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Abstract—Domination-based sorting and decomposition are
two basic strategies used in multiobjective evolutionary
optimization. This paper proposes a hybrid multiobjective
evolutionary algorithm integrating these two different strate-
gies for combinatorial optimization problems with two or
three objectives. The proposed algorithm works with an inter-
nal (working) population and an external archive. It uses a
decomposition-based strategy for evolving its working population
and uses a domination-based sorting for maintaining the exter-
nal archive. Information extracted from the external archive is
used to decide which search regions should be searched at each
generation. In such a way, the domination-based sorting and
the decomposition strategy can complement each other. In our
experimental studies, the proposed algorithm is compared with
a domination-based approach, a decomposition-based one, and
one of its enhanced variants on two well-known multiobjective
combinatorial optimization problems. Experimental results show
that our proposed algorithm outperforms other approaches. The
effects of the external archive in the proposed algorithm are also
investigated and discussed.

Index Terms—Combinatorial multiobjective optimization,
decomposition, Pareto optimality.

I. INTRODUCTION

Amultiobjective optimization problem (MOP) can be stated
as

maximize F(x) = ( f1(x), . . . , fm(x)) (1)

subject to x ∈ �
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where � is the decision space, F : � → Rm consists of m
real-valued objective functions. The attainable objective set is
{F(x)|x ∈ �}. In the case when � is a finite set, (1) is called
a discrete MOP.

Let u, v ∈ Rm, u is said to dominate v, denoted by u � v,
if and only if ui ≥ vi for every i ∈ {1, . . . , m} and uj > vj

for at least one index j ∈ {1, . . . , m}.1 Given a set S in Rm,
a point in it is called nondominated in S if no other point
in S can dominate it. A point x∗ ∈ � is Pareto-optimal if
F(x∗) is nondominated in the attainable objective set. F(x∗) is
then called a Pareto-optimal (objective) vector. In other words,
any improvement in one objective of a Pareto optimal point
must lead to deterioration to at least another objective. The set
of all the Pareto-optimal points is called the Pareto set (PS)
and the set of all the Pareto-optimal objective vectors is the
Pareto front (PF) [17].

In many real-life applications, the PF is of great interest
to decision makers for understanding the tradeoff relation-
ship among different objectives and choosing their preferred
solutions. Evolutionary algorithms have been recognized as
a major method for approximating the PF. Along with
the domination-based [6], [7], [31] and the performance-
indicator-based algorithms [30], the multiobjective evolution-
ary algorithms based on decomposition (MOEA/D) [26] have
been widely used and investigated in evolutionary com-
putation community now. MOEA/D decomposes a MOP
into a number of single objective optimization subproblems
and then solves them in parallel. The objective function
in each subproblem can be a linear or nonlinear weighted
aggregation function of all the objective functions in the
MOP in question. Two subproblems are called neighbors
if their weight vectors are close to each other. MOEA/D
explores correlation relationships among neighboring sub-
problems to speed up its search. A basic assumption in
MOEA/D is that two neighboring problems should have sim-
ilar optimal solutions. It could hold for most subproblems
in a typical continuous MOP. It is very likely, however,
that a nonnegligible number of subproblems do not satisfy
this assumption in a combinatorial MOP. For this reason,
MOEA/D alone may not perform well on some combinatorial
MOPs. To address this issue, various combinations of
MOEA/D and domination-based techniques have been inves-
tigated recently (see [1], [14], [16]). In these combinations,

1In the case of minimization, the inequality signs should be reversed.
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Fig. 1. (a) In a combinatorial MOP, some different subproblems such as ones with λ1 and λ2 can have the same optimal solutions. Even a large number
of subproblems may not lead to a reasonably good approximation to the PF. (b) Principle of crowding distance assignment in NSGA-II [6], [7] can be used
to select representative solution of good quality.

both the decomposition approach and the domination-based
one are used for selecting good solutions.

Multiobjective evolutionary algorithms (MOEAs) generate
and evaluate a population of solutions at each generation.
From these solutions, one can use selection and genetic opera-
tors for producing new promising solutions. One can also use
machine learning and other techniques to extract information
from the previous search for guiding the further search. For
example, a Bayesian rule miner is incorporated into a MOEA
to identify promising search regions for dealing with noisy
MOPs in [4]. In a variant of MOEA/D based on dynamic
resource allocation (MOEA/D-DRA) [27], a utility value,
defined and calculated for each subproblem based on the pre-
vious search performance on it, is used for guiding the alloca-
tion of computational resources among different subproblems.
MOEA/D-DRA works well on continuous MOPs and won
the CEC2009 competition. However, MOEA/D-DRA does not
pay special attention to the population diversity, which may
deteriorate its performance on combinatorial MOPs [16].

The rest of this paper is organized as follows. Section II
explains our motivation of this paper. Section III describes the
proposed scheme, called the external archive guided MOEA
based on decomposition. Section IV introduces the multiobjec-
tive traveling salesman problem (MTSP) and the multiobjec-
tive next release problem (MNRP), two combinatorial MOPs
used in our studies. Experimental studies and discussions are
presented in Section V, where we compare our proposed algo-
rithm with NSGA-II, MOEA/D, and MOEA/D-DRA. The
effects of the external archive in our proposed algorithm
are also investigated and discussed in Section V. Section VI
concludes the paper.

II. MOTIVATION

A typical MOEA/D [26], decomposes a MOP into
a number of single-objective subproblems and optimizes
them in a collaborative way. The scalar objective func-
tion in each subproblem can be a linear or nonlinear
weighted aggregation function of f1(x), . . . , fm(x). MOEA/D
defines a neighborhood relationship among subproblems

based on distances among their weight vectors. During its
evolutionary process, MOEA/D maintains one solution for
each subproblem. To generate a new one, it applies repro-
duction operators to current solutions of some of its neigh-
boring subproblems. This generated new solution can also
replace several current solutions of its neighboring subprob-
lems when it outperforms them. A number of MOEA/D
variants have been developed and used in various application
domains [3], [10]–[12], [15], [18]–[20].

In this paper, a new variant of MOEA/D is proposed for
multiobjective combinatorial optimization problems with two
or three objectives. This paper is mainly motivated by the
following considerations.

1) Solution Distribution in MOEA/D: Suppose that N sub-
problems are considered in MOEA/D and their weight
(or direction) vectors are uniformly distributed in some
sense. If the MOP is continuous and its PF is continuous
and convex, the optimal solutions of these subproblems
can constitute a good approximation to the PF when the
number of weight vectors is large enough. However, it
is often not the case for discrete MOPs as illustrated in
Fig. 1(a). Some different subproblems such as ones with
λ1 and λ2 can have the same optimal solutions. Even a
large number of subproblems may not lead to a reason-
ably good approximation to the PF. This phenomenon,
which has also been observed in [1] and in our experi-
mental studies in Section V-C, explains why MOEA/D
does not work well for some discrete MOPs. Moreover,
search in one subproblem using MOEA/D for a discrete
MOP at some stages can generate several diverse good
solutions. Therefore, one can assume that each subprob-
lem in MOEA/D may have varied contribution to the
search process at different search stages. For this reason,
different subproblems should NOT be allocated the same
amounts of computational resources. This paper attempts
to propose a mechanism of allocating computational
resources to each subproblem dynamically.

2) Subproblem’s Utilities: To decide how the computa-
tional resources should be distributed among different
subproblems, one can first define an utility value for
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each subproblem and then use these utility values
to guide resource allocation at each generation. In
MOEA/D-DRA [27], the utility of a subproblem is
defined as the ratio of its objective function improve-
ment to its allocated amount of computational effort over
the last several generations. These utility functions work
well for continuous MOPs. However, it may not be suit-
able for discrete MOPs since each utility function only
measures the progress of one single subproblem but does
not consider the contributions of all subproblems. This
paper attempts to propose an utility function that con-
siders the contributions of all subproblems to the search
process in history.

3) Nondominated Sorting and Crowding Distance:
Arguably, the nondominated sorting and crowding
distance assignment in NSGA-II [6], [7] can effectively
select representative solutions of good quality, in terms
of both convergence and diversity, from a large set of
solutions in the case of two or three objectives. The
principle of crowding distance assignment is illustrated
in Fig. 1(b). Recent studies (see [9], [25]) show that
NSGA-II and MOEA/D are suitable for problems of
complementary nature, which makes the combination of
them very desirable. This paper attempts to utilize the
idea from NSGA-II to help evaluate the contribution of
each individual to the search process in the proposed
new MOEA/D framework.

III. ALGORITHM

A. Framework

Like other MOEA/D variants, the proposed
algorithm, termed the external archive guided MOEA/D
(EAG-MOEA/D), decomposes the MOP into N single objec-
tive optimization subproblems. In principle, any aggregation
methods can be used for this purpose. For simplicity, the
weight sum approach is adopted in this paper, it requires N
weight vectors

λj =
(
λ

j
1, . . . , λ

j
m

)
j = 1, . . . , N (2)

where λj ∈ Rm+ and
∑m

i=1 λ
j
i = 1, and m is the number of

objectives. The Subproblem k is

maximize gk(x) =
m∑

i=1
λ

j
i fi(x) (3)

subject to x ∈ �.

For each k = 1, . . . , N, let B(k) be the set containing the
indexes of the T closest weight vectors to λk in terms of
the Euclidean distance. If i ∈ B(k), Subproblem i is called
a neighbor of Subproblem k.

At each generation, EAG-MOEA/D maintains two
populations.

1) P = {x1, . . . , xN}, where xk is the best solution found so
far to Subproblem k.

2) A, which has N solutions selected by using NSGA-II
selection (the nondominated sorting approach and
crowding distance assignment [6], [7]).

The algorithm works as follows.
Step 1 Initialization: Initialize P and A.
Step 2 New Solution Generation: Generate a set of N new

solutions Y .
Step 3 Population Update: Use Y to update P and A.
Step 4 Stopping Condition: If a preset stopping condition

is met, output A. Otherwise, go to Step 2.
The pseudocode of the algorithm is given in Algorithm 1. In

Step 3, the method for updating P is based on decomposition
while the method for A is NSGA-II selection.

The details of Steps 1–3 are given as follows.

B. Initialization

xi in P can be generated randomly or by using a single
objective heuristic on the Subproblem i. For simplicity, A is
initialized to be P.

C. New Solution Generation

A new solution is called successful if it enters A in Step 3.
Note that a new solution is generated by searching on a
selected single objective subproblem and whether or not a new
solution can enter A is determined by the NSGA-II selection.
To guide the search by both subproblem search directions (i.e.,
decomposition) and domination-based sorting, we record si,k,
the number of successful solutions generated by search on
the Subproblem i at each generation k, and compute the
total number of the successful solutions over the L previous
generations

Si,G =
G−1∑

k=G−L

si,k

where G is the current generation.
At each generation G > L − 1, the probability of selecting

the Subproblem i is defined as

pi,G = Di,G∑N
i=1 Di,G

(4)

where

Di,G = Si,G

N∑
j=1

Sj,G

+ ε, (i = 1, 2, . . . , N) . (5)

Di,G is the proportion of successful solutions generated by
the search on Subproblem i over the previous L generations.
ε = 0.002 is used to make all the Di,G > 0. The above way for
computing the probability has also been used in the ensemble
of neighborhood size [29] for MOEA/D.

New solutions are generated in Step 2, detailed in
Algorithm 1. In Step 2a, a subproblem is selected according
to the probability defined in (4). For the selected subproblem,
two parent solutions are selected from its T neighboring
subproblems in Step 2b. In Step 2c, genetic operators are
applied to the parents to generate an offspring yj. By repeating
this procedure (Step 2a–2c) N times, an offspring population
Y = {y1, . . . , yN} is generated. A subproblem may be selected
for generating solutions more than one time at one generation.
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Algorithm 1 EAG-MOEA/D
Input:

1) a combinatorial MOP;
2) a stopping criterion;
3) N: the number of subproblems; the population size of

P and A;
4) λ1, . . . ,λN: a set of N weight vectors;
5) T: the size of the neighborhood of each subproblem.

Output: A set of nondominated solutions A;
Step 1: Initialization:

a) Decompose the MOP into N subproblems associated
with λ1, . . . ,λN.

b) Generate an initial population P = {x1, . . . , xN} ran-
domly.

c) Set A = P.
d) Compute the Euclidean distance between any two

weight vectors and obtain T closest weight vectors
to each weight vector. For each i = 1, . . . , N, set
B(i) = {i1, . . . , iT}, where λi1, . . . , λiT are the T
closest weight vectors to λi.

Step 2: New solution generation
for all j ∈ {1, . . . , N} do

a) Select Subproblem i for search based on the probabil-
ity defined in (4) and (5).

b) Randomly select two indexes k and l from B(i).
c) Apply genetic operators on xk and xl to generate yj for

Subproblem i.
end for

Step 3: Population update
for all j ∈ {1, . . . , N} do

a) If yj is generated from subproblem i, for each index
k ∈ B(i), set xk = yj if gws( yj|λk) ≤ gws(xk|λk).
end for
/* update population A*/

b) Merge Y with A to obtain Z = A ∪ Y; select N best
solutions from the merged population Z by the NSGA-
II selection to replace A.

Step 4: Termination
If stopping criteria are satisfied, terminate the algo-
rithm and output A. Otherwise, go to Step 2.

D. Population Update

In Step 3, the solutions in Y are used to update both P and A.
For solution yj generated by search on subproblem i. Step
3a considers all the neighbors of Subproblem i, it replaces
all neighbors xk with yj if yj performs better than xk with
regard to the aggregated objective of the Subproblem k. The
external population is updated in Step 3b. Y is merged with A
first, and then the combined population Z is selected by the
NSGA-II selection. The best N solutions are selected to form
new A.

EAG-MOEA/D maintains two populations P and A. P stores
the best solution found so far for each subproblem. A stores
a population selected based on NSGA-II selection. A is used

for guiding the search, whereas the original MOEA/D doesn’t
do so.

In the original MOEA/D, each subproblem receives the
same amount of computational resources. In EAG-MOEA/D,
how likely a subproblem is selected for investment is deter-
mined on the contribution of the previous search on it to
the external population. In MOEA/D-DRA, the probability
that a subproblem is selected for investment is mainly deter-
mined by how well the previous search has performed on
improving the solution to this subproblem, but not the whole
population.

IV. TWO BENCHMARK COMBINATORIAL MOPS

Several combinatorial optimization problems have been
widely used on testing MOEAs, (see [1], [2], [8], [14],
[22]–[24], [28]). We consider two NP-hard combinatorial
MOPs, the multiobjective software next release problem and
the MTSP.

A. MNRP

Consider a software system with n requirements and U
customers. Suppose the cost to implement requirement i is ci,
and the satisfaction score of customer u for requirement i
is si,u.

The goal of the MNRP is to determine which requirements
should be implemented in the next release of the software.
The MNRP has two objectives to optimize. One objective is
to minimize the required cost

C =
n∑

i=1

ci · xi (6)

and the other objective is to maximize the total satisfaction
score

S =
U∑

u=1

n∑
i=1

si,u · xi (7)

where xi ∈ {0, 1}. xi = 1 means that requirement i is
implemented, and xi = 0 means that it is not implemented.

To apply MOEAs to this problem, we change the second
objective to minimization of −S and normalize both objectives
so that their range is in [0, 1].

A MNRP test instance with U customers and n requirements
is denoted as Cu − U/R − n in this paper. Eight randomly
generated test instances are used in our studies, which include
Cu − 30/R − 300, Cu − 50/R − 200, Cu − 50/R − 500, Cu −
80/R − 800, Cu − 100/R − 1000, Cu − 120/R − 1200, Cu −
160/R − 1600, and Cu − 200/R − 2000.

B. MTSP

Given n cities with edges connecting any two cities. Suppose
that edge e has m distance metrics de,1, . . . , de,m. Each feasi-
ble solution is an edge subset which can form a Hamiltonian
cycle. The ith objective in the MTSP is to minimize

fi(x) =
∑
e∈x

de,i. (8)
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(a) (b)

Fig. 2. Sensitivity tests for parameter LGs in EAG-MOEA/D on one MNRP and one MTSP instances. Instances show that parameter LGs are not very
sensitive on both MNRP and MTSP instances. (a) Cu − 50/R − 500. (b) c − 200/o − 2.

(a) (b)

(c) (d)

Fig. 3. Final nondominated solutions found by NSGA-II, MOEA/D, and EAG-MOEA/D on four MNRP instances. (a) Cu−80/R−800. (b) Cu−120/R−1200.
(c) Cu − 160/R − 1600. (d) Cu − 200/R − 2000.

A MTSP with n cities and m objectives is denoted as
c − n/o − m in this paper. In our studies, we consider seven
randomly generated test instance of MTSP with two objectives
and two test instances of MTSP with three objectives, which
include c−200/o−2, c−300/o−2, c−400/o−2, c−500/o−2,
c − 600/o − 2, c − 700/o − 2, c − 800/o − 2, c − 200/o − 3,
and c − 300/o − 3.

V. EXPERIMENTAL STUDIES AND DISCUSSION

To study the performance of EAG-MOEA/D and understand
its behavior, this section conducts the following experimental
work.

1) Comparison of EAG-MOEA/D with NSGA-II,
MOEA/D, and MOEA/D-DRA on the two test
problems.
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TABLE I
PARAMETER SETTINGS IN EAG-MOEA/D, EA/MOEA/D, MOEA/D, AND NSGA-II

Fig. 4. Convergence graphs in terms of hypervolume (mean) obtained by NSGA-II, MOEA/D, and EAG-MOEA/D on MNRP instances. (a) Cu−80/R−800.
(b) Cu − 120/R − 1200. (c) Cu − 160/R − 1600. (d) Cu − 200/R − 2000.

TABLE II
MEAN AND STANDARD DEVIATION VALUES OF IH , IGD, AND 
p , OBTAINED BY NSGA-II, MOEA/D, AND EAG-MOEA/D ON MNRP INSTANCES

2) Investigation of the contribution of the guide from the
external archive in EAG-MOEA/D.

In our experiments, every algorithm is run independently
30 times on a test instance.

A. Parameter Settings

All the algorithms were implemented in MATLAB. Their
parameter settings for the MNRP and the MTSP are listed in
Table I. The uniform crossover and bit-flip mutation operators
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(a) (b)

(c) (d)

Fig. 5. Final nondominated solutions found by NSGA-II, MOEA/D, and EAG-MOEA/D on four MTSP instances. (a) c − 200/o − 2. (b) c − 300/o − 2.
(c) c − 400/o − 2. (d) c − 500/o − 2.

TABLE III
MEAN AND STANDARD DEVIATION VALUES OF IH , IGD, AND 
p , OBTAINED BY NSGA-II, MOEA/D, AND EAG-MOEA/D ON MTSP INSTANCES

were used to generate new solutions for the MNRP test
instances. Mutation rates for MNRP is set to 1/n, where n is
the length of a solution (the number of variables in a solution).
For the MTSP instances, each candidate solution was repre-
sented as a permutation, and the position-based crossover and
exchange mutation operators [13] were used for generating
new solutions. The crossover rate for NSGA-II was set to 0.8
since we found that this setting was better than 1.

The setting of N weight vectors (λ1, . . . , λN) is con-
trolled by a positive integer parameter H, which specifies the

granularity or resolution of weight vectors, as in [26]. Each
individual weight takes a value from

{
0

H
,

1

H
, . . . ,

H

H

}
.

The number of weight vectors is determined by
both parameter H and the number of objectives m:
N = Cm−1

H+m−1.
The number of function evaluations are assigned to differ-

ent problems based on their actual convergence conditions as
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Fig. 6. Convergence graphs in terms of hypervolume (mean) obtained by NSGA-II, MOEA/D, and EAG-MOEA/D on four MTSP instances. (a) c−200/o−2.
(b) c − 300/o − 2. (c) c − 400/o − 2. (d) c − 500/o − 2.

follows. For the MNRP, the number of function evaluations
for all the algorithms is set to 50 000 for Cu − 30/R − 300,
Cu − 50/R − 500, and Cu − 50/R − 200; and 100 000 for
Cu − 80/R − 800, Cu − 100/R − 1000, Cu − 120/R − 1200,
Cu−160/R−1600, and Cu−200/R−2000. For the MTSP, the
number of function evaluation is 400 000 for c − 200/o − 2;
600 000 for c − 300/o − 2, c − 400/o − 2, c − 500/o − 2,
c − 600/o − 2, c − 200/o − 3, c − 300/o − 3; and 1 500 000
for c − 700/o − 2 and c − 800/o − 2.

As to the number of learning generations (LGs) in
EAG-MOEA/D, we conduct experiments to test its sensitivity.
In the experiments, the number of function evaluations is set
to 50 000 for Cu−50/R−500 and 300 000 for c−200/o−2.
Other parameters for EAG-MOEA/D are set as in Table I. It
is clear to see, from the Fig. 2, that the parameter LGs are not
very sensitive for both MNRP and MTSP. In this paper, we
set LGs = 8 for all the problems.

B. Performance Metrics

The following three performance metrics are used in our
studies.

1) Hypervolume Indicator (IH) [32]: Let y∗ = ( y∗
1, . . . , y∗

m)

be a point in the objective space which is dominated
by any Pareto optimal objective vectors. Let P be
the obtained approximation to the PF in the objec-
tive space. Then the IH value of P (with regard to
y∗) is the volume of the region which is dominated
by P and dominates y∗. The higher the hypervol-
ume, the better the approximation. In our experiments,

we set y∗ = (0, 1) for MNRP test instances; y∗ =
( f max

1 , f max
2 ) for bi-objective MTSP test instances and

y∗ = ( f max
1 , f max

2 , f max
3 ) for three-objective ones, where

f max
i indicates the maximum value of the ith objective

in the obtained nondominated set.
2) Inverted Generational Distance (IGD) [5]: It measures

the average distance from a set of reference points
P∗ in the PF to the approximation set P. It can be
formulated as

IGD(P, P∗) = 1

|P∗|
∑
v∈P∗

dist(v, P) (9)

where dist(∗, ∗) is the Euclidean distance. Ideally, the
points in P∗ should be uniformly distributed on the PF.
However, the true PF is not known in both the MNRP
and the MTSP test instances. In our experiments, P∗ for
a test instance is the set of by all nondominated solutions
obtained by all the algorithms in all runs.

3) Averaged Hausdorff Distance (
p) [21]: It is a recently
proposed metric to measure how well P approximates
the PF. It also needs P∗, a set of reference points as in
the IGD. 
p is defined as


p(X, Y) = max

⎧⎨
⎩

[
1

|P ∗ |
∑
v∈P∗

dist(v, P)p

] 1
p

,

⎛
⎝ 1

|P|
∑
y∈P

dist( y, P∗)p

⎤
⎦

1
p

⎫⎪⎬
⎪⎭

. (10)
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Fig. 7. Evolution of IH(A) − IH(P) in EAG-MOEA/D and EA-MOEA/D on four MNRP or MTSP instances, where A is the external archive, and P is the
working population. (a) Cu − 120/R − 1200. (b) Cu − 160/R − 1600. (c) c − 300/o − 2. (d) c − 400/o − 2.

TABLE IV
MEAN AND STANDARD DEVIATION VALUES OF IH , IGD, AND 
p , OBTAINED BY EAG-MOEA/D

AND EA-MOEA/D ON MNRP AND MTSP INSTANCES

In this metric, the higher the value of p, the more out-
liers are penalized. The value of p is set to 2 in our study.
A smaller value of 
p indicates better quality of P.

C. EAG-MOEA/D Versus MOEA/D and NSGA-II
EAG-MOEA/D hybridizes NSGA-II and MOEA/D, there-

fore, it is necessary to compare it with both of them.
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(a) (b)

(c) (d)

(e) (f )

Fig. 8. Final nondominated solutions found by EAG-MOEA/D and EA-MOEA/D on six MNRP or MTSP instances. (a) c − 200 /o − 2. (b) c − 300 /o − 2.
(c) c − 400 /o − 2. (d) c − 500 /o − 2. (e) Cu − 120/R − 1200. (f ) Cu − 160/R − 1600.

Fig. 3 presents the final solution sets with the best
(i.e., largest) hypervolume values obtained by each algorithm
on MNRP instances over 30 runs. We can make the following
observations.

1) The final solution sets obtained by the three algorithms
are close to the PFs. Therefore, all the three algorithms
perform well in terms of convergence.

2) NSGA-II produces uniformly spread solutions. However,
these solutions are not widely spread.

3) MOEA/D produces widely but not uniformly spread
solutions. It confirms our analysis in Section II, search
on different subproblems with uniformly distributed
weight vectors in MOEA/D may not produce a
uniformly distributed solutions. This should be because

search efforts on different subproblems may have differ-
ent contributions. Therefore, allocating the same amount
of computational effort to every subproblem as in orig-
inal MOEA/D may not be very effective and efficient.

4) EAG-MOEA/D outperforms both NSGA-II and
MOEA/D, it can generate widely and uniformly dis-
tributed solutions. This confirms that the guide from
the external archive does significantly improve the
algorithmic performance.

To further compare the three algorithms, Tables II lists
the mean and standard deviation values of IH , IGD, and

p metrics on eight MNRP instances. Note that a larger IH

indicates better performance while smaller IGD and 
p indi-
cate better performance. Clearly, these results confirm that
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(a) (b)

(c) (d)

(e) (f )

Fig. 9. Convergence graphs in terms of hypervolume (mean) obtained by EAG-MOEA/D and EA-MOEA/D on six MNRP or MTSP instances.
(a) c − 200 /o − 2. (b) c − 300 /o − 2. (c) c − 400 /o − 2. (d) c − 500 /o − 2. (e) Cu − 120/R − 1200. (f ) Cu − 160/R − 1600.

EAG-MOEA/D outperforms the other two algorithms on all
eight MNRP test instances in terms of IH , IGD, and 
p met-
rics. Apparently, NSGA-II is the worst mainly because the
solution sets produced by NSGA-II concentrate on a small
part of the PFs.

The evolution of the average hypervolume values with the
numbers of function evaluations in the three algorithms on
MNRP test instances are plotted in Fig. 4. These figure can
show both the convergence speed of each algorithm as well
as the quality of their final solution sets. It is evident that
EAG-MOEA/D performs the best on both aspects.

Fig. 5 plots the final solution set with the largest hyper-
volume found by each algorithm for each MTSP test
instance among 30 independent runs. It is very clear that

EAG-MOEA/D is the best in terms of both convergence
and diversity on these test instances. Fig. 6 shows that
EAG-MOEA/D converges faster than the two other algorithms.
A detailed comparison in Table III also demonstrates the supe-
riority of EAG-MOEA/D in terms of the three metrics on all
the MTSP test instances.

D. EAG-MOEA/D Versus MOEA/D-DRA

MOEA/D-DRA [27], a variant of MOEA/D, does computa-
tional resource allocations based on the search progress on
each subproblem. EAG-MOEA/D uses the external archive
to guide the resource allocation among the subproblems.
Therefore, it is interesting to compare these two different
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TABLE V
MEAN AND STANDARD DEVIATION VALUES OF IH , IGD, AND 
p , OBTAINED BY EA-MOEA/D AND MOEA/D ON MNRP AND MTSP INSTANCES

approaches. In our comparison experiments, the parameter set-
tings of both EAG-MOEA/D and MOEA/D-DRA are the same
as in Table I.

Table IV compares EAG-MOEA/D and MOEA/D-DRA
on the MNRP and MTSP test instances in terms of IH ,
IGD, and 
p metrics. Clearly, EAG-MOEA/D is better
than MOEA/D-DRA on all the instances. These results are
very consistent with our considerations made in Section II.
It is evident that the use of the external population for
guiding resource allocation does have advantages on some
combinatorial MOPs. However, one cannot exaggerate it. Each
strategy is biased and has its own range of applications.

E. Effects of External Archive

The external archive is used in EAG-MOEA/D for two
purposes. One is to guide the allocation of computational
resources during the search, and the other is to be the out-
put of the algorithm as the final solution set to the MOP. To
understand the effects of the external archive, we conduct the
following comparisons.

1) MOEA/D Versus MOEA/D With External Archive
(EA-MOEA/D): By EA-MOEA/D, we mean EAG-MOEA/D
in which there is no dynamic allocation of computational
resources and the external archive only serves as the final
output. We want to study the difference between its exter-
nal archive and its working population. For this purpose, we

Fig. 10. Illustration of how the external archive A guides the work-
ing population P through the diversity information during the optimization
process.

have run EA-MOEA/D and MOEA/D with the same parameter
settings in Table I on all the test instances.

Table V presents the average values of IH , IGD, and 
p

over 30 independent runs. In terms of IH , it can be observed
from this table that EA-MOEA/D performs significantly better
than MOEA/D on all the instances except for c − 600 /o − 2.
On c − 600 /o − 2, EA-MOEA/D produces a larger IH value,
however, it is not statistically significant. In terms of IGD
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TABLE VI
MEAN AND STANDARD DEVIATION VALUES OF IH , IGD, AND 
p , OBTAINED BY EAG-MOEA/D

AND MOEA/D-DRA ON MNRP AND MTSP INSTANCES

and 
p, it is clear from the Table V that EA-MOEA/D con-
stantly performs significantly better than MOEA/D on MNRP
test instances, and the performances of the two algorithms in
terms of IGD and 
p are about the same on the MTSP. Based
on these results, we can claim that the external population is
better or no worse than the working population for approx-
imating the PF. Therefore, it is very reasonable to use the
external population to guide the search.

2) Difference Between the External Population and Working
Population in EAG-MOEA/D: To obtain a good understanding
of the difference between the external archive A and the work-
ing population P, we also plot the evolution of IH(A) − IH(P)

in EA-MOEA/D and EAG-MOEA/D on two MNRP and two
MTSP test instances, as shown in Fig. 7. Clearly, A is always
better than P during the whole search process. Again, it
demonstrates that A can guide the search.

3) EA-MOEA/D Versus EAG-MOEA/D: The experimental
results are presented in Table VI and Figs. 8 and 9. The
results in Table VI clearly shows that EAG-MOEA/D always
outperforms EA-MOEA/D on almost all the instances except
some MNRP ones in terms of all the three metrics. The final
solution sets with the best IH values plotted in Fig. 8 is
consistent with the metric values in Table VI.

The evolutions of the IH values with the numbers of function
evolutions in the two algorithms for four MNRP test instances
are plotted in Fig. 9. Clearly, EAG-MOEA/D converges faster
than EA-MOEA/D.

These results show that the guide from the external popu-
lation does help improve the algorithm efficiency.

4) Effects of External Archive on Diversity Maintenance
for EAG-MOEA/D: Compared with MOEA/D-DRA, which
uses the progress (convergence) of one single subproblem,
EAG-MOEA/D further considers the contributions (deter-
mined by both convergence and diversity) of different sub-
problems to the search process, for dynamic allocation of
computational resources. Fig. 10 shows some scenarios of how
the external archive A guides the working population P through
the diversity information during the optimization process. The
hollow circles in Fig. 10 represent the Pareto optimal solutions
and the solid circles represent the nondominated solutions in
the external archive found by various subproblems within the
LGs. In one extreme case, as shown in Fig. 10, subprob-
lems associated with weight λ2, λ3, and λ4 lead the search
process to one same Pareto approximation solution. Three
nondominated solutions (s1, s2, and s3) have been found by
these three subproblems, respectively. Among them, only one
solution (s2) generated by subproblem associated with λ3 is
able to enter the external archive and the other two solutions
(s1 and s3) are eliminated by the crowding distance assignment
due to the lack of diversity. As a result, subproblems associ-
ated with λ2 and λ4 contribute no solutions to the external
archive. According to (4) and (5), they have very slim chance
to be selected to generate new solutions. On the contrary, the
subproblem associated with λ7 leads to three nondominated
solutions (s4, s5, and s6) that successfully enter the exter-
nal archive during the optimization process, which means it
has a much larger probability to be selected to generate new
solutions.
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(a) (b) (c) (d)

Fig. 11. EA-MOEA/D: counts of nondominated solutions all subproblem contribute to the external archive over the last ten generations of the optimization
process for MNRP or MTSP instances. (a) Cu − 80/R − 800. (b) Cu − 100/R − 1000. (c) c − 200/o − 2. (d) c − 300/o − 2.

(a) (b) (c) (d)

Fig. 12. EAG-MOEA/D: counts of nondominated solutions all subproblem contribute to the external archive over the last ten generations of the optimization
process for MNRP or MTSP instances. (a) Cu − 80/R − 800. (b) Cu − 100/R − 1000. (c) c − 200/o − 2. (d) c − 300/o − 2.

5) Contributions of Search on Different Subproblems:
One assumption in this paper is that search on different sub-
problems should make different contributions to the external
population. We record the number of the solutions in the
final external archive generated by the search on each sub-
problem in both EA-MOEA/D and EAG-MOEA/D. We plot
it in Figs. 11 and 12. It is clear to see that in these two
MOEA/D variants, the contribution varies from subproblem
to subproblem. This observation confirms our assumption in
Section II that the search effort on each subproblem may have
different contributions at different search stages.

6) Effects of Dynamic Resource Allocation on MTSP With
Unbalanced Objectives: To further understand the behavior
of EAG-MOEA/D, we further investigate the performance
of EAG-MOEA/D on a MTSP instance with unbalanced
objectives as follows.

For convenience, we use a three-objective TSP instance as
our test functions and further categorize three objective func-
tion values in such a way that f1(x) has 1001 different values
(e.g., 0, 1, 2, . . . , 1000), f2(x) has 101 different values (e.g.,
0, 10, 20, . . . , 1000), and f3(x) has 11 different values (e.g.,
0, 100, 200, . . . , 1000).

Thus, in the constructed MTSP, f3(x) is very difficult to
improve; f1(x) is very easy to improve and the difficulty of
f2(x) is between f1(x) and f3(x).

Fig. 13 shows the effects of the dynamic allocation of
computational resources on the three-objective TSP described
above. It can be observed that the nondominated set obtained
by EAG-MOEA/D has better convergence than that of
EA-MOEA/D along f1(x), and the diversity of EAG-MOEA/D
is worse than that of EA-MOEA/D along f3(x). These obser-
vations are consistent with our assumptions for the effects
of the dynamic allocation of computational resources as fol-
lows. In the constructed MTSP, the NSGA-II population will

Fig. 13. Effects of the dynamic allocation of computational resources on the
constructed unbalanced three-objective TSP, where f3(x) is very difficult to
improve, f1(x) is very easy to improve, and the difficulty of f2(x) is between
f1(x) and f3(x).

be frequently updated toward the direction of f1(x) because
it’s easy to improve. As a result, the search of the proposed
algorithm will be biased toward the direction of f1(x).

VI. CONCLUSION

The paper has proposed EAG-MOEA/D which uses an
external archive to guide dynamic allocation of computational
resources among subproblems. It decomposes a MOP into
a number of single optimization subproblems and optimizes
them in a collective way. The EAG-MOEA/D framework
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keeps two populations–one working population, and one exter-
nal archive/population. Each subproblem provides an individ-
ual solution in the working population. The external archive
in EAG-MOEA/D is maintained by the NSGA-II selection.
Based on the contribution to the external archive from each
subproblem in the search process, computational resources are
allocated to each subproblem dynamically. EAG-MOEA/D has
been compared with NSGA-II, MOEA/D, and MOEA/D-DRA
on two multiobjective combinatorial optimization problems.
Experimental results show that EAG-MOEA/D outperforms
the other algorithms on these problems. We have also investi-
gated and discussed the effects of the external archive in the
search process.

Further work includes investigations of applying
EAG-MOEA/D for other optimization problems such as
continuous, many objective, and constrained optimization
problems. It is also interesting to use other techniques than
NSGA-II selection to maintain the external archive.

ACKNOWLEDGMENT

The authors would like to thank Dr. K. C. Tan for his helpful
comments and suggestions on the original manuscript.

REFERENCES

[1] X. Cai and O. Wei, “A hybrid of decomposition and domination
based evolutionary algorithm for multi-objective software next release
problem,” in Proc. 10th IEEE Int. Conf. Control Autom., Hangzhou,
China, 2013, pp. 412–417.

[2] X. Cai, O. Wei, and Z. Huang, “Evolutionary approaches for multi-
objective next release problem,” Comput. Informat., vol. 31, no. 4,
pp. 847–875, 2012.

[3] P. C. Chang, S. H. Chen, Q. Zhang, and J. L. Lin, “MOEA/D for
flowshop scheduling problems,” in Proc. Congr. Evol. Comput. (CEC),
Hong Kong, Jun. 2008, pp. 1433–1438.

[4] J. Y. Chia, C. K. Goh, V. A. Shim, and K. C. Tan, “A data min-
ing approach to evolutionary optimization of noisy multi-objective
problems,” Int. J. Syst. Sci., vol. 43, no. 7, pp. 1217–1247, 2012.

[5] C. A. C. Coello and N. C. Cortés, “Solving multiobjective optimization
problems using an artificial immune system,” Genet. Program. Evolv.
Mach., vol. 6, no. 2, pp. 163–190, Jun. 2005.

[6] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
Chichester, U.K.: Wiley, 2001.

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA–II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[8] A. Gaspar-Cunha, “A multi-objective evolutionary algorithm for solv-
ing traveling salesman problems: Application to the design of polymer
extruders,” in Adaptive and Natural Computing Algorithms, B. Ribeiro,
R. F. Albrecht, A. Dobnikar, D. W. Pearson, and N. C. Steele, Eds.
Vienna, Austria: Springer, Mar. 2005, pp. 189–193.

[9] H. Ishibuchi, N. Akedo, and Y. Nojima, “Behavior of multi-objective
evolutionary algorithms on many-objective knapsack problems,” IEEE
Trans. Evol. Comput., to be published.

[10] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Adaptation of
scalarizing funtions in MOEA/D: An adaptive scalarizing funtion-based
multiobjective evolutionary algorithm,” in Proc. 5th Int. Conf. Evol.
Multi-Criterion Optim. (EMO), vol. 5467. Nantes, France, Apr. 2009,
pp. 438–452.

[11] A. Kafafy, A. Bounekkar, and S. Bonnevay, “Hybrid metaheuristics
based on MOEA/D for 0/1 multiobjective knapsack problems: A com-
parative study,” in Proc. IEEE Congr. Evol. Comput., Brisbane, QLD,
Australia, 2012, pp. 1–8.

[12] A. Konstantinidis, K. Yang, Q. Zhang, and D. Zeinalipour-Yazti,
“A multi-objective evolutionary algorithm for the deployment and power
assignment problem in wireless sensor networks,” Comput. Netw.,
vol. 54, no. 6, pp. 960–976, 2010.

[13] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic,
“Genetic algorithms for the travelling salesman problem: A review
of representations and operators,” Artif. Intell. Rev., vol. 13, no. 2,
pp. 129–170, 1999.

[14] H. Li and D. Landa-Silva, “An adaptive evolutionary multi-objective
approach based on simulated annealing,” Evol. Comput., vol. 19, no. 4,
pp. 561–595, 2011.

[15] H. Li and Q. Zhang, “Multiobjective optimization problems with compli-
cated Pareto sets, MOEA/D, and NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 13, no. 2, pp. 284–302, Apr. 2009.

[16] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic algorithm
for multiobjective capacitated arc routing problem,” IEEE Trans. Evol.
Comput., vol. 15, no. 2, pp. 151–165, Apr. 2011.

[17] K. Miettinen, Nonlinear Multiobjective Optimization. Boston, MA,
USA: Kluwer Academic, 1999.

[18] T. Murata, H. Ishibuchi, and M. Gen, “Specification of genetic search
directions in cellular multi-objective genetic algorithms,” in Proc. 1st
Int. Conf. Evol. Multi-Criterion Optim., Zurich, Switzerland, 2001,
pp. 82–95.

[19] W. Peng and Q. Zhang, “Network topology planning using MOEA/D
with objective-guided operators,” in Parallel Problem Solving from
Nature—PPSN XII, vol. 7492. Berlin, Germany: Springer, 2012,
pp. 62–71.

[20] W. Peng, Q. Zhang, and H. Li, “Comparison between MOEA/D and
NSGA-II on the multi-objective traveling salesman problem,” in Multi-
Objective Memetic Algorithms, vol. 171. Berlin, Germany: Springer,
2009, pp. 309–324.

[21] O. Schütze, X. Esquivel, A. Lara, and C. A. C. Coello, “Using the
averaged Hausdorff distance as a performance measure in evolutionary
multiobjective optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 4,
pp. 504–522, Aug. 2012.

[22] V. A. Shim, K. C. Tan, and C. Y. Cheong, “A hybrid estimation of
distribution algorithm with decomposition for solving the multiobjective
multiple traveling salesman problem,” IEEE Trans. Syst., Man, Cybern.
C, Appl. Rev., vol. 42, no. 5, pp. 682–691, Sep. 2012.

[23] P. Wang, M. Emmerich, R. Li, K. Tang, T. Baeck, and X. Yao, “Convex
hull-based multi-objective genetic programming for maximizing receiver
operating characteristic performance,” IEEE Trans. Evol. Comput., to be
published.

[24] P. Wang, K. Tang, T. Weise, and X. Yao, “Multiobjective genetic
programming for maximizing ROC performance,” Neurocomputing,
vol. 125, pp. 102–118, Feb. 2014.

[25] G. G. Yen and Z. He, “Performance metrics ensemble for multiobjective
evolutionary algorithms,” IEEE Trans. Evol. Comput., vol. 18, no. 1,
pp. 131–144, 2014.

[26] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[27] Q. Zhang, W. Liu, and H. Li, “The performance of a new version
of MOEA/D on CEC09 unconstrained MOP test instances,” School
Comput. Sci. Electron. Eng., Univ. Essex, Colchester, U.K., Working
Rep. CES-491, Feb. 2009.

[28] Y. Zhang, M. Harman, and S. A. Mansouri, “The multi-objective next
release problem,” in Proc. Genet. Evol. Comput. Conf. (GECCO),
Jul. 2007, pp. 1129–1136.

[29] S. Z. Zhao, P. N. Suganthan, and Q. Zhang, “Decomposition-based
multiobjective evolutionary algorithm with an ensemble of neighbor-
hood sizes,” IEEE Trans. Evol. Comput., vol. 16, no. 3, pp. 442–446,
Jun. 2012.

[30] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjec-
tive search,” in Parallel Problem Solving from Nature—PPSN VIII
(Lecture Notes in Computer Science), vol. 3242, X. Yao, E. K. Burke,
J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. E. Rowe,
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