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At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of
these algorithms, virtually all of the algorithms share one feature: they have beenmanually designed. A fundamental question is “are
there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can
computer construct an algorithmwhich will generate algorithms according to the requirement of a problem?” In this paper, a novel
evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting
algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically
generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive
experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm
can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that
the algorithm designed automatically by computers can compete with the algorithms designed by human beings.

1. Introduction

At present there is a wide range of evolutionary algorithms
available to researchers and practitioners. Despite the great
diversity of these algorithms, virtually all of the algorithms
share one feature: they have been manually designed. As a
result, inevitably, current evolutionary algorithms in general
incorporate human preconceptions in their designs. This
situation encourages us to ask the following questions: are
there any algorithms that can design evolutionary algorithms
automatically? A more complete definition of the question is
“can computer construct an algorithm which will generate
algorithms according to the requirement of a problem?” In
the 13th century, a French scientist, Villand de Honnecourt
proposed a perpetual motion machine for the first time.
However, the truth shows that it is impossible to make
such kind of entity in the real world. But in the world
of computer for the machine to automatically design algo-
rithms, several automatic algorithm design techniques have
been proposed in recent years to overcome this limitation.

For example, hyperheuristics include search methods that
automatically select and combine simpler heuristics, creat-
ing a generic heuristic that is used to solve more general
instances of a given type of optimization problem. Hence,
hyperheuristics search in the space of heuristics, instead
of in the problem solution space [1], raising the level of
generality of the solutions produced by the hyperheuristics.
Ant Colony algorithms are population-basedmethodswidely
used in combinatorial optimization problems. Taveres and
Pereira [2] proposed a grammatical evolution [3] approach
to automatically design ant colony optimization algorithms.
The grammar adopted by this framework has the ability
to guide the learning of novel architectures, by rearranging
components regularly found on human designed variants.
Furthermore, Taveres and Pereira [4] proposed a strongly
typed genetic programming [5] approach to automatically
evolve the communication mechanism that allows ants to
cooperatively solve a given problem. For these two applica-
tions, results obtained with several TSP instances show that
the evolved pheromone update strategies are effective and
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exhibit a strong generalization capability and are competitive
with humandesigned variants. For rule induction algorithms,
Pappa and Freitas [6] proposed the use of grammar-based
genetic programming (GGP) to automatically evolve rule
induction algorithms. The experiments involving 11 data sets
show that novel rule induction algorithms can be automati-
cally generated using GGP. Oltean and Grosan [7] used multi
expression programming (MEP) [8] technique to evolve
evolutionary algorithm, in which each MEP chromosome
encodes multiple EAs.

Although the aforementioned automatic algorithms have
different emphases on research objectives and contents, one
thing in common is that they use automatic method to
design algorithms, which shows that automatic programming
method can build algorithms to solve problems automatically.

As the core components of the evolutionary algorithms,
the genetic operators, such as mutation and combination,
are more variable and complicated compared with other
components, such as initialization and selection, in the
algorithm framework. Furthermore, in terms of the design
of the new algorithms, the most difficult and important
part of the previous work is focused on the design of
genetic operators. In our work, we also focus on designing
genetic operators. This paper proposes a novel approach to
design genetic operators in evolutionary algorithm, namely,
the evolutionary algorithm based on automatic designing
of genetic operators (EA2DGO), which uses MEP with a
new encoding scheme [9] to automatically generate genetic
operators in the evolutionary algorithm to solve simulated
problems.

Organization of this paper is as follows. In Section 2,
the commonality of three classical evolutionary algorithms
is introduced and discussed and then in Section 3, the
general scheme of designing genetic operators is presented. In
Section 4, the framework of EA2DGO is described, explain-
ing the mechanism of automatically designing genetic oper-
ators. Experimental verifications are presented in Section 5.
Section 6 gives conclusions and discussions.

2. Three Classical Evolutionary Algorithms

It is important to investigate what expressions of genetic
operators are amenable to automatic design, for which we
can get inspirations from analyzing the standard genetic
algorithm (SGA) [10], particle swarmoptimization (PSO) [11]
and differential evolution (DE) [12, 13].

In classical GA’s crossover arithmetic operator, the new
vectors are generated by linear combination of two different
individuals. PSO and DE can be considered extended algo-
rithms of the SGA. In the operator of combination of PSO,
the particle’s personal experience 𝑝𝑏𝑒𝑠𝑡 and population’s best
experience 𝑔𝑏𝑒𝑠𝑡 influence the movement of each particle.
In the common operator of mutation in DE algorithm, the
new vector is generated by the difference of two individuals
in population and sum with another individual according to
certain rules. These three algorithms are different but share
some common characteristics. In the following subsections,

the equations describing the operations of the operators of
SGA, PSO, and DE algorithms are analyzed in detail.

2.1. Genetic Algorithm. GA with the real coding usually
adopts arithmetic crossover as one of the genetic operators.
Take total arithmetic crossover, for example, assume 𝑁 is a
constant number which presents the size of population, and
𝐷 is the dimension of parameter vectors. The population
𝑃 is then expressed as 𝑃 = {𝑋

𝑖
(𝑡), 𝑖 = 1, 2, . . . , 𝑁}
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where 𝛼 = {𝛼
1
, 𝛼
2
, . . . , 𝛼
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} and 𝛼

𝑙
∈ [0, 1], 𝑙 = 1, 2, . . . , 𝐷.

2.2. Particle Swarm Optimization. PSO, like other evolution-
ary algorithms, is also a population-based search algorithm
and starts with an initial population of randomly generated
solutions called particles. Each particle in PSO has a velocity
and a position. PSO remembers both the best position found
by all particles and the best positions found by each particle in
the search process. For a search problem in a 𝐷 dimensional
space, a particle represents a potential solution. The velocity
𝑉
𝑑

𝑖
and position 𝑋

𝑑

𝑖
of the 𝑑th dimension of the 𝑖th particle

are updated according to the following equations:
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where 𝑖 = 1, 2, . . ., is the particle’s index, 𝑋
𝑖

=
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) represents the velocity of 𝑖th particle.
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previous position yielding the best fitness value for the 𝑖th
particle. 𝑔𝑏𝑒𝑠𝑡 = (𝑔𝑏𝑒𝑠𝑡

1
, 𝑔𝑏𝑒𝑠𝑡
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𝐷
) is the best posi-

tion discovered by the whole population. rand1𝑑
𝑖
and rand2𝑑

𝑖

are two randomnumbers independently generatedwithin the
range of [0, 1], 𝑐

1
and 𝑐
2
are two learning factors reflecting the

weights of stochastic acceleration terms that pull each particle
toward 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 positions, respectively. 𝑡 = 1, 2, . . .,
indicates the iterations.

2.3. Differential Evolution. Differential evolution (DE) is a
population-based, direct, robust, and efficient searchmethod.
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Like other evolutionary algorithms, DE starts with an initial
population vector randomly generated in the solution space.
Assume that 𝑁 is a constant number which presents the
size of population, and 𝐷 is the dimension of parameter
vectors, and the population is expressed as 𝑋

𝑖
(𝑡), where

𝑖 = 1, 2, . . . , 𝑁, and 𝑡 is the generation. The main difference
between DE and other evolutionary algorithms, such as GA
and PSO, is its new generating method to generate new
population vectors. In order to generate a new population
vector, three vectors in population are randomly selected and
weighted difference of two of them is added to the third
one. After crossover, the new vector is compared with a
predetermined vector in the population. If the new vector is
better than the predetermined one, it replaces it; otherwise,
the predetermined vector is copied to the next generation’s
population. For a traditional DE, the mutation procedure is
illustrated as the following.

For the 𝑖th vector from generation 𝑡, a mutant vector
𝑋
𝑖
(𝑡 + 1) is defined by

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑟
1
(𝑡) + 𝐹 (𝑋

𝑟
2
(𝑡) − 𝑋

𝑟
3
(𝑡)) , (5)

where ∈ {1, 2, . . . , 𝑁}, 𝑟
1
, 𝑟
2
, 𝑟
3
∈ [0,𝑁], 𝑖, and 𝑟

1
, 𝑟
2
and 𝑟
3

are different. The differential mutation parameter 𝐹, known
as scale factor, is a positive real normally between 0 and 1
but can also take values greater than 1. Generally speaking,
larger values for 𝐹 result in higher diversity in the generated
population and the lower values lead to faster convergence.

3. General Scheme of Designing Genetic
Operators

3.1. The General Characteristics of Genetic Operators.
Through the analysis above, the following observations are
made.

(i) A genetic operator is a formula which is composed
of a group of objects (such as 𝑋

𝑗
(𝑡) and 𝑋

𝑘
(𝑡)),

arithmetic operators (such as +, −, ∗), and parameters
(such as 𝛼, 𝑐

1
, 𝑐
2
, 𝐹).

(ii) A formula representing a genetic operator can have
many variants. For example, DE and PSOhave similar
but different formulas, which is again different from
the formula of SGA.

(iii) While existing evolutionary algorithms (including
SGA, PSO, and DE) have different formulas, their
genetic operators actually share characteristics (i) and
(ii).

According to the observations (i), (ii), and (iii), we
could design a scheme to represent the genetic operator for
automatic design.

3.2. The Scheme of Genetic Operators

3.2.1. The Encoding Scheme of Genetic Operator Chromosome.
Firstly, we need an entity to express the genetic operators
which can be distinguished and manipulated by a computer.
Genetic programming (GP), gene expression programming

(GEP), and multiexpression programming (MEP) are three
kinds of methods with focus of generating computer pro-
grams automatically for given problems. According to this,
a similar chromosome structure 𝑂(𝑖, 𝐶, 𝑡), like MEP, is pre-
sented to express genetic operators. Where 𝑖 = 1, 2, . . . , 𝑁

is the chromosome’s index, 𝑡 is the generation, and 𝐶 is
the genetic operator chromosome which is composed of a
head and a tail. The head contains symbols that represent
both functions (elements from the function set 𝐹) and
terminals (elements from the terminal Set 𝑇), whereas the
tail contains only terminals. Generally, 𝐹 is composed of
arithmetic operators, and 𝑇 is composed of objects and
parameters.

Each gene in 𝐶 encodes a terminal or a function symbol.
A gene that encodes a function includes pointers towards the
function arguments. Function arguments always have indices
of higher values than the position of the function itself in the
chromosome.

There is little difference compared with chromosome
represented by MEP. In MEP chromosome, the function
arguments have indices of lower values than the position
of function itself. However, both of them are essentially the
same. MEP chromosome presented in this way is similar
to the GEP chromosome where the tail is constructed with
terminal symbol. Further information about relationships
between chromosomes of GEP and MEP can be seen in [14].

3.2.2. The Decoding Scheme of Genetic Operator Chromo-
some. Chromosome translation is obtained by parsing the
chromosome right-left. A terminal symbol specifies a simple
expression. A function symbol specifies a complex expression
obtained by connecting the operands specified by the argu-
ment positions with the current function symbol. As MEP
chromosome encodes more than one problem solution, and
there is neither practical nor theoretical evidence that one
of these expressions is better than the others before fitness
calculation. For simplicity, the expression tree expressed
by the first symbol is chosen as the chromosome’s final
representation.

After decoding, a genotype of 𝑂(𝑖, 𝐶, 𝑡) could be trans-
lated into a phenotype 𝑂(𝑖, 𝐶, 𝑡) which can be further pro-
cessed by a computer.

3.2.3. The Characteristics of the Scheme of Designing Genetic
Operators. According to the encoding and decoding scheme
of genetic operators, two characteristics are essential for
automatically designing genetic operators.

(i) Changeability: the most different characteristic com-
pared with traditional genetic operators is that its
structure could be reconstructed by a computer,
which means that the genetic operators could be
generated and changed according to the requirements
of problem. For example, every gene could be changed
into another terminal or function symbol; every
function arguments could be changed into another
function argument; when the gene or function argu-
ments are changed, the genotype and phenotype of
chromosome are transformed.
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Figure 1: The expression tree of genetic operator (1) in SGA.
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Figure 2:The expression tree of genetic operators (3) and (4) in PSO.

(ii) Adaptability: an automatic way of generating novel
formula (using the existing objects, arithmetic oper-
ators, and parameters) may lead to a very novel
design of evolutionary algorithm which can adapt
itself to address problems with dynamic 𝑡, which
means genetic operators are simultaneously searched
and designed in the process of problem solving. In
the following, we take a snapshot of the chromosomes
used to represent the genetic operators of the three
classic evolutionary algorithms.

3.3. The Chromosome for Three Classic Evolutionary Algo-
rithms

3.3.1. SGA. If we consider (1) and take an example of𝑋
𝑘
(𝑡) =

𝑎, 𝑋
𝑗
(𝑡) = 𝑏, 𝛼 = 𝑐, and 𝑇 = {𝑎, 𝑏, 𝑐} and 𝑂 = {+, −, ∗}, then

(1) could be expressed by an expression tree (phenotype) as
shown in Figure 1.

Take an example with the length of a chromosome as 7,
𝑇 = {𝑎, 𝑏, 𝑐} and 𝑂 = {+, −, ∗}, the expression tree in Figure 1
could be expressed as a genotype as shown in Table 1.

a

F
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Figure 3: The expression tree of genetic operator (5) in DE.

Table 1: The equivalent genotype of (1) in SGA.

1 2 3 4 5 6 7
+ a ∗ c − b a
2, 3 4, 5 6, 7

3.3.2. PSO. For PSO, an example of 𝑋
𝑖
(𝑡) = 𝑎, 𝑉

𝑖
(𝑡) =

𝑏, 𝑉
𝑖
(𝑡 + 1) = 𝑐, 𝑝𝑏𝑒𝑠𝑡

𝑖
(𝑡) = 𝑑, 𝑔𝑏𝑒𝑠𝑡(𝑡) = 𝑒, 𝑇 =

{𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑐
1
, 𝑐
2
, 𝑟
1
, 𝑟
2
}, and 𝑂 = {+, −, ∗} is used. The PSO’s

particle updating equation 𝑋
𝑖
(𝑡 + 1) can be expressed by an

expression tree (phenotype) as shown in Figure 2.
Since (3) and (4) are more complicated equations com-

paredwith SGAoperators, they need a longer chromosome to
express the equivalent genotype. For this example, the length
of chromosome is 18, 𝑇 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑐

1
, 𝑐
2
, 𝑟
1
, 𝑟
2
} and 𝑂 =

{+, −, ∗}, a kind of equivalent genotype for phenotype can be
expressed as shown in Table 2.

3.3.3. DE. For the mutation operator of DE, if we take an
example of 𝑋

𝑟
1

(𝑡) = 𝑎, 𝑋
𝑟
2

(𝑡) = 𝑏, 𝑋
𝑟
3

(𝑡) = 𝑐, 𝑇 = {𝑎, 𝑏, 𝑐, 𝐹},
and 𝑂 = {+, −, ∗}, the DE’s mutation equation 𝑋

𝑖
(𝑡 + 1)

could be expressed by an expression tree (phenotype) shown
in Figure 3.

Here the length of chromosome is 7, 𝑇 = {𝑎, 𝑏, 𝑐, 𝐹} and
𝑂 = {+, −, ∗}. A kind of equivalent genotype for phenotype
could be expressed as shown in Table 3.

By analysis above, it is evident that for SGA, PSO,
and DE, their genetic operators can be expressed by a
specific chromosome, respectively. But the structures of the
chromosomes are not changed, or static through the whole
process of evolutionary run for the three classic evolutionary
algorithms.This is generally true also for many other variants
of evolutionary algorithms.

Now the question is “can automatic programming
method automatically construct genetic operators of evo-
lutionary algorithms, where operators were automatically
generated in the running process of problem solving, rather
than predefined?” As we know, the evolutionary algorithms
generally have capabilities of self-organizing, self-adapting,
and self-regulating, but their genetic operators are normally
predetermined. While the algorithms construed by predeter-
mined operators are effective in certain aspects of problem
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Table 2: The equivalent genotype of (3) and (4) in PSO.

1 2 3 4 5 6 7 8 9
+ + + ∗ ∗ ∗ ∗ − −

18, 2 17, 3 4, 5 10, 6 11, 7 8, 12 9, 13 16, 18 14, 18
10 11 12 13 14 15 16 17 18
c1 c2 r1 r2 e c d b a

Table 3: The equivalent genotype of (5) in DE.

1 2 3 4 5 6 7
+ a ∗ F − b c
2, 3 4, 5 6, 7

solving, their performances in addressing other issues may
not be so competitive. This phenomenon can be explained
to some extent by the famous “No Free Lunch” theory [15].
If there is an algorithm framework, in which the genetic
operators can automatically adjust themselves during the
problem-solving process with the change of the nature of the
problems to be solved, the capabilities of self-organizing, self-
adapting, and self-regulating of the algorithms can be further
enhanced, and the limit imposed by the “NO Free Lunch”
theory may be broken. Peng et al. proposed a population-
based algorithm portfolio (PAP) [16], which distributes the
time among multiple different algorithms, to decrease the
inherent risk associated with the selection of algorithms.
However, the algorithms are still predefined in PAP, which is
very different compared with our method. In the following,
the details of a framework that can automatically design
genetic operators in the running process of problem solving
will be introduced.

4. Evolutionary Algorithm Based on Automatic
Designing of Genetic Operators (EA2DGO)

In the framework of Evolutionary Algorithm based on Auto-
matic designing of genetic operators (EA2DGO), the genetic
operators are not predefined by a designer before problem
solving but are searched and designed in the process of prob-
lem solving. Thus, the framework of the EA2DGO consists
of two core components: one is the unit of problem solving
(e.g., function optimization), which relates to operations in
the problem solution space. The object of this unit is set to
find global optimal solutions; and the other is the unit of
automatically designing genetic operators, which relates to
exploration in the space of genetic operators. The object of
this unit is set to find the optimal genetic operators according
to the requirement of the problem (see Figures 4(a), 4(b), and
4(c)). The unit of function optimization and the unit of auto-
matically designing genetic operators are not isolated. Actu-
ally, they work together in a closely related way. In the unit
of function optimization, the genetic operators for mutation
are selected from the unit of automatically designing genetic
operators in the process of problem solving. And in the unit
of automatically designing genetic operators, individuals are

selected from the function optimization population in the
unit of function optimization for evaluating the performance
of genetic operators.

The general framework of EA2DGO is given in
Algorithm 1.

The unit of function optimization focuses on the finding
of global optimal solution, and the framework is given
in Algorithm 2. According to the framework, we can see
that the unit of function optimization is very similar with
standard differential evolution, including the population ini-
tialization, crossover manipulation, individual fitness assess-
ment, and individual selection. For mutation operator, an
individual ⃗𝑜

𝑘

𝐺
, 𝑘 ∈ [1,NOP] is selected from the popu-

lation of operator automatic generating unit according to
the Roulette Wheel Selection algorithm, and the selected
individual will be used as mutation operator in the unit
of function optimization.

In the EA2DGO, the mutation operator is a function
model. The functionality of a function model is to provide a
corresponding output (result) given a certain input parame-
ters (terminals).The input parameters include 𝑥⃗𝑟1

𝑗,𝐺
, 𝑥⃗𝑟2
𝑗,𝐺

, 𝑥⃗𝑟3
𝑗,𝐺

,
𝑥⃗
best
𝑗,𝐺

, and ⃗𝑜
𝑘

𝐺
. 𝑥⃗𝑟1
𝑗,𝐺

, 𝑥⃗𝑟2
𝑗,𝐺

, and 𝑥⃗
𝑟
3

𝑗,𝐺
are three individuals selected

from the population of function optimization unit randomly.
𝑥⃗
best
𝑗,𝐺

is the best individual in the current population. Suppose
all the function symbols in set 𝑂 are binary operators, the
calculation of the result of the function model is expressed
as shown in Algorithm 3.

In the unit of function optimization, when the selected
chromosome ⃗𝑜

𝑘

𝐺
, namely, the genetic operator, can help func-

tion optimization unit generate a better candidate individual,
the fitness value of chromosome ⃗𝑜

𝑘

𝐺
will be increased by one.

In other words, the fitness of a chromosome in the unit of
automatically designing genetic operators is measured by the
times it has made positive effect for the unit of function
optimization.With thismeasurement, in the next generation,
the chromosomes with higher fitness will with a higher
probability be selected as the genetic operators according to
the Roulette Wheel Selection method (see Algorithm 4).

The evolution of chromosome in the unit of automatically
designing genetic operators presents challenges in the general
framework of the automation of EA. The proposed method
is for the individual ⃗𝑜

𝑘

𝐺
as well as its offspring ⃗𝑜

󸀠𝑘

𝐺
in the

unit of automatically designing genetic operators, within a
certain time (which is a parameter that can be set by the user);
we repeatedly select individuals for mutation manipulation
from the population of the unit of function optimization then
count the times that the fitness of child becomes better than
its parent, denoted by ST( ⃗𝑜

𝑘

𝐺
) and ST( ⃗𝑜

󸀠𝑘

𝐺
), respectively. A
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optimization population

Find the best individual 
in function population

Call function optimization unit

Call automatically designing 
genetic operators unit

Stop
Yes

No

The general framework of EA2DGO

(a)

Mutation by
genetic operator

Crossover by DE binominal 
crossover operation

If stop criteria 
satisfied

Stop

Yes
No

Select individuals from
function optimization

population

Select an operator
from genetic operator

population

The unit of function optimization

(b)

The unit of automatically designing genetic operators

Select operator
from population

Operator evolved by
MEP genetic operators

Operator evaluated by times
of applied in problem solving

Operator update

(c)

Space of genetic operators

The unit of function optimization

The unit of automatically designing genetic operators

Space of problem solutions

· · ·

· · ·

Individuals selected from function
optimization population for genetic
operator evaluating in operator 
researching

Genetic operator
selected from
genetic operators
population for
crossover
manipulation in
problem solving

→
o
1

G

→
o

NOP
G

→
o
2

G

→
o
k

G

→
x
1

G

→
x
2

G

→
x
i

G

→
x

NP
G

(d)

Figure 4:The components of EA2DGO. (a)The general framework of EA2DGO. (b)The flowchart of the function optimization unit. (c)The
flowchart of the unit of automatically designing genetic operators. (d) The interaction relationship between two units.

Boolean function better is defined as the fitness for evolution
of genetic operators:

Better ( ⃗𝑜
𝑘

𝐺
, ⃗𝑜
󸀠𝑘

𝐺
) = {

true, if (ST ( ⃗𝑜
𝑘

𝐺
) < ST ( ⃗𝑜

󸀠𝑘

𝐺
)) ,

false, else.
(6)

If Better ( ⃗𝑜
𝑘

𝐺
, ⃗𝑜
󸀠𝑘

𝐺
) is true, we think that the candidate ⃗𝑜

󸀠𝑘

𝐺
is

better than ⃗𝑜
𝑘

𝐺
, and ⃗𝑜

𝑘

𝐺
is replaced by ⃗𝑜

󸀠𝑘

𝐺
.

The offspring ⃗𝑜
󸀠𝑘

𝐺
is generated by MEP genetic manipu-

lations [8]. While the traditional MEP has both crossover
and mutation operators, only the mutation operator is used
in EA2DGO for simplicity and saving computing time. Each
symbol (terminal, function, and function pointer) in the
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(1) Begin
(2) Input: NP, NOP, 𝐹, CR, OMR, Max Fes, hl, tl, times, 𝑇, and 𝑂; where NP denotes the size

of function optimization population; NOP denotes the size of operator generating
population; 𝐹 denotes scaling factor; CR denotes the probability of crossover; OMR denotes
the probability of Mutation for operators in operator generating population; Max FEs
denotes the max number of function calls; hl is the of head length of chromosome in new
encoding scheme MEP; tl is the tail length; times denotes the number of repeat times which
randomly select individuals for mutation manipulation from population in unit of function
optimization; 𝑇 is the terminal symbol set; 𝑂 is the function symbol set.

(3) 𝐺 = 0

(4) Create the function optimization population 𝑥⃗
𝑖

𝐺
, ∀𝑖, 𝑖 = 1, . . . ,NP

(5) Create the genetic operators population ⃗𝑜
𝑘

𝐺
, ∀𝑘, 𝑘 = 1, . . . ,NOP

(6) 𝑓 ( ⃗𝑜
𝑘

𝐺
) = 0, ∀𝑘, 𝑘 = 1, . . . ,NOP

(7) Evaluate 𝑓(𝑥⃗𝑖
𝐺
), ∀𝑖, 𝑖 = 1, . . . ,NP

(8) For 𝐺 = 1 to Max FESDo
(9) Find the best 𝑥⃗best

𝐺
in the function optimization population

(10) Call the unit of function optimization
(11) If (rand[0, 1) < OMR) Then
(12) Call the unit of automatically designing genetic operators
(13) End If
(14) 𝐺 = 𝐺 + 1

(15) End For
(16) Output 𝑥⃗best

𝐺

(17) End

Algorithm 1: The general framework of EA2DGO.

(1) Begin
(2) Suppose the function optimization population is 𝑥⃗𝑖

𝐺
, ∀𝑖, 𝑖 = 1, . . . ,NP

(3) Suppose the operator generating population is ⃗𝑜
𝑘

𝐺
, ∀𝑘, 𝑘 = 1, . . . ,NOP

(4) For 𝑖 = 1 to NP Do
(5) Select randomly 𝑟

1
̸= 𝑟
2

̸= 𝑟
3

̸= 𝑖, 𝑟
1
, 𝑟
2
, 𝑟
3
∈ [1,NP]:

(6) Select ⃗𝑜
𝑘

𝐺
, 𝑘 ∈ [1,NOP] by Roulette Wheel Selection algorithm

(7) 𝑗rand = randint (1, 𝐷)

(8) For 𝑗 = 1 to𝐷 Do
(9) If (rand

𝑗
[0, 1) < CR or 𝑗 = 𝑗rand) Then

(10) 𝑢
𝑖

𝑗,𝐺+1
= GeneCalculate (𝑥⃗𝑟1

𝑗,𝐺
, 𝑥⃗
𝑟2

𝑗,𝐺
, 𝑥⃗
𝑟3

𝑗,𝐺
, 𝑥⃗

best
𝑗,𝐺

, ⃗𝑜
𝑘

𝐺
)

(11) Else
(12) 𝑢⃗

𝑖

𝑗,𝐺+1
= 𝑥⃗
𝑖

𝑗,𝐺

(13) End If
(14) End For
(15) If (better(𝑢⃗𝑖

𝑗,𝐺+1
𝑥⃗
𝑖

𝑗,𝐺
)) Then

(16) 𝑥⃗
𝑖

𝐺+1
= 𝑢⃗
𝑖

𝐺+1

(17) 𝑓 ( ⃗𝑜
𝑘

𝐺
) + +

(18) Else
(19) 𝑥⃗

𝑖

𝐺+1
= 𝑥⃗
𝑖

𝐺

(20) End If
(21) End For
(22) End

Algorithm 2: The framework of the unit function optimization.

chromosomemay be a target of the mutation operator.When
a symbol is changed, a new offspring is generated.

Although the evolution method motioned above can get
access to the genetic operators before and after MEP genetic

manipulation, an unavoidable disadvantage of this method
is that it costs more computing resources compared with
traditional optimization algorithms. The reason is that the
genetic operators need to be evolved in the process of problem
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(1) Begin
(2) Input: 𝑥⃗𝑟1

𝑗,𝐺
, 𝑥⃗𝑟2
𝑗,𝐺
, 𝑥⃗𝑟3
𝑗,𝐺
, 𝑥⃗best
𝑗,𝐺

, ⃗𝑜
𝑘

𝐺
= { ⃗𝑜
𝑘

1,𝐺
, . . . , ⃗𝑜

𝑘

𝑚,𝐺
},𝑚 is the length of Chromosome, 𝑘 = 1, . . . ,NOP.

(3) EL = 1

(4) For 𝑖 = 1 to𝑚 Do
(5) If ( ⃗𝑜

𝑘

𝑖,𝐺
∈ 𝑂) Then

(6) EL = EL + 2

(7) End If
(8) End For
(9) For 𝑖 = EL to 1 Do

(10) fitness
𝑖
( ⃗𝑜
𝑘

𝑖,𝐺
) =

{{{{{{{

{{{{{{{

{

𝑥⃗
𝑟1

𝑗,𝐺
, if ( ⃗𝑜

𝑘

𝑖,𝐺
== 𝑥⃗
𝑟1)

𝑥⃗
𝑟2

𝑗,𝐺
, if ( ⃗𝑜

𝑘

𝑖,𝐺
== 𝑥⃗
𝑟2)

𝑥⃗
𝑟3

𝑗,𝐺
, if ( ⃗𝑜

𝑘

𝑖,𝐺
== 𝑥⃗
𝑟3)

𝑥⃗
𝑟best
𝑗,𝐺

, if ( ⃗𝑜
𝑘

𝑖,𝐺
== 𝑥⃗

best
)

rand[0, 1), if ( ⃗𝑜
𝑘

𝑖,𝐺
== 𝐹)

(11) End For
(12) Calculate the last ⃗𝑜

𝑙

𝑖,𝐺
∈ 𝑂, 𝑙 ∈ [1,EL]

(13) For 𝑖 = EL to 1 Do
(14) If ( ⃗𝑜

𝑘

𝑖,𝐺
∈ 𝑂) Then

(15) fitness
𝑖
( ⃗𝑜
𝑘

𝑖,𝐺
) = fitness

𝑖
( ⃗𝑜

EL−1
𝑖,𝐺

)Θ
⃗𝑜
𝑘

𝑖,𝐺

fitness
𝑖
( ⃗𝑜

EL
𝑖,𝐺
), Θ
⃗𝑜
𝑘

𝑖,𝐺

∈ 𝑂

(16) EL = EL − 2

(17) End If
(18) End For
(19) Return fitness

1
( ⃗𝑜
𝑘

1,𝐺
)

(20) End

Algorithm 3: The framework of gene calculation.

(1) Begin
(2) Calculate probability for each chromosome 𝑝( ⃗𝑜

𝑘

𝐺
) = 𝑓( ⃗𝑜

𝑘

𝐺
)/∑

NOP
𝑘=1

𝑓( ⃗𝑜
𝑘

𝐺
), 𝑘 ∈ [1,NOP]

(3) For 𝑘 = 1 to NOP − 1 Do
(4) 𝑃 ( ⃗𝑜

𝑘+1

𝐺
) = 𝑝 ( ⃗𝑜

𝑘

𝐺
) + 𝑝 ( ⃗𝑜

𝑘−1

𝐺
)

(5) End For
(6) If (𝑃( ⃗𝑜

𝑘

𝐺
) ≤ rand[0, 1) ≤ 𝑃( ⃗𝑜

𝑘+1

𝐺
)) Then

(6) ⃗𝑜
𝑘

𝐺
is selected for FunctionOptimization

(8) End If
(9) Return ⃗𝑜

𝑘

𝐺

(10) End

Algorithm 4: Roulette Wheel selection algorithm.

solving. The cost of time is influenced by two parameters
times and OMR. Setting proper parameter values will reduce
the cost of time and will be researched in the future work.

It is worthwhile to point outthat even though there
is a mutation operator, respectively, in both the unit of
automatically designing genetic operator and the unit of
function optimization, their operations are very different.
In the unit of automatically designing genetic operator, the
operand/chromosome of the mutation operator is literally
an expression tree. In contrast, the operand/chromosome of
the mutation operator in the unit of function optimization

is a vector of real values used as variables for the function
optimization.

The general framework of the unit of automatically
designing genetic operators is given in Algorithm 5.

5. Experimental Verification

Single-objective optimization problems are adopted to verify
the validity of the EA2DGO algorithm. This means that
the genetic operators represented by the above scheme are
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Table 4: The 23 test functions used in the experiments,𝑋 is the definition domain and 𝑓min is the minimum values of the function.

Number Test functions 𝑛 𝑋 𝑓min

F1 𝑓(𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖
30 [−100, 100] 0

F2 𝑓(𝑥) =

𝐷

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 +

𝐷

∏

𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 30 [−10, 10] 0

F3 𝑓(𝑥) =

𝐷

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

30 [−100, 100] 0

F4 𝑓(𝑥) = max {󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 , 1 ≤ 𝑖 ≤ 𝐷} 30 [−100, 100] 0

F5 𝑓(𝑥) =

𝐷−1

∑

𝑖=1

[100(𝑥
𝑖+1

− 𝑥
2

𝑖
)
2

+ (1 − 𝑥
𝑖
)
2

] 30 [−30, 30] 0

F6 𝑓(𝑥) =

𝐷

∑

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2 30 [−100, 100] 0

F7 𝑓(𝑥) =

𝐷

∑

𝑖=1

𝑖𝑥
4

𝑖
+ random [0, 1) 30 [−1.28, 1.28] 0

F8 𝑓(𝑥) = −

𝐷

∑

𝑖=1

(𝑥
𝑖
sin√

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨) 30 [−500, 500] −12569.5

F9 𝑓(𝑥) =

𝐷

∑

𝑖=1

[𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10] 30 [−5.12, 5.12] 0

F10 𝑓(𝑥) = −20 exp(−0.2√
1

𝑛

𝐷

∑

𝑖=1

𝑥
2

𝑖
) − exp(1

𝑛

𝐷

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + 𝑒 30 [−32, 32] 0

F11 𝑓(𝑥) =

𝐷

∑

𝑖=1

𝑥
2

𝑖

4000
−

𝐷

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1 30 [−600, 600] 0

F12

𝑓 (𝑥) =
𝜋

𝑛
{10 sin2 (𝜋𝑦

𝑖
) +

𝐷−1

∑

𝑖=1

(𝑦
𝑖
− 1)
2

[1 + 10 sin2 (𝜋𝑦
𝑖+1

)] + (𝑦
𝑛
− 1)
2

}

+

𝐷

∑

𝑖=1

𝑢 (𝑥
𝑖
, 10, 100, 4), 𝑦

𝑖
= 1 +

1

4
(𝑥
𝑖
+ 1)

𝑢 (𝑥
𝑖
, 𝑎, 𝑘, 𝑚) =

{{{

{{{

{

𝑘(𝑥
𝑖
− 𝑎)
𝑚

, 𝑥
𝑖
> 𝑎

0, −𝑎 ≤ 𝑥
𝑖
≤ 𝑎,

𝑘(−𝑥
𝑖
− 𝑎)
𝑚

, 𝑥
𝑖
< −𝑎

30 [−50, 50] 0

F13

𝑓 (𝑥) =

0.1{sin2 (3𝜋𝑥
1
) +

𝐷−1

∑

𝑖=1

(𝑥
𝑖
− 1)
2
[1 + sin2 (3𝜋𝑥

𝑖+1
)]+(𝑥

𝑛
− 1)
2
[1 + sin2 (2𝜋𝑥

𝐷
)]}

+

𝐷

∑

𝑖=1

𝑢 (𝑥
𝑖
, 5, 100, 4)

30 [−50, 50] 0

F14 𝑓(𝑥) = [
1

500
+

25

∑

𝑗=1

1

𝑗 + ∑
2

𝑖=1
(𝑥
𝑖
− 𝑎
𝑖𝑗
)
6
] 2 [−65.536, 65.536] 1

F15 𝑓(𝑥) =

11

∑

𝑖=1

[𝑎
𝑖
−

𝑥
1
(𝑏
2

𝑖
+ 𝑏
𝑖
𝑥
2
)

𝑏2
𝑖
+ 𝑏
𝑖
𝑥
3
+ 𝑥
4

]

2

4 [−5, 5] 0.0003075

F16 𝑓(𝑥) = 4𝑥
2

1
− 2.1𝑥

4

1
+

1

3
𝑥
6

1
+ 𝑥
1
𝑥
2
− 4𝑥
2

2
+ 4
4

2
2 [−5, 5] −1.0316285

F17 𝑓 (𝑥) = (𝑥
2
−

5.1

4𝜋2
𝑥
2

1
+

5

𝜋
𝑥
1
− 6)

2

+ 10 (1 −
1

8𝜋
) cos𝑥

1
+ 10 2 [−5, 10] × [0, 15] 0.398

F18
𝑓(𝑥) = [1 + (𝑥

1
+ 𝑥
2
+ 1)
2

(19 − 14𝑥
1
+ 3𝑥
2

1
− 14𝑥

2
+ 6𝑥
1
𝑥
2
+ 3𝑥
2

2
)]

× [30 + (2𝑥
1
− 3𝑥
2
)
2

(18 − 32𝑥
1
+ 12𝑥

2

1
+ 48𝑥

2
− 36𝑥

1
𝑥
2
+ 27𝑥

2

2
)]

2 [−2, 2] 3

F19 𝑓(𝑥) = −

4

∑

𝑖=1

𝑐
𝑖
exp[−

4

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗
− 𝑝
𝑖𝑗
)
2

] 4 [0, 1] −3.86
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Table 4: Continued.

Number Test functions 𝑛 𝑋 𝑓min

F20 𝑓(𝑥) = −

4

∑

𝑖=1

𝑐
𝑖
exp[−

6

∑

𝑗=1

𝑎
𝑖𝑗
(𝑥
𝑗
− 𝑝
𝑖𝑗
)
2

] 6 [0, 1] −3.32

F21 𝑓(𝑥) = −

5

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
) (𝑥 − 𝑎

𝑖
)
𝑇

+ 𝑐
𝑖
]

−1

4 [0, 10] −10

F22 𝑓(𝑥) = −

7

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
) (𝑥 − 𝑎

𝑖
)
𝑇

+ 𝑐
𝑖
]

−1

4 [0, 10] −10

F23 𝑓(𝑥) = −

10

∑

𝑖=1

[(𝑥 − 𝑎
𝑖
) (𝑥 − 𝑎

𝑖
)
𝑇

+ 𝑐
𝑖
]

−1

4 [0, 10] −10

(1) Begin
(2) Input: ⃗𝑜

𝑘

𝐺
= { ⃗𝑜
𝑘

1,𝐺
, . . . , ⃗𝑜

𝑘

𝑚,𝐺
}, 𝑘 ∈ [1,NOP];

(3) Select randomly 𝑡, 𝑡 ∈ [1,𝑚]:
(4) Select a new operator to ⃗𝑜

𝑘

𝑡,𝐺
which will generate a new chromosome ⃗𝑜

󸀠𝑘

𝐺
by MEP genetic operators.

(5) For 𝑖 = 1 to times Do
(6) Select randomly 𝑟

1
̸= 𝑟
2

̸= 𝑟
3

̸= 𝑟, 𝑟, 𝑟
1
, 𝑟
2
, 𝑟
3
∈ [1,NP]:

(7) 𝑗rand = randint (1, 𝐷)

(8) For 𝑗 = 1 to𝐷 Do
(9) If (rand

𝑗
[0, 1) < CR or 𝑗 = 𝑗rand) Then

(10) 𝑢⃗
𝑟

𝑗,𝐺
= GeneCalculate (𝑥⃗𝑟1

𝑗,𝐺
, 𝑥⃗
𝑟2

𝑗,𝐺
, 𝑥⃗
𝑟3

𝑗,𝐺
, 𝑥⃗

best
𝑗,𝐺

, ⃗𝑜
𝑘

𝐺
)

(11) ]⃗𝑟
𝑗,𝐺

= GeneCalculate (𝑥⃗𝑟1
𝑗,𝐺

, 𝑥⃗
𝑟2

𝑗,𝐺
, 𝑥⃗
𝑟3

𝑗,𝐺
, 𝑥⃗

best
𝑗,𝐺

, ⃗𝑜
󸀠𝑘

𝐺
)

(12) Else
(13) 𝑢⃗

𝑟

𝑗,𝐺
= ]⃗𝑟
𝑗,𝐺

= 𝑥⃗
𝑟

𝑗,𝐺

(14) End If
(15) End For
(16) If 𝑢⃗𝑟

𝑗,𝐺
is better than 𝑥⃗

𝑟

𝑗,𝐺
Then

(17) ST ( ⃗𝑜
𝑘

𝐺
) + +

(18) End If
(19) If ]⃗𝑟

𝑗,𝐺
is better than 𝑥⃗

𝑟

𝑗,𝐺
Then

(20) ST ( ⃗𝑜
󸀠𝑘

𝐺
) + +

(21) End If
(22) End For
(22) If (Better( ⃗𝑜

𝑘

𝐺
, ⃗𝑜
󸀠𝑘

𝐺
)) Then

(24) ⃗𝑜
𝑘

𝐺+1
= ⃗𝑜
󸀠𝑘

𝐺

(25) Else
(26) ⃗𝑜

𝑘

𝐺+1
= ⃗𝑜
𝑘

𝐺

(27) End If
(28) End

Algorithm 5: The framework of the unit of automatically designing genetic operators.

used to manipulate the individuals in the population in the
problem space, and the goal is to find the global optimal
solutions of the problems. All the following functions listed
in Table 4 are well-known benchmark functions which have
been frequently used in literature [17]. All of these functions
used in this paper are minimization problems. In order to
verify the effectiveness and efficiency of EA2DGO algorithm,
we carried out experiments based on the 23 benchmark
functions list in Table 4.

In our experiment, the parameters are set as in Table 5.
Especially in 𝑇, 𝑎 is 𝑥⃗𝑟1

𝑗,𝐺
, 𝑏 is 𝑥⃗𝑟2

𝑗,𝐺
, 𝑐 is 𝑥⃗𝑟3

𝑗,𝐺
, 𝑑 is 𝑥⃗best

𝑗,𝐺
, and

𝐹 = Random(0, 1). In order to verify the performance of

the proposed algorithm, standardDE algorithm is conducted.
In DE algorithm, NP = 100, 𝐹 = 0.7, CR = 0.8, and
Max FEs = 250000. The obtained results are presented in
Table 5. Simulation was carried out in Eclipse and run on an
AMD laptopwith 2GRAMunderWindowsXPplatform. For
each test problem, 25 independent runs were conducted with
different random initializations.

The results on functions F1 to F23 are summarized in
Table 6. For functions F1–F5, F7, and F9–F11, the EA2DGO
achieved better mean results than DE. For functions F6, F12–
F14, and F16–F23, both algorithms obtain exactly the same
mean results. DE achieved better mean results in function
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Figure 5: Continued.
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Figure 5: Convergence curves of the EA2DGO and DE for partial test functions. 𝑥-axis represents number of function calls and 𝑦-axis
represents the best fitness. (a) F1. (b) F2. (c) F3. (d) F4. (e) F5. (f) F6. (g) F7. (h) F8. (i) F9. (j) F10.
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Figure 6: Phases I∼V in one run for F7.

F8 and F15. For F15, while the mean result of the EA2DGO
is close to that of DE, both algorithms have the ability to
achieve the best solution. The biggest difficulty of EA2DGO
is from the function F8, for which DE can easily obtain the
global minima but the new algorithm presented in this paper
frequently falls into the local minima. The reason for this
needs further investigation.

For the best results, the EA2DGO achieved better results
than DE in 8 functions and obtained the same best results
in the reminded 15 functions. For the median results, the
EA2DGO achieved better results than DE in 7 functions
and obtained the same median results in 14 functions. DE
achieved better median results in functions F5 and F8. For
the worst results, the EA2DGO achieved better results than
DE in 9 functions and obtained the samemedian results in 12
functions. DE achieved better median results in 2 functions,
which are F8 and F15.

Table 5: Parameters setting used in EA2DGO algorithm.

The unit of function optimization
NP 100
CR 0.8

Max FEs 250000

The unit of automatically designing
genetic operators

NOP 5
ℎ 5
𝑡 6
𝐿 11

Times 50
𝑇 {a, b, c, d, F}
𝑂 {+, −, ∗}

The convergence comparisons between the EA2DGO and
DE are shown in Algorithm 5. For simplicity, each Figure
shows the result of a random trial. Because of space limita-
tion, just some samples (F1∼F10) are selected and presented.
According to Figure 5, we can find that EA2DGO converges
more quickly than DE in every trail, except for F8 when the
two algorithms converge almost through the same curve.

In order to better understand the internal operat-
ing mechanism of EA2DGO, the following experiment is
designed. Take F7 for example, the 50,000 function calls are
shown in Figure 6, wherein the horizontal axis represents the
number of calls, and the vertical axis represents the optimal
solutions found so far. The 50,000 calls are divided into five
stages of assessment (Phase I∼V). Phase I represents the 0∼
50 calls, Phase II represents the 51∼12,500 calls, Phase III
represents 12,501∼25,000 calls, Phase IV represents 25,001∼
37,500 calls, and Phase V is the last 37,501∼50,000 calls. After
50,000 evaluations, the best optimal solution we found for F7
is 1.50𝐸 − 6. In Phase I, totally 39 effective evaluations are
obtained, which means 39 new child candidates replace the
parents.
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Table 6: The results achieved for F1 to F23 using the EA2DGO algorithm and DE algorithm.

EA2DGO DE
Best Median Worst Mean Standard Best Median Worst Mean Standard

F1 0.0 0.0 0.0 0.0 0.0 2.38𝐸 − 90 7.58𝐸 − 89 3.90𝐸 − 88 1.07𝐸 − 88 9.22𝐸 − 89

F2 0.0 0.0 0.0 0.0 0.0 3.07𝐸 − 52 1.0𝐸 − 51 6.34𝐸 − 51 1.36𝐸 − 51 1.17𝐸 − 51

F3 0.0 0.0 0.0 0.0 0.0 9.84𝐸 − 87 1.8𝐸 − 85 6.8𝐸 − 85 2.23𝐸 − 85 1.7𝐸 − 85

F4 0.0 0.0 0.0 0.0 0.0 1.349 9.494 13.075 8.293 2.836
F5 0.0 22.117 29.0 13.001 10.839 1.810 18.356 71.343 23.886 14.486
F6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
F7 3.74𝐸 − 5 8.61𝐸 − 5 1.78𝐸 − 3 8.82E− 4 4.26𝐸 − 4 2.1𝐸 − 3 3.3𝐸 − 3 4.76𝐸 − 3 3.3𝐸 − 3 5.81𝐸 − 4

F8 −12569.487 −11858.856 −5897.496 −10864.79 1755.355 −12569.487 −12451.048 −12095.733 −12419.463 118.28
F9 0.0 0.0 0.0 0.0 0.0 0.0 1.99 6.96 2.12 1.32
F10 4.441𝐸 − 16 4.441𝐸 − 16 4.441𝐸 − 16 4.441E− 16 0.0 4.0𝐸 − 15 7.55𝐸 − 15 7.55𝐸 − 15 5.89𝐸 − 15 1.37𝐸 − 15

F11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 7.4𝐸 − 3 4.93𝐸 − 4 1.43𝐸 − 3

F12 1.571𝐸 − 32 1.571𝐸 − 32 1.571𝐸 − 32 1.571E − 32 0.0 1.571𝐸 − 32 1.571𝐸 − 32 1.571𝐸 − 32 1.571E − 32 0.0
F13 1.35𝐸 − 32 1.35𝐸 − 32 1.35𝐸 − 32 1.35E − 32 0.0 1.35𝐸 − 32 1.35𝐸 − 32 1.35𝐸 − 32 1.35E − 32 0.0
F14 0.998 0.998 0.998 0.998 3.2𝐸 − 8 0.998 0.998 0.998 0.998 8.6𝐸 − 17

F15 3.075𝐸 − 4 3.075𝐸 − 4 1.791𝐸 − 3 4.496𝐸 − 4 1.024𝐸 − 4 3.075𝐸 − 4 3.075𝐸 − 4 1.22𝐸 − 3 3.69E − 4 1.77𝐸 − 4

F16 −1.03163 −1.03163 −1.03163 −1.03163 0.0 −1.03163 −1.03163 −1.03163 −1.03163 0.0
F17 0.398 0.398 0.398 0.398 1.715𝐸 − 4 0.398 0.398 0.398 0.398 0.0
F18 3 3 3 3 2.045𝐸 − 14 3 3 3 3 6.88𝐸 − 16

F19 −3.86 −3.86 −3.86 −3.86 2.66𝐸 − 9 −3.86 −3.86 −3.86 −3.86 9.25𝐸 − 13

F20 −3.32 −3.32 −3.32 −3.32 4.79𝐸 − 7 −3.32 −3.32 −3.32 −3.32 6.27𝐸 − 12

F21 −10.153 −10.153 −10.153 −10.153 1.01𝐸 − 9 −10.153 −10.153 −10.153 −10.153 1.38𝐸 − 15

F22 −10.403 −10.403 −10.403 −10.403 2.59𝐸 − 9 −10.403 −10.403 −10.403 −10.403 1.38𝐸 − 15

F23 −10.536 −10.536 −10.536 −10.536 1.03𝐸 − 9 −10.536 −10.536 −10.536 −10.536 1.85𝐸 − 15

For each stage we use a pie chart to represent the success
rate of every genetic operator in the population of genetic
operators in the unit of automatically designing genetic
operators (such as in Table 7, for first genetic operator in
Phase I, the success rate is 5% and the totally effective
evaluations are 39, which means that there are two useful
candidates are generated by first genetic operator and then
go into the population in the unit of function optimization).

In Phase I, it is obvious that the second genetic operator,
which is 𝑈

𝑖

𝐺+1
= 𝑋⃗

𝑟
2

𝐺
(𝐹 + 𝑋⃗

𝑟
2

𝐺
) in operator generating

population, produces more new candidates. In the beginning
of evolution, the algorithm generates the new candidates
easily and quickly, so we set a small number of function calls
in Phase I. In Phase II, all the genetic operators have achieved
comparable performance. In Phase III, the second operator
demonstrates a stronger genetic capability; the phenotype
of this genotype is 𝑈𝑖

𝐺+1
= 𝐹𝑋⃗

𝑟
2

𝐺
+ 𝑋⃗

best
𝐺

(see Table 7). In
Phase VI, the best performance genotype is 𝑈𝑖

𝐺+1
= 𝑋⃗

best
𝐺

−

𝑋⃗
best
𝐺

𝑋⃗
best
𝐺

.The common characteristics of these two formulas
are that they both apply the current best individual in the
population 𝑋⃗

best
𝐺

, which indicates that searching in vicinity of
the best individual can improve the convergence efficiency. In
Phase V, only 41 effective evaluations are achieved in 12,500
function calls, and the 4th and 5th genetic operators only
produce one and zero effective candidate, respectively. This
means that the searching of operators in the unit of automati-
cally designing genetic operators gradually converges to those

genetic operators that are hard to be further improved. The
reason for that is, as mentioned above, the unit of function
optimization and the unit of automatically designing genetic
operators work together. When the function optimization
population gradually converges to the global optimal solu-
tions, the evolution of the genetic operator population is also
led to a convergence.

According to the experiment, the genetic operator that
produces more effective individuals does not necessarily
produce the best individual. In this experiment, the first
genetic operator in Phase V obtains the best performance in
the 50,000 calls, whose phenotype is 𝑈𝑖

𝐺+1
= 𝑋⃗
𝑟
1

𝐺
− 𝑋⃗
𝑟
2

𝐺
𝑋⃗
𝑟
2

𝐺
.

6. Conclusions

A novel evolutionary algorithm based on automatic design-
ing of genetic operators is presented to tentatively solve
algorithm designed problem automatically. EA2DGO does
not only search in the problem solution space, but also
explore in the space of genetic operators, which means that
the genetic operators are not predefined by a designer before
problem solving but searched and designed automatically in
the process of problem solving.

Experimental results have shown that the EA2DGO
can achieve comparable performance with the state-of-art
algorithm such as DE. However, many more issues deserve
to be investigated for this potential algorithm. For example,
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Table 7: The detail information in Phases I∼V.

Phase Formula Success rate Totally effective evaluations

I

𝑈
𝑖

𝐺+1
= 𝑋⃗

best
𝐺

𝑋⃗
𝑟1

𝐺
− 𝑋⃗
𝑟1

𝐺
5%

39
𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟2

𝐺
(𝐹 + 𝑋⃗

𝑟2

𝐺
) 72%

𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟2

𝐺
8%

𝑈
𝑖

𝐺+1
= (𝑋⃗
𝑟1

𝐺
𝑋⃗
𝑟1

𝐺
− 2𝑋⃗

best
𝐺

) (𝑋⃗
best
𝐺

− 𝑋⃗
𝑟1

𝐺
) 2%

𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟2

𝐺
(𝑋⃗
𝑟1

𝐺
− 𝑋⃗
𝑟2

𝐺
) 13%

II

𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟1

𝐺
𝑋⃗
𝑟1

𝐺
+ 𝑋⃗

best
𝐺

𝑋⃗
best
𝐺

𝑋⃗
𝑟1

𝐺
− 𝑋⃗
𝑟1

𝐺
𝑋⃗

best
𝐺

20%

434
𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟1

𝐺
+ 𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
26%

𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
18%

𝑈
𝑖

𝐺+1
= 6𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
17%

𝑈
𝑖

𝐺+1
= 𝐹𝑋⃗

𝑟2

𝐺
+ 𝑋⃗
𝑟1

𝐺
− 𝑋⃗
𝑟1

𝐺
𝑋⃗
𝑟1

𝐺
19%

III

𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟1

𝐺
− 𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
6%

194
𝑈
𝑖

𝐺+1
= 𝐹𝑋⃗

𝑟2

𝐺
+ 𝑋⃗

best
𝐺

70%
𝑈
𝑖

𝐺+1
= 𝑋⃗

best
𝐺

− 𝑋⃗
𝑟1

𝐺
16%

𝑈
𝑖

𝐺+1
= 6𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
4%

𝑈
𝑖

𝐺+1
= 𝑋⃗

best
𝐺

+ 𝑋⃗
𝑟1

𝐺
− 𝑋⃗
𝑟1

𝐺
𝑋⃗
𝑟1

𝐺
4%

IV

𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟1

𝐺
− 𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
4%

57
𝑈
𝑖

𝐺+1
= −𝑋⃗

𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
26%

𝑈
𝑖

𝐺+1
= 𝑋⃗

best
𝐺

− 𝑋⃗
best
𝐺

𝑋⃗
best
𝐺

60%
𝑈
𝑖

𝐺+1
= 𝐹𝑋⃗

best
𝐺

5%
𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟1

𝐺
𝑋⃗
𝑟1

𝐺
5%

V

𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟1

𝐺
− 𝑋⃗
𝑟2

𝐺
𝑋⃗
𝑟2

𝐺
12%

41
𝑈
𝑖

𝐺+1
= 𝑋⃗

best
𝐺

𝑋⃗
𝑟2

𝐺
44%

𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟3

𝐺
− 𝑋⃗

best
𝐺

42%
𝑈
𝑖

𝐺+1
= 𝐹𝑋⃗

best
𝐺

2%
𝑈
𝑖

𝐺+1
= 𝑋⃗
𝑟1

𝐺
𝑋⃗
𝑟1

𝐺
0%

at this stage, there are still quite a few parameters involved
in the algorithm framework. As a result, parameter analysis
becomes naturally a next step of study. Meanwhile, how to set
up these parameters optimally (or even reduce some param-
eters) is an issue worth to be further studied. In addition,
it is very interesting and desirable to investigate methods to
define some important metrics for this new algorithm, such
as evolvability, adaptability, and computational complexity.
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