selection, crossover and mutation––are performed. This loop of

BG analysis and GP operation is iterated until a termination condition is satisfied.

The final step in instantiating a physical design would be to realize the highest-fitness

BG in physical components, which is partially done (for electric filter) in the current

work.



Fig. 11. The entire algorithm.

862 K. Seo et al. / Mechatronics 13 (2003) 851–885
3.3. Bond graph evaluation

As mentioned earlier, a two-stage evaluation procedure is executed to eval-

uate BG models. The first, causal analysis [2], allows rapid determination of feasi-
bility of candidate designs, thereby sharply reducing the time needed for analysis of

designs that are infeasible. The causality assignment procedure is described as fol-

lows.

[Causality assignment procedure]

1. Choose any Se or Sf , and assign its required causality. Immediately extend the
causal implications, using all 0, 1, TF, and GY restrictions that apply.

2. Repeat step 1 until all sources have been causally assigned.

3. Choose any C or I and assign integral causality. Again extend the causal implica-

tions of this action, using all 0, 1, TF, and GY restrictions.

4. Repeat step 3 until all C and I elements have been causally assigned.

5. Choose any R that is unassigned and give it an arbitrary causality. Extend the

causal implications of this action, using all 0, 1, TF, and GY.

6. Repeat step 5 until all R elements have been causally assigned.



K. Seo et al. / Mechatronics 13 (2003) 851–885 863
Fig. 12 shows the example BG could have come from either an electric circuit or a

mechanical schematic diagram. Starting from Fig. 12(a), step 1 is shown in Fig.

12(b), in which flow source (Sf ) has been assigned its required causality. Fig. 12(c)
shows the initial results of step 3. The element C2 now has its causal pattern, in-

volving assignment of an effort to the 0-junction, so the causal mark on bond 3 must

be as shown, according to permissible causal pattern of 0-junctions. By repeating

step 3, I5 gains its causal pattern, leaving only one choice for bond 4 that gives the

1-junction a permissible causal pattern, as shown as Fig. 12(d).

For those designs ‘‘passing’’ the causal analysis, the state model is automatically

formulated. The evaluation procedure is shown in Fig. 13.
Fig. 13. Evaluation of BG models.

Fig. 12. Example of causality assignment.



864 K. Seo et al. / Mechatronics 13 (2003) 851–885
4. Case study 1––eigenvalue assignment

Although the final design of practical multi-domain systems still requires physical

realization of the best generated BG model, it is sufficient to design a BG model with
the desired performance in order to demonstrate the utility of our automated design

methodology for multi-domain systems. In this work, the main design objective is to

find BG models with minimal distance errors from the target sets of eigenvalues. The

problem of eigenvalue assignment has received a great deal of attention in control

system design. Design of systems to avoid instability and to provide specified re-

sponse characteristics as determined by their eigenvalues is often an important and

practical problem. The following experiments were done to illustrate the perfor-

mance of GP on this problem and to explore the topological and parametric be-
haviors of the BG models evolved.
4.1. Problem definition

In the example that follows, a set of target eigenvalues is given and a BG model

with those eigenvalues must be generated. An example of a set of target eigenvalues

is shown in Fig. 14. The following three sets (consisting of two, four, and six target
eigenvalues, respectively) were used as targets for example GP runs:

f�1� 2jg
f�1� 2j;�2� jg
f�1� 2j;�2� j;�3� 0:5jg

The fitness function is defined as follows: pair each target eigenvalue one:one with

the closest one in the solution; calculate the sum of distance errors between each
Fig. 14. An example of a target set of eigenvalues.



K. Seo et al. / Mechatronics 13 (2003) 851–885 865
target eigenvalue and the solution�s corresponding eigenvalue, divide by the order,
and perform hyperbolic scaling as follows.
Fig
Fitness ðeigenvalueÞ ¼ 0:5þ 1 2
�.

þ
X

error=order
�

The following sets of experiments (six total) were conducted, with each run repeated

10 times for each problem, all with different random seeds.

(1) Each of three target sets using an embryo with one modifiable site.

(2) Each of three target sets using an embryo with three modifiable sites.

The two types of embryo model used are shown in Fig. 15. Fig. 15(a) represents

an embryo BG with one initial modifiable site, while the embryo BG in Fig. 15(b) has
three initial modifiable sites. Each dotted box represents an initial modifiable site

(‘‘writehead’’ in GP parlance). In each case, the fixed components of the embryo are

sufficient to allow definition of the system input and output, yielding a system for

which the eigenvalues can be evaluated, including appropriate impedances. The

construction steps specified in the GP tree are executed at that point. The numbers in

parentheses represent the parameter values of the elements.

We used a strongly typed version Luke [19] of lil-gp [20] to generate BG models.

These examples were run on a single Pentium III 1 GHz PC with 256 MB RAM. The
GP parameters were as shown below.

Number of generations: 100 for two and four eigenvalues, 500 for six eigenvalues.

Population sizes: 100 in single population runs for two and four eigenvalues. 100

in each of 10 subpopulations for multiple population runs for

six eigenvalues.

Initial population: half_and_half.

Initial depth: 2–6 for two and four eigenvalues, 3–6 for six eigenvalues.
Max depth: 17 for two and four eigenvalues, 12 for six eigenvalues (with 800

max_nodes).

Selection: tournament (size ¼ 7).

Crossover: 0.9.

Mutation: 0.1.
. 15. Two types of embryo BG model with (a) one modifiable site, (b) three modifiable sites.



866 K. Seo et al. / Mechatronics 13 (2003) 851–885
4.2. Results

Fig. 16 gives the solution eigenvalues obtained for a typical run with targets

�1� 2j, and summarizes the solutions, average distance errors from the targets,
structure and parameter information. The corresponding BG model obtained is

shown on the right side of Fig. 16. One 1-junction and three elements (one each of C,

I, and R) were added to the embryo BG model of Fig. 15(a) in evolution of the

solution. This final resulting BG is obtained after post-processing to remove un-

necessary connections and reduce the non-state-variable R to its simplest equivalent

form, using well-established rules. In the other runs, topologically similar structures,

with C, I, and R elements and a 1-junction attached to the 0-junction, as in Fig. 16,

dominated the results. The parameter value for R1 was 250 and R2 was 500, as
shown in Fig. 15, for all experiments.

Fig. 17 illustrates solution eigenvalues and a corresponding BG model obtained

for the same target set �1� 2j, but starting from an embryo with three initial

modifiable sites (Fig. 15(b)). Nonetheless, in this case, the C, I and R elements all

evolved from the third modifiable site in the embryo, because only two state vari-

ables were needed. Nine of 10 runs had the same structure as Fig. 17. Only in one

case were the C, I, and R attached to the 0-junction (first modifiable site).

Fig. 18 illustrates the solution eigenvalues obtained for the target set �1� 2j,
�2� j, along with the corresponding BG model. One 1-junction and six elements

(two each of C, I, and R) evolved from the embryo. Four state variables thus

evolved––corresponding to each C or I element. In the four-eigenvalue problem, the

topological search space is larger than in the two-eigenvalue problem, and a greater
Fig. 16. Two-eigenvalues result with one modifiable site.



Fig. 17. Typical two-eigenvalue result from three modifiable sites.

Fig. 18. Four-eigenvalue result from one initial modifiable site.

K. Seo et al. / Mechatronics 13 (2003) 851–885 867
variety of structures is discovered. Half of them for the one modifiable site case have

very similar structures to that of Fig. 18. It is interesting that in 3 of 10 cases, the

numbers of C�s and I�s in the state vector are not the same (for example, some had
one C and three I�s). However, in most cases, especially with three modifiable sites,
the C�s and I�s evolved in matched pairs.



Fig. 19. Four-eigenvalue result from three initial modifiable sites.

868 K. Seo et al. / Mechatronics 13 (2003) 851–885
Fig. 19 illustrates the result for the target set �1� 2j, �2� j when started with

three modifiable sites. Two C�s, two I�s and one R element evolved from the 0- and

1-junctions. Unlike the case of one modifiable site, components evolved at three
different modifiable sites. In 8 cases of 10, the resulting BG appeared more balanced

than when evolved from a single modifiable site.

The computation time for the six-eigenvalue problem was much larger than for

the four-eigenvalue problem, It was more difficult to achieve acceptable error dis-

tances. It took 5–6 h on a Pentium III 1 GHz PC with 256 MB RAM for each

solution. In order to get acceptable error distances, we used our hierarchical fair

competition (HFC, Hu and Goodman [21]) method in the multi-population GP

search. In order to reduce computation time, the GP parameters for max depth and
max nodes were also reduced.

Figs. 20 and 21 illustrate two typical six-eigenvalue solutions for the target set

�1� 2j, �2� j, �3� 0:5j. Of course, both figures show that more junctions and

elements were added, yielding a more complex structure than in the case of the four-

eigenvalue problem. The solution starting from three modifiable sites has a more

balanced structure, just as was found in the four-eigenvalue problem.

The tabular results of all runs are provided in Tables 2–4, including means,

ranges, and standard deviations. Table 2 (two-eigenvalue problem) shows its relative
ease of solution, with all runs producing quite accurate and similar results, from both

one and three modifiable sites. Results in Table 3 (four-eigenvalue problem) show

three runs from one modifiable site with relatively low fitnesses (under 0.95), while

only one low-fitness run resulted from three modifiable sites. However, that differ-

ence is significant (t-test) only at the 0.2 level––this is still a relatively easy problem,
and both embryos produced fairly good results.



Fig. 21. Six-eigenvalue result with three initial modifiable sites.

Fig. 20. Six-eigenvalue result with one initial modifiable site.

K. Seo et al. / Mechatronics 13 (2003) 851–885 869
Table 4 (six-eigenvalue problem) shows average distance errors that are much

larger––this is a more difficult problem. The difference between embryos (number of

modifiable sites) is clearer. Six of the runs from one modifiable site yielded fitness

values under 0.95, but only one run from three modifiable sites did. The difference in

the mean values between one-modifiable-site and three-modifiable-site runs was

statistically significant at the 0.01 level (t-test). It appears that the added structural



Table 2

Summary of statistic result for two eigenvalues

Fitness of two eigenvalues

One modifiable site Three modifiable sites

Fitness Average

distance error

Fitness Average

distance error

1 0.999586 0.002 0.995738 0.017

2 0.999497 0.002 0.999198 0.003

3 0.999324 0.003 0.997157 0.011

4 0.994872 0.021 0.999634 0.001

5 0.999027 0.004 0.991560 0.034

6 0.979689 0.085 0.997047 0.012

7 0.999491 0.002 0.988743 0.046

8 0.996527 0.014 0.972420 0.117

9 0.995441 0.018 0.994286 0.023

10 0.999815 0.001 0.998803 0.005

Best 0.999815 0.001 0.999634 0.001

Worst 0.979689 0.085 0.972420 0.117

Average 0.996327 0.015 0.993459 0.027

SD 0.006136 0.026 0.008169 0.035

Table 3

Summary of statistic results of four eigenvalues

Fitness of four eigenvalues

One modifiable site Three modifiable sites

Fitness Average

distance error

Fitness Average

distance error

1 0.855715 0.811 0.905652 0.465

2 0.996989 0.012 0.998761 0.005

3 0.990091 0.040 0.992377 0.031

4 0.997378 0.011 0.994307 0.024

5 0.856205 0.807 0.993230 0.027

6 0.997716 0.009 0.993234 0.027

7 0.897575 0.515 0.992516 0.042

8 0.990289 0.040 0.993327 0.027

9 0.992603 0.030 0.996578 0.016

10 0.997442 0.010 0.995161 0.020

Best 0.997716 0.009 0.998761 0.005

Worst 0.855715 0.811 0.905652 0.465

Average 0.957200 0.229 0.985514 0.068

SD 0.061412 0.343 0.028132 0.140

870 K. Seo et al. / Mechatronics 13 (2003) 851–885
flexibility of three modifiable sites makes it easier to reach a given target specifica-

tion. It becomes more reasonable that the proper selection of modifiable sites in the

embryo BG can affect the performance of the design evolved. Fig. 22 shows the

fitness history of a typical six-eigenvalue run.

These results illustrate two things: (1) many topological forms of BG are capable

of satisfying the specified design objectives, and (2) the form of embryo and GP



Table 4

Summary of statistic results for six eigenvalues

Fitness of six eigenvalues

One modifiable site Three modifiable sites

Fitness Average

distance error

Fitness Average

distance error

1 0.900513 0.497 0.987847 0.050

2 0.910099 0.438 0.967237 0.140

3 0.894659 0.534 0.967537 0.139

4 0.969219 0.131 0.969881 0.128

5 0.872007 0.688 0.973010 0.114

6 0.962446 0.162 0.912933 0.422

7 0.958229 0.182 0.965516 0.148

8 0.967667 0.138 0.963455 0.158

9 0.901091 0.493 0.965012 0.150

10 0.913675 0.417 0.952665 0.209

Best 0.969219 0.131 0.987847 0.050

Worst 0.872007 0.688 0.912933 0.422

Average 0.924961 0.368	 0.962509 0.166	

SD 0.035797 0.335 0.019508 0.098

* Indicates difference significant at 0.01 level (t-test).

Fig. 22. Fitness history of a typical six-eigenvalue run.

K. Seo et al. / Mechatronics 13 (2003) 851–885 871
operations used can strongly influence the form of the design evolved. Therefore,

care and understanding of the evolutionary process are important in generating



872 K. Seo et al. / Mechatronics 13 (2003) 851–885
designs that maintain desirable topological properties while satisfying the specified

design objectives.

Although the experiments run to date are not sufficient to allow making strong

statistical assertions, it appears that the search capability of GP is good enough to
make feasible the automated design methodology proposed here for multi-domain

systems.
5. Case study 2––analog filter design

5.1. Problem definition

A filter design problem was used as a test of our approach for evolving electrical
circuits with BGs, as first reported in Fan et al. [18]. Three kinds of filters were chosen

to verify our approach––high-pass, low-pass, and band-pass filters. The embryo

electric circuit and corresponding embryo BG model used in our filter design are

shown in Fig. 23. We used converted Matlab routines to evaluate frequency response

of the filters created. As Matlab provides many powerful toolboxes for engineering

computation and simulation, it facilitates development of source codes for our GP

evaluation dramatically. In addition, as all individual circuits passed to Matlab code

for evaluation are causally valid, the occurrence of singularities is excluded, which
enables the program to run continuously without interruption. The fitness function is

defined as follows: within the frequency range of interest, uniformly sample 100

points; compare the magnitudes of the frequency response at the sample points with
Fig. 23. Embryo circuit and its BG representation.



K. Seo et al. / Mechatronics 13 (2003) 851–885 873
target magnitudes; compute their differences and obtain the squared sum of differ-

ences as raw fitness. Then normalized fitness is calculated according to:
Fitness ðfilterÞ ¼ 100 100
�.

þ
X

error
�

The GP parameters used for eigenvalue design were as follows:

Number of generations: 100.

Population size: 300 in each of 13 subpopulations and 2500 in each of 2 subpop-

ulations for HFC.

Initial population: half_and_half.

Initial depth: 4–6.
Max depth: 50.

Max_nodes: 5000.

Selection: tournament (size ¼ 7).

Crossover: 0.9.

Mutation: 0.3.

5.2. Results

To illustrate an intermediate step in the evolution of a high-pass filter with a

target cutoff frequency of 1000 Hz, the performance of the best design evolved at

generation 10 is shown in Fig. 24. It is clear that this design is far inferior to that

evolved by the end of the run (fewer than 100 generations), as shown in Fig. 25.
Fig. 24. Frequency response of intermediate high-pass filter.



Fig. 25. Frequency response of evolved high-pass filter.

Fig. 26. Frequency response of evolved low-pass filter.

874 K. Seo et al. / Mechatronics 13 (2003) 851–885



Fig. 27. Frequency response of evolved band-pass filter.

K. Seo et al. / Mechatronics 13 (2003) 851–885 875
Fig. 26 gives the frequency response of an evolved low-pass filter with the same

cutoff frequency. It shows that this result is also quite satisfactory. Fig. 27 gives the

frequency response of an evolved band-pass filter with cutoff frequencies at 10 and

1000 Hz. Obviously, it is the most difficult of the three filter design problems. The
evolved high-pass filter circuit and BG are shown in Figs. 28 and 29.

The statistical results of 10 runs each for high-, low- and band-pass filters are

shown in Table 5. The distance errors between ideal frequency output and the output

obtained, together with fitness values, are summarized. With the exception of some

of the band-pass results, most were quite acceptable. Fig. 30 shows the fitness history

of a typical high-pass filter run.
6. Case study 3––printer drive redesign

6.1. Problem definition

This example involves a drive system for a printer. The original problem was
presented to one of the investigators by Denny and Oates of IBM, Lexington, KY, in

1972. Fig. 3 (in Section 2) shows a closed-loop control system to position a rotational

load (inertia) denoted as JL, and Fig. 31 shows the subsystem initially designed

(manually). The detailed specification involved reducing the vibration of the load to

an acceptable level, given certain command conditions for input position.



Fig. 28. BG representation for evolved high-pass filter.

Fig. 29. Electric circuit for evolved high-pass filter.

876 K. Seo et al. / Mechatronics 13 (2003) 851–885



Table 5

Summary results (errors, fitnesses) for filter designs

Low-pass High-pass Band-pass

Error Fitness Error Fitness Error Fitness

1 2.334 0.977188 3.349 0.967597 9.067 0.916868

2 3.428 0.966854 2.031 0.980089 12.861 0.886049

3 2.202 0.978455 1.159 0.988547 12.698 0.887325

4 3.032 0.970569 2.337 0.977163 12.672 0.887533

5 2.162 0.978838 0.828 0.991784 8.662 0.920282

6 3.427 0.966869 2.860 0.972199 12.864 0.886020

7 3.026 0.970633 3.287 0.968177 13.100 0.884177

8 2.951 0.971338 0.725 0.992797 13.090 0.884253

9 2.154 0.978914 1.141 0.988723 6.003 0.943373

10 1.988 0.980507 1.917 0.981192 13.049 0.884573

Best 1.988 0.980507 0.725 0.992797 6.003 0.943373

Worst 3.427 0.966869 3.349 0.967597 13.100 0.884177

Average 2.670 0.974017 1.963 0.980827 11.407 0.898045

SD 0.530 0.00502 0.936 0.008994 2.541 0.021033

Fig. 30. Fitness history for a typical high-pass filter run.

K. Seo et al. / Mechatronics 13 (2003) 851–885 877
The fitness function is defined as follows: within the time range of interest, uni-

formly sample 1000 points; compare the magnitudes of the step response at the

sample points with target magnitudes; compute their differences and obtain the

squared sum of differences as raw fitness. Then normalized fitness is calculated ac-

cording to:
Fitness ðprinterÞ ¼ 1000 1000
�.

þ
X

error
�



Fig. 32. The BG model for initial printer drive subsystem.

Fig. 31. The initial printer drive subsystem.

878 K. Seo et al. / Mechatronics 13 (2003) 851–885
For comparison purposes, the performance simulation was first executed for the

initial printer drive system. The corresponding BG model is shown in Fig. 32. The

simulation result using the 20SIM software is as shown in Fig. 33. The input is a step

function and feedback gain is one (K ¼ 1). The output represents the position of the
rotational load (JL). This design is found to be unsatisfactory because of unac-

ceptable vibration of the load for 1700–1800 ms.

To search for a new design using the BG/GP design tool, an embryo model is

required. Fig. 34 shows an embryo subsystem that involves the drive shaft and the

load, with important physical properties modeled. The input is the driving torque,

Td, generated through the belt coupling back to the motor (not shown). The sub-
system is open-loop, with the feedback path disconnected. Since the vibration



Fig. 33. Simulation result of initial printer drive subsystem.

Fig. 34. The initial printer drive subsystem.

K. Seo et al. / Mechatronics 13 (2003) 851–885 879
problem seemed to be local, this subsystem was deemed a logical place to begin the

design problem.

The embryo model essentially constitutes a boundary condition for the design to

be developed. The corresponding embryo BG model of the drive subsystem is given

in Fig. 35. The two 1-junctions denote the angular velocities of the shaft inertia (wS)

and the load inertia (wL), respectively. Also critical to the search procedure is the
identification of sites in the model where modifications are permitted. We allowed
three such sites, denoted by 1, 2, and 3 in circles. Sites 1 and 3 permit addition to the

model; site 1 is essentially the rigid drive shaft section (wS), and site 3 is at the right
end of the drive shaft spring. Site 2 is an insertion location, where the connecting

shaft can be ‘‘broken’’ and other subsystem effects inserted.

The parameters for the embryo model are:

Is: 6:7
 10�6 kgm2,

Rs: 0:013
 10�3 Nm s/rad,



Fig. 35. The embryonic BG model with feedback loop.

880 K. Seo et al. / Mechatronics 13 (2003) 851–885
Cs1: 0.208 Nm /rad,
Cs2: 0.208 Nm /rad,
RL: 0:58
 10�3 Nm s/rad,

IL: 84:3
 10�6 kgm2.

The following cases were run on a single Pentium III 1 GHz PC with 256 MB RAM.
The GP parameters were as shown below.

Number of generations: 100.

Population sizes: 200 in each of 15 subpopulations for multiple population runs.

Initial population: half_and_half.

Initial depth: 3–6.

Max depth: 17.

Selection: tournament (size ¼ 7).
Crossover: 0.9.

Mutation: 0.1.
6.2. Results

Ten runs of this problem have been done and most of the runs produced very

good solutions. Two competing design candidates with different topologies, as well
as their performances, are provided in Figs. 36–40 (evolved components are circled).

We can see from the output rotational position responses that they all satisfy the

design specification of settling time less than 70 ms. Note that the time scale of the

plots is 100 ms.



Fig. 36. The evolved BG model 1.

Fig. 37. Simulation result of evolved BG model 1.

K. Seo et al. / Mechatronics 13 (2003) 851–885 881
One of the designs is shown in Fig. 36. It is generated in only 20 generations with

200 designs in each of 15 subpopulations, and has a very simple structure. Three

elements, one each of 0-junction, C, and R, are added to modifiable site 1 of the



Fig. 38. The evolved BG model 2.

Fig. 39. Simulation result of evolved BG model 2.

882 K. Seo et al. / Mechatronics 13 (2003) 851–885
embryo model (Fig. 35). The performance of this model is shown in Fig. 37. The

position response for step function input quickly converges in 70 ms, which was an



Fig. 40. Fitness history for a typical printer drive redesign run.

Table 6

Summary results of fitness for printer

Fitness of printer

Distance Fitness

1 15.076 0.985148

2 15.818 0.984428

3 15.188 0.985039

4 16.720 0.983555

5 15.053 0.985170

6 14.085 0.986111

7 15.122 0.985103

8 15.502 0.984734

9 15.132 0.985094

10 15.881 0.984367

Best 14.085 0.986111

Worst 16.720 0.983555

Average 15.358 0.984875

SD 0.6903 0.000669

K. Seo et al. / Mechatronics 13 (2003) 851–885 883
acceptable timeframe. Another design is shown in Fig. 38. Four elements, 0-junction

with C, 1-junction with R are added to modifiable site 2 and one R is added mod-

ifiable site 3 as shown in Fig. 38. Fig. 39 displays the performance of this model.

Table 6 represents the statistical results of 10 runs for the printer drive. The fitness

history of a typical run is shown in Fig. 40.



884 K. Seo et al. / Mechatronics 13 (2003) 851–885
7. Conclusion

This paper has suggested a new design methodology for automatically synthe-

sizing designs for multi-domain, lumped parameter dynamic systems with a unified
tool. A careful combination of BGs and GP, including a multi-step evaluation

procedure that greatly increases the efficiency of fitness assessment, appears to be an

appropriate approach to development of a method for synthesis of complex multi-

domain systems, such as mechatronic systems.

As a proof of concept for this approach, evolution of BGs for three different

domain design problems––a specified-target-eigenvalues design, electric filter design,

and printer drive design––was tested. Experiments showed that all three yielded

satisfactory results in moderate times and computational expenses.
This provides some support for the conjecture that much more complex multi-

domain systems with more detailed performance specifications can be automatically

designed, given longer execution times and/or using inexpensive cluster computing

facilities. Further study will aim at extension and refinement of the design meth-

odology and application to design of more complex and inter-domain mechatronic

systems.
Acknowledgement

The authors gratefully acknowledge the support of the National Science Foun-

dation through grant DMI 0084934.
References

[1] Youcef-Toumi K. Modeling, design, and control integration: a necessary step in mechatronics. IEEE/

ASME Trans Mechatron 1996;1(1):29–38.

[2] Karnopp DC, Rosenberg RC, Margolis DL. System dynamics, a unified approach. 3rd ed. John

Wiley & Sons; 2000.

[3] Rosenberg RC, Whitesell J, Reid J. Extendable simulation software for dynamic systems. Simulation

1992;58(3):175–83.

[4] Rosenberg RC. Reflections on engineering systems and bond graphs. Trans ASME J Dyn Syst,

Measure Control 1993;115:242–51.

[5] Rosenberg RC. The ENPORT user�s manual. E. Lansing, MI: Rosencode Associate; 1996.
[6] Rosenberg RC, Hales MK, Minor M. Engineering icons for multidisciplinary systems. Proc ASME

IMECE 1996;DSC-V.58:665–72.

[7] Sharpe JE, Bracewell RH. The use of bond graph reasoning for the design of interdisciplinary

schemes. In: 1995 International Conference on Bond Graph Modeling and Simulation. 1995. pp. 116–

21.

[8] Youcef-Toumi K, Glaviano YA, Anderson P. Automated zero dynamics derivation from bond graph

models. In: 1999 International Conference on Bond Graph Modeling and Simulation. 1999. pp. 39–

44.

[9] Redfield RC. Bond graphs in dynamic systems designs: concepts for a continuously variable

transmission. In: 1999 International Conference on Bond Graph Modeling and Simulation. 1999. pp.

225–30.



K. Seo et al. / Mechatronics 13 (2003) 851–885 885
[10] Tay E, Flowers W, Barrus J. Automated generation and analysis of dynamic system designs. Res Eng

Des 1998;10:15–29.

[11] Koza JR. Genetic programming: on the programming of computers by means of natural selection.

The MIT Press; 1992.

[12] Koza JR. Genetic programming II: automatic discovery of reusable programs. The MIT Press; 1994.

[13] Koza JR, Bennett FH, Andre D, Keane MA. Genetic programming III, Darwinian invention and

problem solving. Morgan Kaufmann Publishers; 1999.

[14] Koza JR, Bennett FH, Andre D, Keane M, Dunlap A. Automated synthesis of analog electrical

circuits by means of genetic programming. IEEE Trans Evolution Comput 1997;1(2):109–28.

[15] Holland JH. Adaptation in natural and artificial systems. University of Michigan Press; 1975.

[16] Goldberg D. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley;

1989.

[17] Seo K, Goodman ED, Rosenberg RC. First steps toward automated design of systems using bond

graphs and genetic programming. In: Proceedings of Genetic and Evolutionary Computation

Conference, San Francisco. 2001. p. 189 (1-page abstract) and poster.

[18] Fan Z, Hu J, Seo K, Goodman ED, Rosenberg RC, Zhang B. Bond graph representation and GP for

automated analog filter design. In: Genetic and Evolutionary Computation Conference Late-

Breaking Papers, San Francisco. 2001. pp. 81–6, 2001.

[19] Luke S. 1997, Strongly-typed, multithreaded C genetic programming kernel. Available from: http://

www.cs.umd.edu/users/-seanl/gp/patched-gp/.

[20] Zonker D, Punch WF. lil-gp 1.1 User�s manual. GARAGe, College of Engineering, Michigan State
University, 1998.

[21] Hu J, Goodman ED. Hierarchical fair competition model for parallel evolutionary algorithms, CEC

2002, Honolulu, Hawaii, May, 2002.

http://www.cs.umd.edu/users/-seanl/gp/patched-gp/
http://www.cs.umd.edu/users/-seanl/gp/patched-gp/

	Toward a unified and automated design methodology for multi-domain dynamic systems using bond graphs and genetic programming
	Introduction
	A design methodology based on bond graph and genetic programming
	Unified and automated methodology and multi-domain dynamic systems
	Bond graphs
	Combining bond graphs with genetic programming

	Evolutionary design with bond graphs
	Bond graph construction
	Overall design procedure
	Bond graph evaluation

	Case study 1--eigenvalue assignment
	Problem definition
	Results

	Case study 2--analog filter design
	Problem definition
	Results

	Case study 3--printer drive redesign
	Problem definition
	Results

	Conclusion
	Acknowledgements
	References


