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Abstract
In this paper, we discuss the hierarchy that is involved in a typical MEMS design and how evolutionary approaches can be used to automate the

hierarchical synthesis process for MEMS. The paper first introduces the flow of a structured MEMS design process and emphasizes that system-

level lumped-parameter model synthesis is the first step of the MEMS synthesis process. At the system level, an approach combining bond graphs

and genetic programming can lead to satisfactory design candidates as system-level models that meet the predefined behavioral specifications for

designers to trade off. Then at the physical layout synthesis level, the selection of geometric parameters for component devices and other design

variables is formulated as a constrained optimization problem and addressed using a constrained genetic algorithm approach. A multiple-resonator

microsystem design is used to illustrate the integrated design automation idea using these evolutionary approaches.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Due to the complexity and mixed-domain intricacy involved

in MEMS design, designing MEMS remains an art in most

applications, requiring a large amount of investment of human

resources, time and money. Much of the investment is

consumed in the iterative trial-and-error design process.

Automated design synthesis helps engineers to rapidly develop

optimal configurations for a given set of performance and

constraint guidelines, and thus to shorten typical development

cycles for MEMS (with a given fabrication technology) by a

large factor and to enable design of far more complex MEMS

than can be handled today. Electronic Design Automation

(EDA) has achieved great success in both industry and

academia. However, analogous research in design automation

for MEMS seems to lag far behind, although considering the

close affinity of MEMS and VLSI – MEMS actually evolved

from microelectronics and inherited the fabrication techniques

of VLSI – the potential for successful applications of design
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automation to MEMS appears to be promising. Translating the

key insights of silicon evolution success into MEMS

technologies is a much more challenging task than most

people have expected. Major research topics to be addressed

include:
1. d
eveloping a broad base of building blocks in MEMS

technologies so that huge networks of micro-devices can be

assembled into arbitrary architectures with desirable

functionalities;
2. h
ierarchically decomposing the MEMS design process to

reduce design complexity, making it more amenable to

automation;
3. im
proving models of computation and extending current

synthesis methodologies to facilitate generation of viable

design candidates and smoother transitions from conceptual

and embodied designs to process fabrication;
4. c
ombining MEMS component layout extraction and lumped-

parameter simulation and design synthesis to provide MEMS

designers with a VLSI-like environment, enabling faster

design cycles and improved design productivity.

This paper aims to partially address these challenges. The

proposed hierarchical and evolutionary design framework for
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Fig. 1. Hierarchical design process of MEMS.

Z. Fan et al. / Applied Soft Computing 8 (2008) 579–589580
MEMS seeks to eliminate tedious and repetitive design tasks,

facilitate hierarchical problem decomposition, and combine the

power of multiple evolutionary computation algorithms work-

ing sequentially to generate and identify better product designs

and process solutions. In particular, we divide design

representations of MEMS into two levels, the system-level

behavioral macromodel and the detailed-level physical geo-

metric layout model. At the system level, we use a combination

of genetic programming and bond graphs to automatically

generate and search for viable design candidates represented by

behavioral macromodels satisfying high-level design specifica-

tions. At the second detailed (layout) level, constrained genetic

algorithms are used to optimize the geometric parameters that

relate the physical device model to the behavioral macromodel

and meet more detailed design objectives.

This paper is organized as follows: Section 2 introduces a

structured method of MEMS synthesis presented by Antonsson

[1]. Section 3 describes the GPBG approach that combines

genetic programming and bond graphs for system-level

behavioral synthesis. Section 4 explains how a constrained

GA approach can be used to solve the second-level physical

layout synthesis problem. Concluding remarks are presented in

Section 5.

2. Structured MEMS design methodology

In MEMS, there are a number of levels of designs that need to

be synthesized [10]. Usually the design process starts with basic

capture of the schematic of the overall system, and then goes on

through layout and construction of a 3-D solid model. So the first

design level is the system level, which includes selection and

configuration of a repertoire of planar devices or subsystems. The

second level is 2-D layout of basic structures like beams to form

the elementary planar devices. In some cases, if the MEMS is a

result of a surface-micro machining process (2.5-D geometry)

and no significant complex 3-D features are present, design of

this level will end one cycle of design. However, more generally,

modeling and analysis of a 3-D solid model for the MEMS are

necessary. Furthermore, even if an optimized 3-D device shape is

obtained, it is still very difficult to produce a proper mask layout

and correct fabrication procedures. Some research work

addressed this issue; a design tool that calculates the required

2-D mask set producing a given 3-D model by investigating the

vertical topology to the model through a trial mask set was

proposed in Refs. [29,30]. This work was based on the

development proposed in Ref. [4], where a new process planning

technique that uses a three-dimensional surface micromachined

structure as input is proposed. Furthermore, automated mask

layout and process synthesis tools would be very helpful to

relieve designers from considering fabrication details and let

them focus on the functional design of the device and system

[21,23]. After a ‘‘top-down’’ design path, a ‘‘bottom-up’’

verification process is usually followed to guarantee that at each

design level the design specifications are met, as defined (see

Fig. 1). The ultimate goal is to develop tools for MEMS design to

ensure first-pass success by having a well-defined ‘‘top-down’’

design path and ‘‘bottom-up’’ verification path.
For system-level design, hand calculation is still the most

popular method in current design practice [31]. This is mainly

because no powerful and widely accepted synthesis approach

exists to automated design of multi-domain systems in the

system level. In addition, most MEMS system-level designs

are accomplished by modeling the entire microelectromecha-

nical systems as single behavioral entities having no lower

hierarchical levels. If there are any changes in geometric

parameters or topology, a whole new model must be created,

and this substantially lengthens design cycles. To avoid these

problems, the hierarchical design approach combined with

evolutionary techniques can be used to deal with only the parts

that involve changes rather than the entire model and hence

saving design time and energy. Evolutionary computation

(EC) is a cluster of computational algorithms based on

Darwin’s principles of evolution [12,14]. Over the past two

decades, EC have developed from academic curiosities into

practical and effective tools for scientists and engineers. Gero,

for example, investigates evolutionary systems as computa-

tional models of creative design and studies the relationships

among genetic engineering, style emergence, and complex

evolution [11]. Goodman and co-workers [5] studied evolution

of engineering artifacts using heterogeneous parallel genetic

algorithms. Koza has applied genetic programming to evolve

analog filter circuits and can optimize the topology and sizing

parameters of the evolved circuits simultaneously [20]. Other

most recent applications of EC in engineering design include

[41,42].

3. Genetic programming for system-level sythesis

In this research, genetic programming (GP) is used as a

strong search tool to explore the topologically open-ended

design space for system-level behavioral models of MEMS.

The bond graphs (BG) is also used as a modeling tool to unify

representations of mixed energy domains of MEMS. The

overall approach is called GPBG approach. The next section

gives a brief introduction to bond graph.



Fig. 2. Bond graph representing a mechatronic system with mixed energy

domains and a controller subsystem.
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3.1. Bond graph

Bond graph is a modeling tool that provides a unified

approach to the modeling and analysis of dynamic systems. The

performance of a dynamic system that is composed of multi-

domain elements is governed by energy conservation laws,

which require that power-in equals power-out, also known as

the power-balance equation. Power is the product of effort and

flow variables. Bond graph models can describe the dynamic

behavior of physical systems by the connection of idealized

lumped elements based on the principle of conservation of

power. These models provide very useful insights into the

structures of dynamic systems [15,26,27,28]. Much recent

research has explored bond graphs as tools for design

[25,32,33,39]. The constitutive equations of the bond graph

elements are readily introduced via examples from e.g. the

electrical and mechanical domains. The nature of the

constitutive equations imposes demands on the causality of

the connected bonds. Bond graph elements are drawn as letter

combinations (mnemonic codes) indicating the type of element.

The bond graph elements are the following [2]:
1. C
, storage element for a q-type variable, e.g. capacitor (stores

charge), spring (stores displacement).
2. I
, storage element for a p-type variable, e.g. inductor (stores

flux linkage), mass (stores momentum).
3. R
, resistor dissipating free energy, e.g. electric resistor,

mechanical friction.
4. S
e and Sf, sources, e.g. battery (voltage source), gravity

(force source), pump (flow source).
5. T
F, transformer, e.g. an electric transformer, toothed wheels,

lever.
6. G
Y, gyrator, e.g. electromotor, centrifugal pump.
7. 0
, 1, 0- and 1-junctions, for ideal connection of two or more

sub-models.

Because MEMS are intrinsically multi-domain systems, we

need a uniform representation of MEMS so that designers can

not only shift among different levels of design abstractions but

also move around design partitions in different physical

domains without difficulty. The bond graph is a modeling tool

that provides a unified approach to the modeling and analysis of

dynamic systems, especially hybrid multi-domain systems

including mechanical, electrical, pneumatic, hydraulic com-

ponents, etc. It is the explicit representation of model topology

that makes the bond graphs a good candidate for use in open-

ended design search. It is natural to use bond graphs to represent

a dynamic system, such as a mechatronic system, with cross-

disciplinary physical domains and even controller subsystems

(Fig. 2) [15]. For more notation details and methods of system

analysis related to the bond graph representation, see Ref. [27].

Shah and co-workers [34] identifies the importance of bond

graphs for unifying multi-level design of multi-domain

systems. Tay et al. [33] use bond graphs and GA to generate

and analyze dynamic system designs automatically. This

approach adopts a variational design method, which means they

make a complete bond graph model first, and then change the
bond graph topologically using a GA, yielding new design

alternatives. However, the efficiency of this approach is

hampered by the weak ability of GA to search in both topology

and parameter spaces simultaneously. Goodman and co-

workers explored the combination of bond graphs and

evolutionary computation [6,7]. Terpenny and Wang conducted

closely related research [36,35]. Campbell et al. [3] also used

the ideas of both bond graphs and genetic algorithms in his A-

Design framework. In this research, an approach combining

genetic programming and bond graphs is used to automate the

process of MEMS design.

3.2. Combining bond graphs and genetic programming

3.2.1. Genetic programming

Genetic programming is a special type of evolutionary

computation, typically involving a graph-type (or other

variable-length) representation. The most common form of

genetic programming is due to Koza et al. [18–20], which uses

trees to represent the entities to be evolved. Genetic

programming can be used to ‘‘grow’’ trees that specify

increasingly complex bond graph models. If the scope and

analysis efficiency of bond graph model can be integrated with

the strong search capability of genetic programming when

utilized to its full potential, it can result in an extremely capable

automated synthesis procedure. Defining a good function set is

one of the most significant steps in using genetic programming.

It may affect both the search efficiency and validity of evolved

results and is closely related to the selection of building blocks

for the system being designed. By executing the genotype – a

genetic programming tree composed of functions in the

function set as nodes of the tree – an arbitrary representative

topology, or phenotype, can be generated in a developmental

manner. This form of genetic programming, which begins with

an embryo at the root of the tree and adds operations to the tree

to direct the development of candidate designs from that

embryo, is called developmental genetic programming. In this

research, we have an additional dimension of flexibility in

generating phenotypes, because bond graphs are used as

modeling representations for multi-domain systems, serving as

an intermediate representation between the mapping of

genotype and phenotype, and can be interpreted as systems

in different physical domains, chosen as appropriate to given



Fig. 3. Genotype–phenotype mapping.
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circumstances. Fig. 3 illustrates the role of bond graphs in the

mappings from genotypes to phenotypes [6]. And Fig. 4

illustrates a genetic programming tree. Fig. 5 gives a particular

example in the domain of electrical circuits [6].

3.3. Filter topology

Automated synthesis of an RF MEM device, a micro-

mechanical bandpass filter [37], is used as an example to

illustrate structured synthesis procedure using evolutionary

approaches. Through the investigation of two popular

topologies used in surface micromachining of micro-mechan-

ical filters, we found that they are topologically composed of a
Fig. 4. Genetic pro
series of concatenated resonator units (RUs) and bridging units

(BUs) or RUs and coupling units (CUs). Fig. 6 illustrates the

layout of one widely accepted filter topology [37], where its

corresponding bond graph representation is also shown.

3.4. Function set

In this research, a GP function set is presented and listed in

Table 1. Examples of operators, namely insert_CU and

insert_RU, are illustrated in Figs. 7 and 8. Fig. 7 explains how

the insert_CU function works. A coupling unit (CU) is a

subsystem that is composed of a capacitor attached to a 0-

junction in the center and two bonds connecting 1-junctions at the

left and right ends. After execution of the insert_CU function, an

additional modifiable site (2) appears at the rightmost newly

created bond. As illustrated in Fig. 8, a resonator unit (RU),

composed of one I, R, and C component all attached to a 1-

junction, is inserted in an original bond with a modifiable site

through the insert_RU function. After the insert_RU function is

executed, a new RU is created and one additional modifiable site,

namely bond (3), appears in the resulting phenotype bond graph,

along with the original modifiable site bond (1). The newly added

1-junction also has an additional modifiable site (2). As

components C, I, and R all have parameters to be evolved, the

insert_RU function has three corresponding numeric sites (4–6),

for numerical evolution of parameters.
gramming tree.



Fig. 5. Example of genotype–phenotype mapping in the electrical circuit domain.
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3.5. Design embryo

All individual genetic programming trees create bond

graphs from an embryo. To search for a new design using the

GPBG design tool, an embryo model, represented by bond

graph, is required. The embryo model is the fixed part of the
system and the starting point for GP to generate candidates of

system designs by adding new components in a developmental

manner. Selection of the embryo is also an important topic in

system design, especially for multi-port systems. In our filter

design problems, we use the bond graph shown in Fig. 9 as an

embryo.



Fig. 6. MEM filter topology.

Fig. 7. Operator to insert bridging unit.

Fig. 8. Operator to insert resonator unit.
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3.6. Fitness function

Within the frequency range of interest, f range = [fmin, fmax],

sample 100 points logarithmically spaced. In this paper the

f range = [0.1, 100 K] Hz. Compare the magnitudes of the

frequency response at target magnitudes, which are 1.0 within

the band pass frequency range of [316, 1000] Hz, and 0.0

otherwise, between 0.1 and 100 KHz.

3.7. Experimental setup

Three major code modules were developed in this work. The

algorithm kernel of HFC-GP was a strongly typed version [22]

of an open software package developed in our research group,

lilgp. Parameters for lilgp are shown in Table 2.

A bond graph class was implemented in C++. The fitness

evaluation package is C++ code converted from Matlab code,
Table 1

Operators in modular function set

Modular function set

insert_RU Insert a resonator unit

insert_CU Insert a coupling unit

insert_BU Insert a bridging unit

add_RU Add a resonator unit

insert_J01 Insert a 0–1 junction

insert_CIR Insert a special CIR

insert_CR Insert a special CR

add_J Add a junction compound
with hand-coded functions used to interface with the other

modules of the project. The commercial software package

20Sim [38] was used to verify the dynamic characteristics of

the evolved design.
Fig. 9. Design embryo of a MEM filter.



Table 2

Evolution parameters

Population size 500 in each of 13 subpopulations

Initial population half_and_half

Initial depth 4–6

Maximum depth 50

Maximum nodes 5000

Selection Tournament (size = 7)

Crossover 0.9

Mutation 0.3
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3.8. Experimental results

Experimental results show the strong topological search

capability of genetic programming and feasibility of our GPBG

approach for finding realizable system-level designs for micro-

mechanical filters [8].

In Figs. 10 and 11, K is the number of resonator units

appearing in the best design of the generation on the horizontal

axis. As fitness improves, the number of resonator units (K)

grows; this is because a higher-order system with more
Fig. 10. Frequency responses of a sampling of design candidates, which

evolved topologies with larger numbers, K, of resonators as the evolution

progressed. All results are from one genetic programming run of the GPBG

approach.

Fig. 11. Fitness improvement curve.
resonator units has the potential of better system performance

than its low-order counterpart. The plots of corresponding

system frequency responses at generations 27, 52,117 and 183,

where a fitness leap happens, are shown in Fig. 10. The fitness

improvement curve is illustrated in Fig. 11.

A layout of a design candidate with four resonators and three

coupling units and its bond graph representation is shown in

Fig. 12. Notice that the geometry of resonators may not show

the real sizes and shapes of a physical resonator and the layout

figure only serves as a topological illustration.

Using the GPBG approach, it is also possible to explore

novel topologies for MEM filter design. In this case, we may

choose not to use a strictly realizable function set. Instead, a

semi-realizable function set may be used to relax the

topological constraints, with the purpose of finding new

topologies not realized before but still realizable after careful

design. Fig. 13 gives an example of a novel topology for a MEM

filter design. An attempt to fabricate this kind of topology is

being carried out in a university research setting.

4. Second level physical layout synthesis

Layout synthesis automatically generates valid or optimized

geometric sizing parameters for cell components, which in

most cases are chosen from micromechanical devices with

fixed topologies, according to engineering design objectives. In

this research, the cell component is a resonator device in the

MEMS domain. The design objectives come from either high-

level specifications, such as behavioral model parameters that

must be satisfied, or from layout-level objectives such as

minimizing the area occupied. Our approach is to model the

design problem as a formal constrained optimization problem,

and then solve it with powerful optimization techniques,

resulting in a tool that automates the layout synthesis of MEMS

structures. Two categories of optimization techniques are used:

one category includes stochastic algorithms such as genetic

algorithms, and the other category includes deterministic

algorithms such as nonlinear programming. For both cate-

gories, the process of solving the optimization problem

involves determining the design variables, the design con-

straints, and the design objectives.

There are 14 design variables for the cell component

example in this research, i.e., a folded-flexure comb-driven

microresonator [9] fabricated in a polysilicon surface micro-

structural process (Fig. 14). Design variables and their

constraints are listed as follows (Fig. 15):

2 � Lb � 400; 2 � wb � 20; 2 � Lt � 400; 2 � wt

� 20; 2 � Lsy � 400; 10 � wsy � 400; 10 � wsa

� 400; 10 � wcy � 400; 2 � Lcy � 700; 8 � Lc

� 400; 2 � wc � 20; 2 � Lsa � 400; 4 � x0

� 400; 0 � V � 100:

It is noted that the first 13 design variables have units of mm.

The fourteenth design variable (V) has units of volts.



Fig. 12. Layout and bond graph representation of a design candidate from the experiment, with four resonator units coupled with three coupling units.
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In addition, it is assumed that: t = wc = g = d in our design

for simplicity. Some design variables are predefined as follows:

wba = 11, wca = 14, d = 4 and N = 10.

There are also a number of design constraints for the

microresonator cell component, including both geometric

constraints and functional constraints. In this paper, without

loss of generality, we consider the following constraints:

0 � Lcy þ 2gþ 2wc � 700

0 � Lsy þ 2Lb þ 2wt � 700

0 � 3Lt þ wsy þ 4Lc � 2x0 þ 2wcy þ 2wca � 700

ð2N þ 1ÞWc þ 2Ng � Lcy

4 � Lc � ðx0 þ xdispÞ � 200

4 � x0 � xdisp � 200
Fig. 13. A novel topology of MEM filte
Among them, the first three are linear constraints, and the

fourth is a nonlinear constraint because the term xdisp is highly

nonlinear.

xdisp ¼
QFe;x

Kx
(1)

where:

Fe;x ¼ 1:12e0N
t

g
V2 (2)

Suppose that in the system-level synthesis, we get a set of

behavioral parameters for the cell component of a microreso-
r and its bond graph representation.



Fig. 14. A folded-flexure comb-drive microresonator fabricated in a polysilicon

surface microstructural process (a) layout (b) cross-section A–A’.
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nator as

Kx ¼ 1:45 N=m

Bx ¼ 4:62e� 6 kg m2

mx ¼ 4:10e� 11 kg

8<
:

Then we have three additional equation constraints. Equations

to relate the design variables and the three behavioral model

parameters are as follows:

Kx ¼
2EtW3

b

L3
b

L2
t þ 14aLtLb þ 36a2L2

b

4L2
t þ 41aLtLb þ 36a2L2

b

;

where a ¼
�

Wt

Wb

�3

(3)
Fig. 15. Major design variab
Bx ¼ m

�
ðAs þ 0:5At þ 0:5AbÞ

�
1

d
þ 1

d

�
þ Ac

g

�
(4)

mx ¼ ms þ
1

4
mt þ

12

35
mb (5)

where ms ¼ rAs; mt ¼ rAt; mb ¼ rAb (6)

As ¼ wsaLsa þ 2wsyLsy (7)

At ¼ 2wcaLcy (8)

Ab ¼ 8Lbwb þ 2wtð2Lt þ wa þ 2wbÞ (9)

As an alternative, we can also put reformulations of these three

constraint equations into the design objectives, expressing them

as differences to be minimized. In that case, we actually deal

with a multi-objective constrained optimization problem. We

have formulated the objective function in the following format:

f ð~xÞ ¼ 1

1:45
jKx � 1:45j þ 1

4:62e�6
jBx � 4:62e�6j

þ 1

4:10e�11
jMx � 4:10e�11j (10)

The objective function is composed of three terms. Each term

corresponds to the normalized deviation of a solution para-

meter, namely Bx, Mx or Kx, respectively, from its targeted

value. As for ~x, it represents the vector of all the design

variables. We seek solutions such that each of the three terms

is less than 1% of the target value and the sum of the terms is

less than 2%, in order to satisfy the design constraints in this

research.

Finally, it is important to note the role of feature size in VLSI

and MEMS design. Feature size, which is often represented as

l, means the minimum size a particular design can achieve,

based on specific fabrication procedures. In addition, the actual

sizes of geometric shapes should be integer multiples of the
les for microresonators.



Table 4

Layout parameters obtained in five GA runs, with different random seeds

Run no. 1 2 3 4 5

Lb (mm) 167.85 186.39 163.80 196.38 193.95

wb (mm) 2.07 2.52 2.07 2.43 2.34

Lt (mm) 14.94 32.85 13.68 11.07 48.15

wt (mm) 4.59 2.97 8.37 2.25 3.69

Lsy (mm) 254.79 155.70 164.25 133.02 187.56

wsy (mm) 38.61 34.11 32.76 97.38 70.83

wsa (mm) 94.86 45.81 98.10 16.29 65.34

wcy (mm) 166.86 209.34 263.07 81.90 170.28

Lcy (mm) 382.23 452.25 448.29 315.09 428.49

Lc (mm) 166.68 163.44 169.47 103.23 148.77

wc (mm) 2.43 2.00 2.25 2.52 2.70

Lsa (mm) 67.41 216.63 129.60 210.33 16.92

x0 (mm) 88.56 59.58 34.47 11.97 29.25

V (V) 4.05 22.60 23.50 9.00 4.80

Deviation of Bx (%) 0.024 0.067 0.23 0.006 0.27

Deviation of Mx (%) 0.00 0.00 0.00 0.00 0.00

Deviation of Kx (%) 0.025 0.14 0.12 0.138 0.02

Objective value (%) 0.05 0.21 0.35 0.14 0.29
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feature size l, such as l, 2l, 5l, 10l, . . ., etc. In this research,

we set l = 0.09 mm. While it is very difficult for many

numerical optimization approaches (for example, gradient-

based approaches) to include considerations of feature size

constraints [9], it is quite convenient for genetic algorithms to

do so. We need to modify the objective function only slightly,

mapping real values of design variables to integer multiples of

the feature size l before using them in formulations of

constraints and objectives. No modifications to the genetic

algorithm are needed. The genetic algorithm was selected as the

optimization tool for layout optimization also because it can

deal with fixed variables (with both discrete variables and

continuous variables, e.g. input voltage in this case study) with

no difficulty.

4.1. Solving the optimization problem using HEEDS

This search was implemented using a genetic algorithm

module within the commercial software code Hierarchical

Evolutionary Engineering Design System (HEEDS) (#Red

Cedar Technology) [13]. The choice of this software was

motivated by several of its advantages regarding optimization

and solutions search. Within HEEDS, a hybrid and adaptive

search strategy is employed as the default search method.

During a single search, multiple search methods are used

simultaneously (as opposed to sequentially). This approach

takes advantage of the best attributes of each method, while

overcoming the known weaknesses associated with each

method by reducing their participation in the search if/when

they are found to be ineffective. A combination of global and

local search methods is used, with the number of different

methods used at any time ranging between two and ten. Each

method contains tuning parameters that are modified auto-

matically during the search according to knowledge gained

about the nature of the design space. Furthermore, HEEDS

makes all the decisions about which method to use, hence the

designer does not have to worry about this dimension of the

problem.

HEEDS minimizes the function presented in Eq. (10), which

also represents the fitness function of the constrained GA.

The parameters for setting the constrained GA search are

presented in Table 3.

In five runs of the genetic algorithm using different random

seeds, we obtained the sizing parameters and values of the

objective function (to be minimized) listed in Table 4. It can be

seen that during the five GA runs using different seeds, the GA

performs very steadily. Almost all runs achieved the

performance objectives, i.e., the sum of normalized deviation

of targeted behavioral parameters is less than 2%, and all of the

three normalized deviations of targeted behavioral parameters
Table 3

Evolution parameters for the constrained GA

Total no of generations: 550 Population size: 250

Crossover type: one point Crossover probability: 0.50

Mutation type: multi-field Mutation probability (real): 0.20

Selection type: tournament Selection parameter: 2
were less than 1%. It also appears that there are many

alternative and rather different ways in which parameters can be

set and still produce behavior very close to that desired.

5. Conclusion

This paper has suggested a design methodology for

automatically synthesizing hierarchical designs for MEMS.

While there has been much research using evolutionary

computation techniques to synthesize MEMS [23,40], this is

the first work reported that attempts to automates the

hierarchical MEMS synthesis process in an integrated frame-

work. Our first step is to synthesize system-level behavioral

models using a combination of genetic programming and bond

graphs. Then in the second step, we use a constrained genetic

algorithm to automatically optimize the geometric sizing

parameters for the cell components. An example of MEM filter

design with coupling of multiple microresonators is used to

illustrate the approach. Extension of this work can lead to a

composable design and synthesis environment for microme-

chatronic systems [24]. In addition, target cascading in optimal

system design needs to be investigated in depth to propagate the

desirable top-level design specifications to appropriate speci-

fications for the various subsystems and components in a

consistent and efficient manner [16,17]. More work is

underway to improve the efficiency of genetic programming

to explore topologically open-ended design spaces, and the

robustness of the constrained genetic algorithm to solve real-

world constrained optimization problems.
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