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Abstract This paper proposes an improved memetic algo-
rithm relying on ring neighborhood topology for constrained
optimization problems based on our previous work in Cai
et al. (Soft Comput (in press), 2013). The main motivation
of using ring neighborhood topology is to provide a good
balance between effective exploration and efficient exploita-
tion, which is a very important design issue for memetic
algorithms. More specifically, a novel variant of invasive
weed optimization (IWO) as the local refinement procedure
is proposed in this paper. The proposed IWO variant adopts a
neighborhood-based dispersal operator to achieve more fine-
grained local search through the estimation of neighborhood
fitness information relying on the ring neighborhood topol-
ogy. Furthermore, a modified version of differential evolution
(DE), known as “DE/current-to-best/1”, is integrated into
the improved memetic algorithm with the aim of providing
a more effective exploration. Performance of the improved
memetic algorithm has been comprehensively tested on 13
well-known benchmark test functions and four engineering
constrained optimization problems. The experimental results
show that the improved memetic algorithm obtains greater
competitiveness when compared with the original memetic
approach Cai et al. in (Soft Comput (in press), 2013) and other
state-of-the-art algorithms. The effectiveness of the modifi-
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cation of each component in the proposed approach is also
discussed in the paper.
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1 Introduction

Many real-world optimization problems involve various
types of constraints. Usually how to locate the optimal solu-
tions with an accepted computational cost, while satisfying
the constraints simultaneously, should be carefully taken into
consideration. Such problems are even more difficult when
they have huge search region but narrow feasible region. In
general, constrained optimization problems (COPs), can be
defined as follows.

minimize f (x), subject to
{

g j (x) ≤ 0, j = 1, . . . , p

h j (x) = 0, j = p + 1, . . . , m
(1)

where x is the vector of solutions (x = (x1, x2,…,xn)) and
x ∈ � ⊆ �, � is the set of feasible solutions that satisfy
p inequality constraints and (m-p) equality constraints and
� is a n-dimension rectangular space confined by the lower
boundary and upper boundary of x as follows.

lk ≤ xk ≤ uk, 1 ≤ k ≤ n (2)

where lk and uk are the lower boundary and upper boundary
for a decision variable xk , respectively.

Generally, equality constraints are transformed into ineq-
uality form as follows.

|h j (x)| − ε ≤ 0, j = p + 1, . . . , m (3)
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where ε is an allowed positive tolerance value. Note that
the maximization problems f (x) can be converted into the
equivalent minimization problems by adding the negative
sign before f (x).

Over the last decades, Memetic algorithms (MAs) have
attracted a great amount of attention for tackling optimiza-
tion problems due to their interesting characteristics through
combining a population-based global search with one or more
heuristic local refinement procedures. Therefore, MAs have
been successfully applied to optimization problems, such as
global optimization (Gong et al. 2011), multi-objective opti-
mization (Ishibuchi et al. 2003), combinatorial optimization
(Tang et al. 2007) and multi-modal optimization (Wang et
al. 2012), etc. More recently, researchers started to tackle
COPs in the frameworks of MAs. For example, Kelner et al.
(2008) incorporated the local search strategy based on the
interior point method into genetic algorithm to solve COPs.
Nema et al. (2011) proposed a hybrid cooperative algorithm
where particle swarm optimization and gradient search were
integrated to balance exploration and exploitation for solving
engineering constrained optimization optimization. Ullah et
al. (2009), proposed a new agent based on memetic algorithm
with four types of local search techniques adaptively selected
in the evolution process. Sun et al. (2013) presented an intel-
ligent multi-restart memetic framework for box constrained
global optimisation. Handoko et al. (2010) proposed a novel
feasibility structure modeling technique to effectively deter-
mine the choice of solutions for local refinements, by utiliz-
ing information gathered to model the feasibility structure of
COPs in the framework of MAs. Wang and Cai (2012b), pro-
posed a dynamic hybrid framework, which is able to imple-
ment global and local search dynamically according to the
feasibility proportion. More comprehensive surveys of MAs
can be found in Moscato (1989), Neri and Cotta (2012), Ong
et al. (2010).

Besides the remarkable success of MAs in a wide range
of application domains, adaptive forms of MAs have also
attracted the increasing attention over the recent years. As
surveyed in Chen et al. (2011), several core design issues
need to be considered in the adaption of MAs, including
the frequency of refinements, selection of individual subset
to undergo refinement, intensity of refinement, and choice
of procedures to conduct refinement. For instance, empir-
ical experiments were conducted to investigate the impact
of refinement frequency, selection of individual subset and
intensity of refinement on MAs in Nguyen et al. (2007).
A self-generating mechanism to adaptively provide vari-
ous local search mechanisms used in MAs is presented in
Krasnogor and Gustafson (2004). On the contrary, adapta-
tion issues of MAs in the context of constrained optimiza-
tion has attracted far less attention, though it plays an even
more important role in many difficult COPs due to the fact
that such problems usually have huge search space but very

narrow feasible space. A proper adaptive local search can
avoid the waste of computational resources in the undesirable
infeasible region and thus make the algorithm more efficient.
Therefore, in Cai et al. (2013), we proposed a memetic algo-
rithm (IWO_DE) that adopted invasive weed optimization
(IWO) as the local search engine and deferential evolution
(DE) as the global engine to tackle COPs. IWO is able to
control the refinement frequency, selection of individual sub-
set and intensity adaptively in different stages of evolution
because it has two interesting characteristics as follows: (1)
only individuals satisfying a certain fitness degree are permit-
ted to reproduce offspring, and (2) the number of offsprings
each individual reproduces is determined by the fitness value
adaptively.

Based on our previous work, we propose an improved ver-
sion of IWO_DE approach (Cai et al. 2013) replying on the
ring neighborhood topology as the population structure in
this paper. The ring neighborhood topology had been inves-
tigated in Kennedy (1999); Kennedy et al. (2002) and found
to be able to influence the search tendency of exploration and
exploitation. In addition, it has been successfully applied to
improve the performance of differential evolution for opti-
mizing problems in Das et al. (2009). The proposed approach
in this paper, IWO_DE with ring neighborhood topology,
mainly focus on improving the previous IWO_DE approach
(Cai et al. 2013) in the following two directions.

1. In IWO, offspring each weed generates are dispersed
around their parent in the form of certain distribution(such
as normal or polynomial distribution). The standard devi-
ation of the distribution actually determines the disper-
sal degree of solutions. In the original IWO (Mehrabian
and Lucas 2006) and our previous work (Cai et al. 2013),
the dimensions of all solutions share the same dispersal
degree, which causes a very coarse-grained local refine-
ment. In order to further improve the local refinement
ability of IWO, we propose a neighborhood-based disper-
sal operator through the estimation of neighborhood fit-
ness information replying on the ring neighborhood topol-
ogy. More specifically, the dispersal degree for different
dimensions of each solution is determined by the fitness
of this solution’s neighborhood in the ring neighborhood
topology. Additionally, diversity mutation (Wang et al.
2009) is integrated into the basic framework of IWO in
order to maintain a diverse local search for IWO as the
local refinement procedure.

2. The original global search algorithm, known as “DE/
current-to-best/1” (Das and Suganthan 2011), may cause
rapid convergence in the search process (Das et al. 2009).
Thus in this paper, a modified version of “DE/current-
to-best/1” using the ring neighborhood topology is also
adopted to improve the global search ability of the original
version in the hope of achieving an effective exploration.
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In summary, the framework of our previous work Cai et
al. (2013) had proposed the IWO_DE approach,which com-
bined adaptive characteristics of IWO and the global search
ability of DE to handle COPs. Based on it, an improved
memetic algorithm replying on the ring neighborhood topol-
ogy is proposed to solve COPs in this paper. For con-
venience, the improved memetic algorithm is denoted as
IWO_DE/Ring.

The main contributions of this paper can be summarized
as follows.

1. A novel variant of IWO is proposed relying on the ring
neighborhood topology. More specifically, a neighbor-
hood-based dispersal operator is employed firstly to deter-
mine the degree of local refinement for different dimen-
sions of each solution through the estimation of the solu-
tion’s neighborhood fitness.

2. For the global search procedure, the “DE/current-to-
best/1”, which has been modified to better cater to
the characteristic of exploration, is integrated into the
improved memetic algorithm with the ring neighborhood
topology.

3. The performance of the proposed IWO_DE/Ring appro-
ach, both in terms of speed of convergence and opti-
mality, has been tested on 13 well-known benchmark
functions and four engineering COPs. The experimental
results show the proposed IWO_DE/Ring is very com-
petitive compared with the original IWO_DE (Cai et al.
2013), as well as some other state-of-the-art algorithms.

The rest of this paper is organized as follows. Since the pro-
posed memetic algorithm is applied for COPs, Sect. 2 reviews
works on constraint-handling techniques and the descrip-
tions of IWO and DE are briefly reviewed in Sect. 3. In
Sect. 4, the ring neighborhood topology adopted in this paper
is defined and introduced. Section 5 elaborates the improved
memetic algorithm, IWO_DE/Ring, in detail. The experi-
mental results of IWO_DE/Ring on benchmark functions and
engineering optimization problems are presented in Sect. 6.
Section 7 further discusses and analyzes the performance of
IWO_DE/Ring. Finally, Sect. 8 concludes this paper.

2 Related works on constraint-handling techniques

Unlike unconstrained optimization problems, both the objec-
tive function to be optimized and constraint satisfaction
should be considered when solving COPs. Up to now, differ-
ent constraint handling techniques have been incorporated
with genetic algorithm, differential evolution and particle
swarm optimization etc. to tackle COPs (Wang et al. 2009;
Tasgetiren and Suganthan 2006; He and Wang 2007). More
details of constraint handling techniques have been surveyed

in Coello (2002), Mezura-Montes and Coello (2011). Gener-
ally, these techniques can be categorized into several classes,
which are (1) techniques of penalty functions; (2) techniques
of special representations and operators; (3) techniques of
multi-objective optimization and (4) techniques of hybrid
methods. We will introduce them one by one as follows.

Techniques of penalty functions employing penalty func-
tions is a simple and common approach to solve COPs. The
main principal behind is to transform COPs into uncon-
strained ones through adding a penalty factor to the fit-
ness value of infeasible solutions. However, the disadvan-
tage of using penalty function methods is that the value of
penalty factors is usually set up through “trial and error”.
Penalty factors ususally need to be carefully tuned. Because
under- and over-penalization factors can influence the opti-
mal results considerably and usually these penalty factors
are problems depended. For instance, Coello (2000) pro-
posed a self-adaptive penalty approach based on the concept
of co-evolution under the genetic algorithm framework. The
method created two populations that cooperate with each
other in such a way that one population evolves penalty fac-
tors to be used by another population which focuses on the
objective function values. Woldesenbet et al. (2009) also pro-
posed a self-adaptive penalty approach using evolutionary
algorithm. In this method, the percentage of feasible solu-
tions plays a significant role in determining the degree of
penalty added to infeasible solutions. This method intro-
duced a modified objective function values composed of two
components: distance measure and adaptive penalty. More
recently, Lin (2013) proposed a novel penalty genetic algo-
rithm based on the rough set theory, which is able to pro-
vide an self-adaptive penalty adjustment in the evolution
process.

Techniques of special representations and operators ex-
cept for adopting penalty function approaches, other special
representations and operators have been proposed. For exam-
ple, Runarsson and Yao (2000) proposed a stochastic ranking
(SR) method to tackle COPs. SR used a probability parameter
p f as the comparison criterion among individuals, namely
(1) if individuals are both feasible, the one with better fitness
is selected; or (2) if a uniformly random number within 0
and 1 is less than p f , the one with better fitness is selected;
otherwise, (3) the one which has the small amount of con-
straint violation is preferable. Besides, SR adopts a dubble-
sort-like procedure to achieve the above process. Later, Taka-
hama and Sakai (2006) proposed a ε constrained method in
which COPs were transformed into unconstrained ones by
defining an order relation under the ε level comparison and
ε was controlled by an exponential function and for any ε,
its value is greater than zero. The order relation is relevant
to the objective function value and the constraint violation.
Specifically, assume φ1(x) and φ2(x) to be the sum amount
of constraint violation corresponding to individuals x1 and
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x2, respectively: (1) if φ1(x), φ2(x) ≥ ε, then the individual
which has better objective function value is preferable; (2) if
φ1(x) = φ2(x), then also the one which has better objective
function value is preferable; and otherwise, (3) the one which
has small violation of constraint will be selected.

Techniques of multiobjective optimization adopting mul-
tiobjective optimization techniques is another way to tackle
COPs. Through multiobjective optimization techniques, con-
straints can be considered as one or more objectives, and thus
COPs can be converted into multi-objective unconstrained
optimization problems. Wang and Cai (2012a) proposed an
algorithm, in which combined the multiobjective optimiza-
tion and differential evolution to solve the COPs, to overcome
the shortcoming of the method (Wang et al. 2007) which
also adopted multiobjective optimization for the comparison
of individuals. Similarly, Wang and Cai (2008) propose an
adaptive model to solve COPs. In this method, the adaptive
model can tackle the COPs adaptively in different phase and
in the phase that only had infeasible solutions, the multiob-
jective optimization technique was employed for the com-
parison of infeasible solutions. Coello and Mezura Montes
(2002) proposed a genetic algorithm in which dominance-
based tournament selection is used to determine which the
infeasible solutions were selected. Venkatraman and Yen
(2005) proposed a generic framework which comprised two
phases. In the first phase, the goal preferred to find at least
one feasible solution and the comparison among individuals
only depended on the sum amount of constraint violation. In
the second phase, COPs were converted into a bi-objective
unconstrained optimization problems and then both objec-
tives (the original objective and the sum amount of constraint
violation) were optimized and ranked by the non-dominated
sorting which was proposed in Deb et al. (2002).

In this paper, we employ the multi-objective optimiza-
tion technique to solve COPs. The objective to be optimized
and the constraint satisfaction are transformed to the two
objectives of a bi-objective optimization problem, which is
redefined as follows.

minimize

F(x) = ( f (x), G(x)) (4)

where G(x) = ∑m
j=1 G j (x) denotes the total amount of con-

straint violation of solution x and G j (x) reflects the amount
of constraint violation of solution x on the j-th constraint,
calculated as follow.

G j (x) =
{

max(0, g j (x)), j = 1, . . . , p
max(0, |h j (x)| − ε), j = p + 1, . . . , m

(5)

Based on the above redefinition, this paper considers
COPs as a biobjective optimization problem, that is, one
objective is the original objective function f (x) and the other
is the total amount of constraint violation G(x).

Unlike single-objective optimization, multi-objective
optimization usually resorts to the concept of Pareto optimal-
ity. Since the multi-objective method is used to handle COPs
in this paper, several basic concepts, such as Pareto optimal-
ity, in the context of multi-objective optimization need to be
introduced as follows.

1. Pareto dominance—a vector x1
i is said to be Pareto dom-

inance another vector x2
i (denoted by x1

i ≺ x2
i ), if and

only if

∀i ∈ {1, 2, . . . , n}, x1
i ≤ x2

i ∧ ∃i ∈ {1, 2, . . . , n}, x1
i < x2

i

2. Pareto optimality—a vector x1
i is said to be Pareto opti-

mality if and only if

¬x2
i , f(x2

i ) = ( f 2
1 (x), f 2

2 (x)) ≺ f(x1
i ) = ( f 1

1 (x), f 1
2 (x))

3. Pareto optimal set—The Pareto optimal set PS is defined
as

PS = {x1
i |¬x2

i , f(x2
i ) ≺ f(x1

i )}

4. Pareto optimal front—The Pareto optimal front PF is
defined as

PF = {f(xi )|xi ∈ PS}
In addition, the vectors in PS are called as non-dominated

vectors and the schematic diagram of Pareto optimal front
when solving COPs under multiobjective optimization tech-
nique is plotted in Fig. 1. In Fig. 1, f (x) is the objective func-
tion value to be optimized and G(x) is the total amount of
constraint violation. The feasible optimal solution is mapped
on the intersection between the line of Pareto optimal front
and feasible solutions.

Techniques of hybrid methods hybrid methods have
received considerable focus over recent years. For hybrid
methods, the intriguing characteristics of two or more meth-
ods are merged to cope with COPs. Kelner et al. (2008)

Fig. 1 Pareto optimal front when solving COPs with multiobjective
optimization technique
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proposed a hybrid optimization technique. In this method, a
local search strategy based on the interior point method was
hybridized into a genetic algorithm to solve COPs. Wang et
al. (2009) proposed a hybrid algorithm in which an adaptive
constraint-handling technique was incorporated into evolu-
tionary algorithm to handle COPs. Similarly, Nema et al.
(2011) proposed a hybrid cooperative algorithm where parti-
cle swarm optimization and gradient search were integrated
to balance exploration and exploitation for solving engi-
neering constrained optimization optimization. Accordingly,
MAs can be classified into the name of hybrid algorithms and
considered as the hybridization between population-based
global search and local refinement procedures. Ullah et al.
(2009) proposed a new agent based on memetic algorithm
for dealing with COPs. Four types of local search tech-
niques are adaptively selected through learning in the evolu-
tion process. Sun et al. (2013) presented an intelligent multi-
restart memetic framework for box constrained global opti-
misation, in which an estimation of distribution algorithm
(EDA) combined with a derivative free local optimizer was
developed. Based on the proposed framework, an adaptive
multivariate model was proposed with the end to sample off-
spring. Besides, A derivative-free local optimization algo-
rithm was employed to refine the current best solutions. Han-
doko et al. (2010) proposed a novel feasibility structure mod-
eling technique to effectively determine the choice of solu-
tions for local refinements, by utilizing information gathered
to model the feasibility structure of COPs in the framework of
MAs. Wang et al. (2012b) proposed a dynamic hybrid frame-
work, which is able to implement global and local search
dynamically according to the feasibility proportion.

Since our proposed approach is an improved version under
the framework of IWO_DE, the following section is dedi-
cated to the review of IWO and DE, respectively.

3 Review of IWO and DE

3.1 Invasive weed optimization

IWO proposed by Mehrabian and lucas (2006) is a novel
derivative-free and metaheuristic algorithm that mimics the
ecological behavior of weeds colonization and dispersion.
Subsequently, Kundu et al. (2011) proposed a IWO variant
that extends the original IWO to tackle multi-objective opti-
mization problems and Roy et al. (2013) combined IWO with
localized group search optimizers to solve multimodal opti-
mization problems.

Generally, there are four steps in IWO.

1. Initialize a population initialize and disperse solutions
within the given n dimensional search space uniformly
and randomly.

2. Reproduction each individual of the population repro-
duces seeds depending on its own fitness, the population’s
lowest and highest fitness. Under this situation, the fitness
of each individual is normalized and the number of seeds
each individual reproduces depends on a given minimum
and maximum and increases linearly.

3. Spatial dispersal the seeds are randomly dispersed,
around each weed, over the n dimensional search space
by normally distributed random numbers with mean equal
to zero; but varying variance. Under this operation, seeds
are dispersed around their parent individual and thus the
colony of weeds is formed to enhance the search effi-
ciency. Furthermore, standard deviation (sd) of the normal
distribution varies from a predefined initial value, sdmax ,
to a predefined final value, sdmin , over every generation.
The value of sd for a given generation is computed as
follows.

sd = (sdmax − sdmin) ∗ (i termax − i ter)m

iterm
max

+ sdmin

(6)

where i termax is the maximal number of generations, iter
is the current number of generation and m is the nonlinear
modulation index.

4. Competitive exclusion with passing several generation and
the growth and reproduction of weeds, the number of
individuals in a colony will reach the allowed maximum.
Therefore, an essential exclusion mechanism is needed
to eliminate undesire ones. The exclusion mechanism is
adopted to eliminate weeds with low fitness and selects
good weeds. Subsequently, the selected ones will be pre-
served into the next generation and then the steps 1–4 are
repeated until satisfactory condition is reached.

3.2 Differential evolution

It is known that DE is a simple and powerful stochastic real-
parameter global optimization algorithm (Price et al. 2005)
and since its occurrence in 1995 (Storn and Price 1995), DE
has drawn much attention on many researchers due to its
excellent and efficient performance, which results in a num-
ber of improved variants of the original version DE (Das
and Suganthan 2011). Furthermore, an empirical study on
the COPs by using DE is presented in Mezura-Montes et al.
(2010).

Generally, DE comprises N individuals and every individ-
ual is an n-dimensional vectors xi = {x1, x2, . . . , xn} that
are randomly generated in the search space. Subsequently,
the operations of mutation, crossover and selection are exe-
cuted in the process of evolution.
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1. Mutation operation with different mutant strategies, the
form when generating a mutant vector vi is various. The
known mutant strategies are summarized (Das and Sug-
anthan 2011) as follows.

– DE/rand/1: vi = xr1 + F(xr2 − xr3)

– DE/rand/2: vi = xr1 + F(xr2 − xr3) + F(xr4 − xr5)

– DE/best/1: vi = xbest + F(xr1 − xr2)

– DE/best/2: vi = xbest + F(xr1 − xr2) + F(xr3 − xr4)

– DE/current to best/1: vi = xi + F(xbest − xi ) +
F(xr1 − xr2)

where the subscript r1, r2, r3, r4, r5, which are selected
uniformly and randomly within [1, N], are not equal to
each other and all different from the index i. xbest is the
best individual of the entire current population, F is a scal-
ing factor that measure the scale of the difference between
vectors.

2. Crossover operation after obtaining the mutant vector vi ,
the trial vector ui is generated by binomial crossover as
follows.

ui, j =
{

vi, j , if rand j ≤ Cr or j = jrand

xi, j , otherwise
(7)

where xi is the target vector and i = 1, 2, . . . , N , j =
1, 2, . . . , n, jrand is a selected integer randomly from [1,
n] which ensures ui inherits at least one component from
the mutant vector vi , rand j is a uniform random number
between 0 and 1. Cr is the crossover probability parameter
and its value is within [0, 1].

3. Selection operation the generated trial vector ui is com-
pared with the target vector xi to determine whether pre-
served or not. The selection operation is described as fol-
lows.

xi,G+1 =
{

ui,G , if f (ui,G) ≤ f (xi,G)

xi,G , otherwise
(8)

4 Ring neighborhood topology

It has been shown that the topology structure of popula-
tion could influence the search tendency of exploration and
exploitation (Kennedy 1999; Kennedy et al. 2002). The ring
neighborhood topology, as one of the most common topology
structures, has been successfully applied to handle optimiza-
tion problems (Das et al. 2009; Li 2010; Omran et al. 2006).
Therefore, this paper adopts the ring neighborhood topology
as the population structure to determine the neighborhood
of individuals, and to further improve IWO_DE approach in
Cai et al. (2013). The ring neighborhood topology can be
described as follows.

Suppose the population P = {x1, x2, . . . , xN } where
xi (i = 1, 2, . . . , N ) is the individuals of population. Con-
veniently, we organize the individuals of population to be
the ring neighborhood topology with respect to their indices
as presented in Das et al. (2009) and the ring neighborhood
topology used in this paper has been exhibited in Fig. 2.
Simply, each individual’s neighborhood can be its immedi-
ate member on its left and right in the ring neighborhood as
shown in Fig. 2. Specifically, the individuals xi−1 and xi+1

are the immediate neighbors of xi .
Besides, if the neighborhood radius of the individual xi

is set to 2, the neighborhood of xi are xi−2, xi−1, xi+1 and
xi+2 and then the neighborhood of xi and xi+1 are over-
lapped as shown in Fig. 3. Specifically, as for the modified

Fig. 2 Ring neighborhood topology

Fig. 3 Ring neighborhood topology with overlapping of neighborhood
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version of “DE/current-to-best/1” in this paper, the “best”
represents the best individual among xi and its neighborhood
xi−2, xi−1, xi+1 and xi+2. Meanwhile, as for the novel IWO
variant in this paper, the neighborhood fitness information of
each individual will contribute to the degree of local refine-
ment, that is, with respect to xi , the fitness information of
xi−2, xi−1, xi+1 and xi+2 will be employed to determine
the local refinement degree of xi . Note that in this paper the
ring neighborhood topology is predefined before the search
process and organized on the set of the indices of individuals
in the population.

5 The proposed algorithm: IWO_DE/Ring

In this section, we elaborate the improved memetic algorithm
in details.

5.1 The novel variant of IWO

5.1.1 An adaptive weighted sum fitness assignment

In IWO, higher fitness of a weed indicates more offspring to
produce for it. The number of offspring usually reflects the
ability of reproduction for each weed.

When addressing COPs, the feasible solutions should be
preferred in the search process. However, by this way great
amount of computational resources may also be wasted on
the undesirable feasible solutions with very bad objective
function values. On the other hand, infeasible solutions with
smaller degree of constraint violation and good objective
function value should also be preferred, as they are very likely
to guide the local search towards the optimal solutions.

Therefore, in order to balance between the feasibility and
objective function for the local refinement of IWO, this paper
keeps to use the adaptive fitness assignment mechanism pre-
sented in Cai et al. (2013) to balance between the feasibility
and objective function and determine the number of offspring
each weed generates.

The form of adaptive weighted sum fitness assignment Cai
et al. (2013) is described as follows.

fitness(xi ) =
√

ω f ′(xi )2 + (1 − ω)G ′(xi )2 (9)

and

ω = the number of feasible individuals

the population size
(10)

where weight factor ω is the percentage of feasible solutions.
f ′(x) and G ′(x) are the normalization results of the objective
function f (x) and the sum amount of constraint violation
G(x) respectively, as presented below.

⎧⎪⎨
⎪⎩

f ′(xi ) = f (xi ) − min f (x)
max f (x) − min f (x)

G ′(xi ) = G(xi ) − min G(x)
max G(x) − min G(x)

(11)

Therefore, the number of seeds reproduced by a weed is
defined below.

seednum = floor(Smax − (Smax − Smin) fi ) (12)

and

fi = f i tness(xi ) − min fitness(x)

max fitness(x) − min fitness(x)
(13)

where Smax and Smin denote the permissible maximal and
minimal number of seed respectively. In addition, fi is the
normalized fitness function and the better fi (without loss of
generality, in terms of a minimization problem) of one weed
is, the more number of seeds it generates.

5.1.2 A neighborhood-based dispersal operator

In the original IWO (Mehrabian and Lucas 2006), offspring
each weed (solution) generates are dispersed around their
parent in the form of normal distribution. The standard devi-
ation of the distribution is usually considered as a dispersal
parameter that is able to control the dispersal degree of each
weed’s offspring. Similarly in our previous work (Cai et al.
2013), offspring each weed generates are dispersed around
their parent in the form of polynomial distribution. How-
ever, both original IWO and our previous work adopt one
single dispersal parameter, which means all solutions have
the same dispersal degree in all dimensions at a certain iter-
ation. In other words, the original dispersal process in IWO
leads to a very coarse-grained local search around the weed
and it did not considered the actual local landscape around
the weed to adaptively allocate different dispersal degree for
different dimensions of different solutions. Thus a new dis-
persal operator with more powerful adaptive ability comes
to the necessity, especially for COPs, when various variables
usually have different boundary constraints.

The proposed neighborhood-based dispersal operator is
achieved by the estimation of the neighborhood information
around each weed (parent solution) to determine the dispersal
degree. The “neighborhood” is defined under the ring neigh-
borhood topology detailed in Sect. 4. The formula of the
neighborhood-based dispersal operator is given as follows.

sdi = abs

((∑ni
j=1(x j − xi ) ∗ f j∑ni

j=1 f j

)
/ni

)
(14)

where abs(.) denotes operation of computing absolute value,
xi is the i-th weed and x j is the j-th neighborhood of xi .
Besides, ni is the number of neighborhood xi has and f j com-
puted by the formula (13) is fitness of the neighborhood x j .
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It can be seen from the formula (14) that the standard devi-
ation vector sdi (dispersal degree for a weed (parent solution)
i) is actually determined by the fitness distribution around
this very parent solution i , which can be computed as the
distances (in the variable space) between the parent solution
i and its neighborhood weighted by the neighborhood fit-
ness. In this way, all the neighborhood information of one
parent solution has been incorporated into the calculation of
the standard deviation. Unlike the formula (6) in Sect. 3.1,
where a preset initial value sdmax and a final value sdmin for
standard deviation are required as two parameters, the disper-
sal degree is adaptively generated for different dimensions of
each solution by making use of the neighborhood informa-
tion, as shown in formula (14). Thus no preset parameters
are needed.

5.1.3 Exclusive mechanism of IWO

After the above operation, offspring are reproduced and dis-
persed in the population. With generations continuing, exclu-
sive mechanism should be employed when the population
size reaches the permissible maximum. This paper adopted
nondominated sorting (Deb et al. 2002), which had been
employed as well in Cai et al. (2013), as the exclusive oper-
ator for eliminating the undesired individuals. Using non-
dominated sorting algorithm, each individual is allocated to
a non-dominated front. Hence, the exclusion mechanism of
IWO is presented as follows.

1. if individuals belong to different non-dominated front,
then the individuals with lower non-dominated front are
better;

2. if individuals hold the same non-dominated front, then the
ones having smaller constraint violation are selected.

With the exclusive mechanism, individuals which are com-
petitive both in terms of the objective value and the amount
of constraint violation are selected and to be preserved into
the next generation.

Except for the above modification of original IWO, diver-
sity mutation proposed in Wang et al. (2009) is employed
and integrated into the framework of IWO for the sake of
maintaining the diversity of population in IWO.

Diversity mutation the purpose of diversity mutation pre-
sented in Wang et al. (2009) is to facilitate a high diversity in
the population and the descriptive form of diversity mutation
is following.

xi, j =
{

li, j + β(ui, j − li, j ), if j = jrand

xi, j , otherwise
(15)

where j = 1, 2, . . . , n and a integer jrand is randomly gen-
erated between 1 and n with the probability 1/ n. In addition,
li and ui are real-valued vectors and β is uniformly and ran-

domly generated within [0, 1]. In this paper, li and ui are the
boundary vectors of xi .

Algorithm description of the IWO variant is presented in
Algorithm 1.

Algorithm 1 Procedures of the IWO variant
step 1: input N parent weeds, denoted as P;
step 2: compute the standard deviation of each weed sdi , i =
1, 2, . . . , N by the formula (14);
step 3: R=ND(P,sdi );
/* ND is the normal distribution function that is acted as the spatial
dispersal function of IWO */
step 4: R_m=DM(R);
/* DM is the diversity mutation operation to maintain the diversity of
IWO*/
step 5: P_R=P ∪ R_m;
step 6: If the size of P_R ≥ Pmax Then
/* Pmax denotes the permissible maximum of population*/
step 7: P=Select(P_R)
/* execute exclusive mechanism presented in Section 5.1.3 to select
the better individuals*/;
step 8: end If

5.2 The modified version of “DE/current-to-best/1”

From the review of DE in Sect. 3.2, there are several popular
DE variants. In this paper, we incorporate the DE variant
known as “DE/current-to-best/1” into the proposed memetic
algorithm to explore the search space effectively.

In the original version of “DE/current-to-best/1” (Das and
Suganthan 2011), the “best” denotes the best individual of
entire population, with which this original version provides
more exploitation and less exploration because individuals
can be attracted towards the best individual of entire popula-
tion very quickly (Das et al. 2009). Thus, motivated by Das
et al. (2009), we present a modified version of “DE/current-
to-best/1” using the the ring neighborhood topology. In our
modified version of “DE/current-to-best/1”, the “best” rep-
resents the best individual among an individual and its neigh-
borhood, by which this modified version is expected to lead
to an effective exploration. Next, we describe the modified
version of “DE/current-to-best/1” as follows.

vi = xi + F ∗ (xibest − xi ) + F ∗ (xr1 − xr2) (16)

where xibest is the best individual among xi and its neighbor-
hood.

With the formula (16) and (7), a trial vector ui is generated
and is compared with xi to determine whether it replaces the
xi or not. Next, we describe the selection mechanism of the
DE variant as follows.

1. if the generated trial vector ui is a feasible solution
and is superior to all the feasible solutions, then the
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worst feasible solution is replaced by the generated trial
vector;

2. if the generated trial vector ui is an infeasible solution,
then all the infeasible solutions will be compared with ui

under the concept of pareto dominance, and if there are
no infeasible solutions that dominates ui , then select the
infeasible solutions that is dominated by ui ; and then find
the solution in the selected ones which has the maximal
amount of constraint violation and is replaced by ui ; but
if there are no infeasible solutions that is dominated by
ui , then find the solution in all the infeasible ones which
has the maximal amount of constraint violation and is
replaced by ui .

Under the selection mechanism, feasible solutions and
infeasible solutions which have the better objective function
value and low amount of constraint violation respectively are
preferable.

Algorithm description of the DE variant is presented in
Algorithm 2.

Algorithm 2 Procedures of the modified version of
“DE/current-to-best/1”

step 1: input NP individuals, denoted as P;
step 2: for i=1:NP do
step 3: randomly select different subscript r1, r2 within [1, NP]-i-ibest ;
/* ibest is the subscript of the best individual among xi and its neigh-
borhood*/
step 4: vi =mutation(Pr1,r2 , F);
/* use the formula (16) to generate the mutant vector */
step 5: ui =crossover(vi , Pi , Cr );
/* use the formula (7) to generate the trial vector */
step 6: determine whether xi is replaced by ui or not according to the
selection mechanism, as presented in the Section 5.2;
step 7: end for

Finally, with the above detailed descriptions, we com-
bine the novel IWO variant with the modified version of
“DE/current-to-best/1” for the aim of exerting the efficient
exploitation and the effective exploration to tackle COPs
and the entire process of the proposed memetic algorithm,
denoted as IWO_DE/Ring, is presented in Algorithm 3.

Algorithm 3 The entire procedures of IWO_DE/Ring
step 1: t=1;
step 2: initialize population P0;
step 3: organize the population to be a ring neighborhood by virtue
of the set of indices of individuals in the population;
step 4: F0=Evaluate(P0);
step 5: while terminal condition is false do
step 6: execute Algorithm 1 to generate population Pt ;
step 7: Ft = Evaluate(Pt );
step 8: execute Algorithm 2 to generate population Pt again;
step 9: Ft = Evaluate(Pt );
step 10: t=t+1;
step 11: end while

Table 1 The parameter values of IWO_DE/Ring

Symbol Description Value

F Scaling factor 0.7

Cr Crossover probability parameter Between 0.9 and 1

Pinit Initial number of population 20

Pmax Maximum number of population 60

Smin Minimum number of seed 0

Smax Maximum number of seed 2

β The parameter of diversity mutation Between 0 and 1

6 Experimental results

6.1 Experimental setup

The proposed memetic algorithm IWO_DE/Ring is per-
formed on 13 well-known benchmark test functions that
are taken from Liang et al. (2006) and four engineering
constrained optimization problems that are presented in
Aguirre et al. (2007), Cagnina et al. (2008). Performance
of IWO_DE/Ring is compared with several state-of-the-art
constrained optimization algorithms.

We execute 25 independent runs on IWO_DE/Ring under
the maximal 200,000 function evaluations (FEs) and the
tolerance value ε in formula (3) is set to 0. Furthermore,
IWO_DE/Ring has several parameters. For the modified ver-
sion of “DE/current-to-best/1”, the scaling factor F, and the
crossover probability parameter Cr . For the novel IWO vari-
ant, the initial and maximal number of population, the mini-
mal and maximal number of seeds, the parameter β of diver-
sity mutation. Details of the parameter values are presented in
Table 1. Additionally, the neighborhood radius of individuals
is defined as 3, that is, the neighborhood size of each indi-
vidual is 6, as discussed and suggested in Das et al. (2009).

6.2 Results on benchmark test functions

First we introduce and summarize characteristics of the 13
well-known benchmark test functions in Table 2.

It is very clear that Table 2 contains various types of test
functions, such as quadratic, nonlinear, polynomial, cubic
and linear. Besides, the test functions have various number
of decision variables n and constraints and also have differ-
ent types of constraints, including linear equality constraints
(LE), linear inequality constraints (LI), nonlinear equality
constraints (NE) and nonlinear inequality constraints (NI).
Additionally, ρ is the estimated percentage of the feasible
space out of the whole search space and a is the number of
active constraints at the best known optimal solution.

According to experimental setup presented in Sect. 6.1,
we report the results of IWO_DE/Ring on benchmark test
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Table 2 Characteristics of the benchmark test functions

f n Type ρ (%) LI LE NI NE a

g01 13 Quadratic 0.0111 9 0 0 0 6

g02 20 Nonlinear 99.9971 0 2 0 0 1

g03 10 Polynomial 0.0000 0 0 0 1 1

g04 5 Quadratic 52.1230 0 6 0 0 2

g05 4 Cubic 0.0000 2 0 0 3 3

g06 2 Cubic 0.0066 0 2 0 0 2

g07 10 Quadratic 0.0003 3 5 0 0 6

g08 2 Nonlinear 0.8560 0 2 0 0 0

g09 7 Polynomial 0.5121 0 4 0 0 2

g10 8 Linear 0.0010 3 3 0 0 6

g11 2 Quadratic 0.0000 0 0 0 1 1

g12 3 Quadratic 4.7713 0 1 0 0 0

g13 5 Nonlinear 0.0000 0 0 0 3 3

functions in Table 3. It can be seen from Table 3 that the best
results obtained by IWO_DE/Ring is very approximate to the
known optimal results. In addition, IWO_DE/Ring can find
the best optimal result consistently on test functions over
25 runs except for test function g02. With respect to g02,
IWO_DE/Ring cannot find the best result consistently but
we can notice that the mean result is very close to the known
optimal result. Besides, the standard deviation of most test
functions is very small. These observations all indicate that
the performance of IWO_DE/Ring is stable and robust when
handling these benchmark test functions.

It is noteworthy to mention that equality constraints have
not been converted into inequality constraints in this paper
as we set the tolerance value in formula (3) into 0, which
explains why the best optimal results of test functions with
the equality constraints are slightly different from what are
presented in Liang et al. (2006).

6.3 Convergence analysis on test functions

In this section, we present the convergence graphs of test
functions, which is suggested in Liang et al. (2006), to
visualize the convergence rate of test functions under our
proposed approach. Two axes of the convergence graphs
show log10( f (x) − f (x∗)) vs. FEs, where x is the best
result obtained after a certain number of FEs and x∗ is the
known optimal result. Noteworthily, the results that satisfy
f (x) − f (x∗) ≤ 0 are not plotted here simply because the
logarithmic function is inapplicable to zero or negative value.

Clearly, we can observe from Figs. 4, 5, 6, 7 that the con-
vergence to the known optimal result of test functions is very
fast and most test functions have been converged after around
1 × 105 FEs.

6.4 Performance comparison on benchmark test functions

6.4.1 Comparison with several state-of-the-art algorithms

Comparisons are carried out between IWO_DE/Ring and five
state-of-the-art constrained optimization algorithms to fur-
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Fig. 4 Convergence graph for g05, g06, and g07

Table 3 Results of IWO_DE/Ring on benchmark test functions

f Optimal Best Median Mean Worst Std. dev.

g01 −15.0000000000 −15.0000000000 −15.0000000000 −15.0000000000 −15.0000000000 1.2E−15

g02 −0.8036191042 −0.8036190923 −0.7881153288 −0.7880207077 −0.7506732926 1.5E−02

g03 −1.0000000000 −1.0000000000 −1.0000000000 −1.0000000000 −1.0000000000 2.0E−16

g04 −30,665.5386717834 −30,665.53867178332 −30,665.53867178332 −30,665.53867178332 −30,665.53867178332 3.7E−12

g05 5,126.4981095952 5,126.4981095953 5,126.4981095953 5,126.4981095953 5,126.4981095953 1.3E−12

g06 −6,961.8138755802 −6,961.8138755802 −6,961.8138755802 −6,961.8138755802 −6,961.8138755802 0.0E+00

g07 24.3062090681 24.3062090682 24.3062090682 24.3062090682 24.3062090684 5.1E−11

g08 −0.0958250415 −0.0958250414 −0.0958250414 −0.0958250414 −0.0958250410 9.1E−11

g09 680.6300573745 680.6300573744 680.6300573744 680.6300573744 680.6300573744 4.1E−13

g10 7,049.2480205286 7,049.2480205287 7,049.2480205288 7,049.2480205371 7,049.2480205989 1.8E−08

g11 0.7500000000 0.7500000000 0.7500000000 0.7500000000 0.7500000000 0.0E+00

g12 −1.0000000000 −1.0000000000 −1.0000000000 −1.0000000000 −1.0000000000 1.1E−11

g13 0.0539498477 0.0539498478 0.0539498478 0.0539498478 0.0539498478 1.6E−17

123

Author's personal copy



An improved memetic algorithm using ring neighborhood topology 2033

0 0.5 1 1.5 2
x 105

−14

−12

−10

−8

−6

−4

−2

0

2

4

FEs

lo
g1

0(
f(

x)
−

f(
x*

))
g05
g06
g07

Fig. 5 Convergence graph for g05, g06, and g07

0 0.5 1 1.5 2

x 105

−12

−10

−8

−6

−4

−2

0

2

4

FEs

lo
g1

0(
f(

x)
−

f(
x*

))

g08
g09
g10

Fig. 6 Convergence graph for g08, g09 and g10

0 0.5 1 1.5 2
x 105

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

FEs

lo
g1

0(
f(

x)
−

f(
x*

))

g11
g12
g13

Fig. 7 Convergence graph for g11, g12, and g13

ther verify the efficiency of IWO_DE/Ring. These compared
algorithms include a modified artificial bee colony algo-
rithm (Karaboga and Akay 2011), a penalty genetic algorithm
based on rough set theory (Lin 2013), an electromagnetism-
like mechanism algorithm (Zhang et al. 2013), an agent-
based memetic algorithm (Ullah et al. 2009), and a bio-
geography-based optimization algorithm (Boussaid et al.
2012). For convenience, we denote these compared algo-
rithms as MABC (Karaboga and Akay 2011), RPEA (Lin
2013), ICEM (Zhang et al. 2013), AMA (Ullah et al. 2009)
and CBBO-DM (Boussaid et al. 2012), respectively.

The comparative results among algorithms have been
listed in Table 4, where results of the five compared algo-
rithms are taken from relevant literatures. From Table 4,
IWO_DE/Ring has the nearly equivalent ability of solving
g01, g03, ,g04, g08, g11 and g12 when compared against the
five algorithms. However, the best result of IWO_DE/Ring

is better than four compared algorithms for g02 and equal
to that of ICEM, but the mean result of IWO_DE/Ring for
g02 is worse than these compared algorithms. For g05, the
best result of IWO_DE/Ring is superior to that of AMA
and RPGA, and the mean result of IWO_DE/Ring is bet-
ter than AMA, RPGA, and MABC while obtaining the same
mean result compared with CBBO-DM. For g06, the perfor-
mance of IWO_DE/Ring on the best result is only better than
AMA and better than AMA and RPGA on the mean result.
IWO_DE/Ring outperforms AMA, CBBO-DM, RPGA and
MABC on both the best and mean result for g07 and g10. The
difference on performance for g09 between IWO_DE/Ring
and the compared algorithms is small except for ICEM but the
result of standard deviation gives IWO_DE/Ring more supe-
riority. Finally, for g13, IWO_DE/Ring is better than MABC
on both the best and mean result. Meanwhile, IWO_DE/Ring
is also superior to AMA, ICEM on the mean result for g13.

It is important to mention that IWO_DE/Ring tackles these
test functions under the maximal 200,000 FEs but the FEs
of AMA, CBBO-DM, RPEA, ICEM and MABC is 350,000,
350,000, 350,000, 350,000 and 240,000 respectively. Fur-
thermore, COPs with equality constraints are usually con-
sidered more difficult to solve as feasible regions of such
problems are usually very small compared with the whole
search space. One common method to handle COPs with
equality constraints is to convert the inequality constraints
to equality constraints constraints by using a small tolerance
value, as shown in formula (3). In this paper, however, the
equality constraints have not been converted into inequality
constraints, as the tolerance value ε in formula (3) is set to
0. Meanwhile, the tolerance value ε in formula (3) was set
to different small numbers in all compared algorithm before
solving these COPs, which means the compared algorithms
have already been given some privilege even before the exper-
iments. Under these circumstances, we believe the efficiency
of IWO_DE/Ring is very competitive compared with all other
five algorithms.

6.4.2 Comparison with the previous work (Cai et al. 2013)

In this section, comparison is conducted between the pro-
posed IWO_DE/Ring and the original IWO_DE (Cai et al.
2013) to further demonstrate the performance of IWO_DE/
Ring. We adopt the performance criteria, namely suc-
cess performance which was suggested in Liang et al.
(2006), to evaluate performance between IWO_DE/Ring and
IWO_DE. However, equality constraints had been converted
into inequality constraints in the original IWO_DE, by set-
ting the tolerance value ε in formula (3) to 0.0001, which
made them easier to handle. To conduct a fair comparison,
we run IWO_DE/Ring again over COPs with equality con-
straints (g03, g05, g11 and g13), but this time, the tolerance
value ε is set to 0.0001.
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Table 4 Comparison among algorithms on benchmark test functions

f AMA CBBO-DM RPGA ICEM MABC IWO-DE/Ring

g01 Best −15.000 −15.000 −15.000 −15.000 −15.000 −15.000

Mean −15.000 −15.000 −15.000 −15.000 −15.000 −15.000

Std. dev. 0.0E+00 8.2E−14 0.0E+00 0.0E+00 0.0E+00 1.2E−15

g02 Best −0.803549 −0.803557 −0.803612 −0.803619 −0.803598 −0.803619

Mean −0.803500 −0.802774 −0.794453 −0.802896 −0.792412 −0.788021

Std. dev. 2.2E−05 2.7E−03 8.2E−03 2.0E−03 1.2E−02 1.5E−02

g03 Best −1.000 −1.000 −1.000 −1.0005 −1.000 −1.000

Mean −1.000 −1.000 −1.000 −1.0005 −1.000 −1.000

Std. dev. 6.6E−06 6.0E−16 8.8E−05 1.28E−07 0.0E+00 2.0E−16

g04 Best −30665.538 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539

Mean −30665.537 −30665.539 −30665.539 −30665.539 −30665.539 −30665.539

Std. dev. 4.3E−04 1.7E−11 2.1E−05 1.44E−11 0.0E+00 3.7E−16

g05 Best 5126.512 5126.498 5126.544 5126.497 5126.484 5126.498

Mean 5148.966 5126.498 5352.188 5126.497 5185.714 5126.498

Std. dev. 6.4E+01 2.2E−04 246.2 3.32E−13 7.5E+01 1.3E−12

g06 Best −6961.807 −6961.814 −6961.814 −6961.814 −6961.814 −6961.814

Mean −6961.804 −6961.814 −6961.284 −6961.814 −6961.813 −6961.814

Std. dev. 2.3E−03 4.6E−12 1.0E−11 0.0E+00 0.2E−02 0.0E+00

g07 Best 24.315 24.326 24.333 24.306 24.330 24.306

Mean 24.315 24.345 24.387 24.306 24.473 24.306

Std. dev. 1.1E−01 1.3E−02 2.8E−02 1.05E−14 1.9E−01 5.1E−11

g08 Best −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825

Mean −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825

Std. dev. 4.2E−17 2.8E−17 2.1E−17 2.63E−17 0.0E+00 9.1E−11

g09 Best 680.645 680.630 680.631 680.630 680.634 680.630

Mean 680.671 680.630 680.634 680.630 680.640 680.630

Std. dev. 9.2E−03 4.3E−13 1.7E−03 0.0E+00 0.4E−02 4.1E−13

g10 Best 7281.957 7059.802 7049.861 7049.248 7053.904 7049.248

Mean 7479.064 7075.832 7131.084 7049.248 7224.407 7049.248

Std. dev. 9.8E+01 8.5 67.2 3.96E−12 1.3E+02 1.8E−08

g11 Best 0.750 0.750 0.749 0.7499 0.750 0.750

Mean 0.750 0.750 0.749 0.7499 0.750 0.750

Std. dev. 3.0E−08 0.0E+00 1.2E−07 0.0E+00 0.0E+00 0.0E+00

g12 Best −1.000 −1.000 NA −1.000 −1.000 −1.000

Mean −1.000 −1.000 NA −1.000 −1.000 −1.000

Std. dev. 0.0E+00 0.0E+00 NA 0.0E+00 0.0E+00 1.1E−11

g13 Best 0.053947 NA NA 0.053942 0.760 0.0539498

Mean 0.054020 NA NA 0.439162 0.968 0.0539498

Std. dev. 4.8E−05 NA NA 3.7E−01 5.6E−02 1.6E−17

NA denotes the results are not available

The comparative results have been listed in Table 5. Based
on the observation from Table 5, IWO_DE/Ring drastically
outperforms the original IWO_DE for g01, g03, 04, g05,
g06, g07, g09, g10 and g13. It’s also slightly better than
the original IWO_DE for g08 and g11 in terms of success
performance. Furthermore, as for test functions with equality
constraints, such as g03, g05, g11 and g13, IWO_DE/Ring

is better than IWO_DE for g03, g05, g11 and g13, although
worse for g02 and g12.

Meanwhile, The statistical t-test on results of each prob-
lem for the total experimental runs that record the number
of FEs for successful run (Liang et al. 2006) is conducted
under the 95 % confidence level between IWO_DE/Ring and
IWO_DE and the statistical results are shown in Table 6. It
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Table 5 Comparing IWO_DE/Ring with IWO_DE

f Success performance

IWO_DE/Ring IWO_DE

g01 40,983 53,634

g02 144,592 66,692

g03 12,272 16,484

g04 14,886 22,537

g05 12,812 25,025

g06 7,450 10,770

g07 45,275 93,403

g08 2,755 2,990

g09 13,455 23,990

g10 95,788 182,112

g11 1,862 1,976

g12 1,484 1,402

g13 9,655 17,827

Table 6 Statistical results of t-test between IWO_DE/Ring and
IWO_DE

f t-value p-value Significance

g01 11.7089 1.1309E−15 Extremely significant

g02 0.8026 0.4261 Not significant

g03 7.0154 6.9646E−09 Extremely significant

g04 19.6358 1.3931E−24 Extremely significant

g05 28.5149 9.5396E−32 Extremely significant

g06 19.9308 7.3510E−25 Extremely significant

g07 18.3320 2.5759E−23 Extremely significant

g08 0.4005 0.6905 Not significant

g09 24.2887 1.2895E−28 Extremely significant

g10 25.1119 2.9190E−29 Extremely significant

g11 1.2388 0.2215 Not significant

g12 0.5420 0.5903 Not significant

g13 5.4895 1.4950E−06 Extremely significant

can be obviously observed from Table 6 that IWO_DE/Ring
outperforms IWO_DE significantly in 9 out of the 13 test
functions. However, the performance of IWO_DE/Ring and
IWO_DE is not significant difference for g02, g08, g11 and
g12.

In addition, comparison graphs of convergence rate
between IWO_DE/Ring and IWO_DE for g01, g03, g07 and
g10 are shown in Figs. 8, 9, 10, 11. Obviously, the conver-
gence rate of IWO_DE/Ring is faster than that of IWO_DE
for the compared test functions.

6.5 Engineering optimization problems

To further evaluate the performance of IWO_DE/Ring, we
execute IWO_DE/Ring on four real-world engineering con-
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Fig. 11 Comparison with convergence rate for g10

strained optimization problems. These four problems are
taken from Aguirre et al. (2007), Cagnina et al. (2008)
namely,

1. Welded Beam design problem.
2. Speed Reducer design problem.
3. Tension/Compression Spring design problem.
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Table 7 Results of IWO_DE/Ring on engineering constrained optimization problems

f Best Median Mean Worst Std. dev. FEs

WBP 1.7248523086 1.7248523086 1.7248523086 1.7248523086 1.1E−15 80,000

SRP 2,994.4710661468 2,994.4710661468 2,994.4710661468 2,994.4710661468 1.9E−12 80,000

T/CRP 0.0126652328 0.0126652328 0.0126652328 0.0126652333 8.7E−11 100,000

PVP 6,059.7143350484 6,059.7143350484 6,059.7143350484 6,059.7143350484 9.3E−13 20,000

4. Pressure Vessel design problem.
For convenience, the four problems are denoted as WBP,

SRP, T/CSP adn PVP respectively.

6.6 Results on engineering problems

All experimental setups remain the same as what are used
in Sect. 6.1, except for the the number of FEs. In this sec-
tion, IWO_DE/Ring is performed on WBP and SRP by using
80000 FEs, T/CRP by using 100,000 FEs and PVP by using
20,000 FEs. The experimental results are shown in Table 7. It
is very obvious that IWO_DE/Ring has successfully tackled
all four engineering problems, as shown in Table 7.

6.7 Convergence analysis on engineering problems

For real-world engineering optimization problems, the effi-
ciency of the algorithm is always a very important factor. We
further illustrate the convergence graphs of these engineering
problems to show the efficiency of IWO_DE/Ring.

The convergence graphs are illustrated in Figs. 12, 13,
14, 15. Apparently, the convergence of IWO_DE/Ring for
these engineering optimization problems is very fast and
IWO_DE/Ring has converged rapidly to the current known
optimal results before the given maximum FEs. Therefore, it
can be concluded that IWO_DE/Ring is capable of solving
the engineering COPs with high efficiency.

6.8 Performance comparison on engineering problems

this section compares IWO_DE/Ring with several state-of-
the-art algorithms on WBP, SRP, T/CSP and PVP respec-
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Fig. 15 Convergence graph for PVP

tively. Furthermore, we rerun IWO_DE/Ring under the
30,000 FEs for WBP, SRP and T/CSP respectively and all the
parameters are set to the same as that have been presented in
Sect. 6.1 in order to have a fair comparison.

For WBP, IWO_DE/Ring is compared against four algo-
rithms from Aguirre et al. (2007), Coello and Becerra
(2004), He and Wang (2007), Zhang et al. (2013) and we
denote the four compared algorithm as COPSO (Aguirre
et al. 2007), CEA (Coello and Becerra 2004), HPSO
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Table 8 Comparison among algorithms on WBP

Algorithm WBP

Best Mean Std. dev. FEs

COPSO 1.724852 1.724881 1.3E−05 30,000

CEA 1.724852 1.971809 4.4E−01 50,020

ICEM 1.724852 1.724852 8.9E−12 80,000

HPSO 1.724852 1.749040 4.0E−02 81,000

IWO-DE/Ring 1.724853 1.726270 2.5E−03 30,000

Table 9 Comparison among algorithms on SRP

Algorithm SRP

Best Mean Std. dev. FEs

COPSO 2,996.372448 2,996.408525 2.9E−02 30,000

HEA-ACT 2,994.499107 2,994.613368 7.0E−02 40,000

SC 2,994.744241 3,001.758,264 4.0 54,456

ISOD 2,996.356689 2,996.367,220 8.2E-03 24,000

IWO-DE/Ring 2,994.471068 2,994.471088 2.6E-05 30,000

(He and Wang 2007) and ICEM (Zhang et al. 2013), respec-
tively. The comparative results have been listed in Table 8.

From Table 8, it can be seen that the mean result
obtained by IWO_DE/Ring is better than CEA and HPSO
and inferior to COPSO and ICEM. Although the best result
IWO_DE/Ring obtains is slightly worse than CEA, ICEM
and HPSO, the FEs consumed by IWO_DE/Ring is less than
these algorithms.

The comparison of SRP between IWO_DE/Ring and algo-
rithms from Aguirre et al. (2007), Mezura-Montes et al.
(2006), Ray and Liew (2003), Wang et al. (2009) that are
denoted as COPSO (Aguirre et al. 2007), ISOD (Mezura-
Montes et al. 2006), SC (Ray and Liew 2003) and HEA-
ACT (Wang et al. 2009) for convenience. Table 9 presents
the comparative results among these algorithms.

It is very obvious in Table 9 that IWO_DE/Ring outper-
forms all the compared algorithms in terms of the quality of
results and is also superior to HEA-ACT and SC with respect
to the number of FEs.

For T/CSP, the comparison of IWO_DE/Ring is carried
out with COPSO (Aguirre et al. 2007), HEA-ACT (Wang et
al. 2009), HPSO (He and Wang 2007) and ICEM (Zhang et
al. 2013) and the comparative results for T/CSP have been
presented in Table 10.

As shown in Table 10, IWO_DE/Ring have approxi-
mate efficiency when compared with these compared algo-
rithms for T/CSP both in terms of the best and mean results.
Although these compared algorithms has the similar perfor-
mance on the best and mean result, the number of FEs con-
sumed by ICEM, HEA-ACT and HPSO is larger than that of
IWO_DE/Ring.

Table 10 Comparison among algorithms on T/CSP

Algorithm T/CSP

Best Mean Std. dev. FEs

COPSO 0.012665 0.012666 1.3E−06 30,000

ICEM 0.012665 0.012665 3.7E−08 80,000

HEA-ACT 0.012665 0.012665 1.4E−09 40,000

HPSO 0.012665 0.012707 1.6E−05 81,000

IWO-DE/Ring 0.012665 0.012665 2.1E−08 30,000

Table 11 Comparison among algorithms on PVP

Algorithm PVP

Best Mean Std. dev. FEs

COPSO 6,059.7143 6,071.0133 15.10 30,000

DELC 6,059.7143 6,059.7143 2.1E−11 20,000

ICEM 6,059.7143 6,059.7143 9.1E−13 80,000

HPSO 6,059.7143 6,099.9323 86.2 81,000

IWO-DE/Ring 6,059.7143 6,059.7143 9.3E−13 20,000

For PVP, IWO_DE/Ring is compared against COPSO
(Aguirre et al. 2007), ICEM (Zhang et al. 2013), HPSO (He
and Wang 2007) and DELC (Wang and Li 2010) and then
the comparative results are reported in Table 11.

It is clearly shown from Table 11 that IWO_DE/Ring
exhibits an approximate performance on the best result
in contrast to these compared algorithms and superior to
COPSO and HPSO on the mean result. Although IWO_DE/
Ring has the same performance with DELC on the best and
mean result, DELC is inferior to IWO_DE/Ring with respect
to the result of standard deviation and the number of FEs.
Meanwhile, although IWO_DE/Ring and ICEM almost dis-
play the equivalent statistical results, IWO_DE/Ring takes
less computational costs than ICEM.

In summary, IWO_DE/Ring achieves very satisfied results
in solving the four engineering COPs. Based on the above
comparison, IWO_DE/Ring is fairly superior both in terms
of quality of results and computational cost when compared
with other algorithms. Furthermore, by increasing the num-
ber of FEs on WBP, SRP and T/CSP, the performance of
IWO_DE/Ring on WBP, SRP and T/CSP keeps improving
(see details in Table 7).

7 Discussion

In this section, several other experiments have been con-
ducted to further analyze the effectiveness of each modifi-
cation in the proposed IWO_DE/Ring approach.
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Table 12 Comparison between
IWO_DE/Ring and
IWO_DE/Ring_1 on benchmark
teat functions

– denotes no feasible solutions
can be obtained

f Optimal Algorithm Best Mean Worst Infeasible
run

g03 −1.000 IWO_DE/Ring −1.000 −1.000 −1.000 0

IWO_DE/Ring_1 – – – 25

g05 5126.498 IWO_DE/Ring 5126.498 5126.498 5126.498 0

IWO_DE/Ring_1 5,223.141 5,223.141 5,223.141 24

g07 24.3062 IWO_DE/Ring 24.3062 24.3062 24.3062 0

IWO_DE/Ring_1 24.3080 24.3371 24.4263 0

g09 680.6301 IWO_DE/Ring 680.6301 680.6301 680.6301 0

IWO_DE/Ring_1 680.6301 680.6302 680.6307 0

g10 7,049.248 IWO_DE/Ring 7,049.248 7,049.248 7,049.248 0

IWO_DE/Ring_1 7,049.416 7,088.103 7,329.069 0

g11 0.75 IWO_DE/Ring 0.75 0.75 0.75 0

IWO_DE/Ring_1 0.75 0.75 0.75 24

g13 0.0539498 IWO_DE/Ring 0.0539498 0.0539498 0.0539498 0

IWO_DE/Ring_1 – – – 25

7.1 Effectiveness of the modification
in “DE/current-to-best/1”

As presented in Sect. 3.2, we modify the original ver-
sion of “DE/current-to-best/” under the ring neighborhood
topology for the sake of achieving an effective exploration.
In this section, we perform another algorithm (denoted
as IWO_DE/Ring_1), in which the original version of
“DE/current-to-best/1” rather than the modified version is
incorporated with the IWO variant, in order to demon-
strate the effectiveness of the modification in “DE/current-
to-best/1”.

To achieve a fair comparison, the experimental parameters
of IWO_DE/Ring_1 is set to the same as that are shown in
Sect. 6.1. The comparative results are reported in Table 12.
In this table, we only report the results that have significant
difference between IWO_DE/Ring and IWO_DE/Ring_1
for clarity. It can be observed obviously from Table 12
that IWO_DE/Ring outperforms IWO_DE/Ring_1 on g05,
g07 and g10. Although the best result of IWO_DE/Ring_1
for g09 is very close to that of IWO_DE/Ring, the mean
and worst results of IWO_DE/Ring_1 are inferior to that
of IWO_DE/Ring. More importantly, IWO_DE/Ring_1 is
unable to solve g03 and g13 over 25 runs. Additionally, for
g05 and g11, there are 24 infeasible runs out of 25 runs
respectively when adopting IWO_DE/Ring_1.

From the comparative results, we can draw the conclu-
sion that the modification in “DE/current-to-best/1” plays an
important and positive role in addressing COPs.

7.2 Search ability of the novel variant of IWO

In this paper, a novel IWO variant is proposed to achieve a
fine-grained local search with adaptation. In this section, in

order to show the search ability of the proposed IWO vari-
ant, another algorithm is used (denoted as IWO_DE/Ring_2)
for comparison. In IWO_DE/Ring_2, the IWO variant
has not been employed and only the modified version of
“DE/current-to-best/1” is adopted.

Similarly, the parameters of IWO_DE/Ring_2 keeps what
have been set in Sect. 6.1. For clarity, we summarize the
experimental results that have significant difference between
IWO_DE/Ring and IWO_DE/Ring_2 in Table 13. It can
be observed that IWO_DE/Ring_2 exhibits the same per-
formance on the best results of g01, g04 and g09 when
compared with IWO_DE/Ring, but IWO_DE/Ring is bet-
ter than IWO_DE/Ring_2 from the mean and worst results
of g01, g04 and g09. Furthermore, IWO_DE/Ring outper-
forms IWO_DE/Ring_2 on g02, g07 and g10. In addition,
IWO_DE/Ring_2 only obtains one feasible run out of 25
experimental runs for g03 and the obtained results of g03 are
also worse than that obtained by IWO_DE/Ring.

Therefore, based on the experimental results from Table
13, the novel IWO variant really play an indispensable role to
enhance the exploitative ability for our proposed approach.

7.3 Investigation of the effectiveness using the ring
neighborhood topology

This paper adopts the ring neighborhood topology as the
structure of population to provide a good balance between
exploration and exploitation in the improved memetic algo-
rithm and then a series of experiments have been demon-
strated that the improved memetic algorithm exhibits a
greater competitive results. Therefore, we employ another
organizational form of neighborhood, namely the form of k-
Nearest Neighbor, with the aim of deeply investigating the
effectiveness of the ring neighborhood topology.
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Table 13 Comparison between
IWO_DE/Ring and
IWO_DE/Ring_2 on benchmark
teat functions

f Optimal Algorithm Best Mean Worst Infeasible
run

g01 −15.000 IWO_DE/Ring −15.00000 −15.00000 −15.00000 0

IWO_DE/Ring_2 −14.99996 −13.88246 −11.81973 0

g02 −0.8036191 IWO_DE/Ring −0.8036191 −0.7897140 −0.7596150 0

IWO_DE/Ring_2 −0.4822592 −0.4013197 −0.2939232 0

g03 −1.000 IWO_DE/Ring −1.000 −1.000 −1.000 0

IWO_DE/Ring_2 −0.998 −0.993 −0.987 24

g04 −30,665.539 IWO_DE/Ring −30,665.539 −30,665.539 −30,665.539 0

IWO_DE/Ring_2 −30,665.539 −30,664.983 −30,662.843 0

g07 −24.3062 IWO_DE/Ring −24.3062 −24.3062 −24.3062 0

IWO_DE/Ring_2 24.4816 25.1562 27.9720 0

g09 680.6301 IWO_DE/Ring 680.6301 680.6301 680.6301 0

IWO_DE/Ring_2 680.6301 680.6842 681.2988 0

g10 7,049.248 IWO_DE/Ring 7,049.248 7,049.248 7,049.248 0

IWO_DE/Ring_2 7,053.475 7,119.900 7,310.366 0

Table 14 Comparing IWO_DE/Ring with IWO_DE/kNN

f Success performance

IWO_DE/Ring IWO_DE/kNN

g01 40,983 46,460

g02 144,592 1,483,675

g03 50,093 79,840

g04 14,886 15,656

g05 30,394 27,988

g06 7,450 6,765

g07 45,275 54,556

g08 2,755 2,369

g09 13,455 13,961

g10 95,788 842,130

g11 12,583 6,902

g12 1,484 1,341

g13 46,056 46,167

We denote the comparing algorithm using the k-Nearest
Neighbor as the IWO_DE/kNN and through the k-Nearest
Neighbor, the neighborhood of individuals are determined by
the euclidian distance in the decision space. The all experi-
mental parameters are the same as that are presented in Sect.
6.1 for achieving a fair comparison with IWO_DE/Ring.

We adopt the the performance criteria, namely success
performance (Liang et al. 2006), to evaluate performance
between IWO_DE/Ring and IWO_DE/kNN and the compar-
ative results have been listed in Table 14. From the Table 14,
it is shown that IWO_DE/Ring have achieved greater perfor-
mance on g02 and g10 when compared with IWO_DE/kNN.
Meanwhile, IWO_DE/Ring is superior to IWO_DE/kNN for
g01, g03, g04, g07, g09 and g13. However, there are five

test functions, namely g05, g06, g08, g11 and g12, whose
performance obtained by IWO_DE/kNN are better than that
obtained by IWO_DE/Ring. Hence, it can be concluded, to
a certain extent, that the ring neighborhood topology indeed
makes a difference in the proposed algorithm. Noteworthily,
the results of success performance for g03, g05, g11 and
g13 are different from that in Table 5 because the equality
constraints are not converted into inequality constraints in
IWO_DE/Ring and IWO_DE/kNN.

In summary, with the above discussions, the novel IWO
variant and the modification in “DE/current-to-best/1” using
the ring neighborhood topology both exert important and pos-
itive effect during the search process.

8 Conclusion

This paper proposes an improved memetic algorithm with
ring neighborhood topology to solve COPs based on our pre-
viously proposed IWO_DE framework in Cai et al. (2013).
To further improve the IWO_DE framework, a novel IWO
variant with a neighborhood-based dispersal operator is pro-
posed relying on the ring neighborhood topology. The pro-
posed operator depends on the estimation of each solution’s
neighborhood fitness information to determine the disper-
sal degree, which leads to a more fine-grained local search.
Furthermore, a modified version of “DE/current-to-best/1”
is incorporated to further improve the performance of the
IWO_DE approach.

Experimental results show that the proposed memetic
algorithm is competent to handle various types of COPs, and
its performance on many aspects outperforms the previous
work (Cai et al. 2013) and several state-of-the-art algorithms.
Our future work includes the investigation of IWO as local
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search engine in depth so that a more competitive variant of
IWO can be proposed for COPs.
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