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Abstract
As an important part of the internet of things (IoTs) and cyber-physical systems (CPS), Micro-Electro-Mechanical-Systems

(MEMS) is playing more and more irreplaceable role in current industrial community and the forthcoming era of the

Industry 4.0. The limitations of some frequently used design methods for MEMS design optimization are analyzed in this

review. In order to overcome these difficulties, a recent trend in design optimization of MEMS is inspired by the natural

evolution mechanism. Many powerful techniques, especially the evolutionary computation (EC), have been used for the

design optimization of MEMS. This paper presents a review of the achievements in this promising research area which

utilizes EC methods for the design optimization of MEMS and also proposes three open issues that it is facing.

Keywords Micro-Electro-Mechanical-Systems (MEMS) � Design optimization � Evolutionary design � Evolutionary
computation � Enterprise systems

1 Introduction

In enterprise systems, effective, flexible and excellent

design is a foundation to realize intelligent production.

How to create powerful design methods becomes one of

the key issues of the enterprise systems.

Micro-Electro-Mechanical System(MEMS)is a kind of

important high technological devices. The MEMS devices

comprise both mechanical and electronic components

which are manufactured on a common silicon substrate by

micromachining techniques adopted from integrated cir-

cuits (ICs). MEMS have very small scales which can

usually be measured in micrometers. As an important part

of the internet of things (IoTs) and cyber-physical systems

(CPS), MEMS is playing more and more irreplaceable role

in current industrial community and the forthcoming era of

the Industry 4.0 (Uhlmann et al. [1]).

The next sections are arranged as follows: in the Sect. 2,

the limitations of traditional MEMS optimal design is

introduced; in the Sect. 3, multiple evolutionary design

optimization methods of MEMS are reviewed; in the

Sect. 4, three open issues on the evolutionary design

optimization methods of MEMS are listed and discussed;

and in the Sect. 4, conclusions are given.

In the field of MEMS design, researchers are faced with

some special challenges. One of these is analyzing the

interrelated physical phenomena between MEMS devices

operating in tiny geometries. Micro-electromechanical

Systems involve many subjects such as mechanics, elec-

trical science, electronics, fluid mechanics, optics, chem-

istry, etc. Moreover, this is still a young field that is far

from perfect. Many physical phenomena are unknown or

not sufficiently explained in scientific way. Accordingly,

some methods that are widely used in mature fields, such as

differential equations, are often more difficult to apply in

the field of MEMS design. Another conundrum is that the

search space of design is so huge and complex that tradi-

tional optimization methods, which are often stuck in local

optimum, is extremely difficult to seek the global optimal

design solution in the search space [1].
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2 Evolutionary design of MEMS

A central part of the design process can often be formulated

as an optimization problem. However, in the complex

design space of MEMS, traditional optimization algorithms

are difficult to find the globally optimal solution set.

Therefore heuristic search method, especially evolutionary

computation (EC), is widely considered as an alternative

and promising approach. EC has been successful applied in

many engineering optimization applications. It has the

ability to deal with complex multi-modal search regions

and discontinuous design variables. It will bring mean-

ingful thoughts to the reasonable and rapid optimization

design in the field of MEMS automatic design.

Compared to the large number of groups utilizing tra-

ditional MEMS design methods, only a small number of

research groups are involved in the MEMS evolutionary

design, which include UC Berkeley [2–9], California

Institute of Technology [5, 7, 9], NASA, Michigan State

University [10, 11], Technical University of Denmark

[10, 12], and Cambridge University [13, 14]. Some

important conferences have also put a focus on this area,

such as GECCO [6], SPIE [7], ASME [2, 4, 15, 16].

Since H. Li and E. K. Antonsson started the pioneering

work of applying Genetic Algorithm (GA) for mask design

synthesis [15], many evolutionary techniques have been

developed to deal with MEMS design at different levels. A

brief account is as follows.

2.1 Hierarchical evolutionary synthesis of MEMS

Senturia first proposed to divide the MEMS model into

four parts: the system layer, the device layer, the physical

layer and the process layer [17], as shown in Fig. 1. For the

system layer model, Fan has implemented a BGGP strategy

that combines genetic programming and bond graphs [18].

Genetic Programming (GP) [19] is an effective evolution-

ary computation method based on tree structure. As a

modeling tool, Bond Graphs (BG) [20] provides a unified

approach for modeling and analysis of dynamic systems

(especially for hybrid multi-domain systems). At the sys-

tem level, Genetic Programming and Bond Graph are

combined to realize interactive modeling and simulation of

MEMS components as well as electronic devices. In the

work of Fan, Z. [18], functions are loaded into each node of

the tree. Experimental data show that, after defining the

feasible function set, the topology structure and parameters

of bandpass filters (RF MEM devices) can be evolved and

optimized, to fulfill the predefined design specifications.

Fan et al. further studied the physical layout synthesis

involving both system layer and device layer [11]. the

geometric dimension parameters of the basic components

are optimized [17]. In most cases, these basic components

are selected from micro electromechanical devices with

fixed topologies. As a result, the design problem can be

formulated as a constrained optimization problem, and GA

is usually used to solve it.

The overall performance optimization of MEMS gyro-

scope is considered from the system level [21]. The authors

have systematically optimized the thermostability and high

frequency oscillation of the gyroscope. Through the prac-

tical test, it has shown better environment adaptability than

results obtained by other methods.

2.2 Mask design synthesis of MEMS

The device layer requires a layout with a basic two-di-

mensional structure, including components such as beams.

In some cases, if a MEMS is based on a surface micro-

machining process and does not exhibit significant three-

dimensional (3-D) characteristics, design of this layer will

complete with a single cycle. However, more generally, it

is necessary to perform an efficient 3D modeling and

analysis of MEMS. From the point of view of manufac-

turing details and functional design of devices and systems,

automatic mask design and related industrial process syn-

thesis are very helpful in alleviating design difficulties [22].

Evolutionary methods are applied to mask design and

process synthesis in Li and Antonsson’s study [15]. GA

was applied in a geometrically efficient mask design pop-

ulation to iteratively search for the global optimum. A 3-D

corrosion simulator called Segs simulates the production of

each layout by the same team. This research is further

improved by utilizing object-oriented structures, and

whichever forward process simulation can be evaluated

[23].

Evolutionary algorithms are applied to mask design

[24, 25]. The testing and coordination of design rules

between the schematic and the layout are also considered in

the design of mask [24]. Compared to single mask design,

better performance of MEMS is achieved.

Simulation

Verification

Fig. 1 Model classification proposed by Senturia [17]
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2.3 Multi-objective optimization strategy

Due to the complex characteristics of MEMS design, more

than one target is often considered in many cases. The

optimal design of MEMS can often be considered as a

multi-objective optimization problem. For example, the

design objectives of designing a meander resonator

include: minimize the difference to the target value of the

resonance frequency and the stiffness of the foot in each

direction, and to minimize surface area at the same time

[4]. As another example, for the ADXL150 accelerometer,

the design objectives include: to minimize the difference

between the angular frequency and the target angular fre-

quency, to minimize the design area, and to maximize

sensing capacitance [26]. Zhou et al. were among the first

group of automatic synthesis designers to apply the mul-

tiple objective genetic algorithm (MOGA) (New develop-

ments in MOGA research are documented in literature [27]

to MEMS (meander resonators) [2, 4]. In their experiments,

the topology and size of the devices were optimized using

MOGA. The geometric (graphical) validity of each design

is verified through a MEMS simulation toolbox SUGAR

[28]. In the multi-objective genetic algorithm, the Pareto

optimization (in Fig. 2) is used to find a variety of non-

dominated optimal solutions, and fitness value sharing is

used to keep the diversity of the solution set. Based on the

work of Zhou, Kamalian analyzed the influence of geo-

metric constraints on resonator case studies, and extended

the approach to the design of more advanced MEMS

devices, such as accelerometers and gyroscopes [29].

Zhang continued the research of Zhou and Kamalian, and

proposed a hierarchical MEMS design and optimization

structure [30]. The effectiveness [3] of MOGA is demon-

strated by comparing the performance of MOGA and other

methods [Simulated annealing (SA) [31] and single-object

genetic algorithm (SOGA)] in MEMS optimization design.

The results of optimizing a meander resonator by using the

above method show that, SOGA is faster than MOGA, but

easier to fall into the local optimum. In some cases, SA is

more efficient than genetic algorithms, but can only treat

one single goal and have the difficulty of finding the

optimal solution. It is shown to have low robustness in

performance on many MEMS synthesis problems. A sim-

ilar experiment has been conducted using a simple and

extensible genetic programming language by Lohn et al.

[32]. In literature [33], the size and power of micro res-

onator are optimized simultaneously by combining NSGA-

II algorithm and sequence planning. In the optimization

process, to minimize the size is taken as the main objective,

and two feasible schemes are obtained according to the

actual manufacturing principle. In literature [34], the multi-

objective evolutionary design of piezoelectric energy har-

vesting MEMS is carried out. The design results are also

evaluated and discussed, which shows that MOGA-II is

superior to NSGA-II in some cases.

After 2010, Zhang and Agogino have published two new

works: A hierarchical multi-objective genetic algorithm

with proper genotype expression of components is devel-

oped, which integrates the engineering knowledge of

specific fields into the design optimization process, and

applied in the optimization design of MEMS [5]. An

interactive hybrid evolutionary computation method is

proposed to solve the problem of subjectivity and incon-

sistency incurred in expert evaluation [9]. In the process of

integrating expert experience into MEMS evolutionary

design, their research results are in the leading position in

this field.

To demonstrate the advantages of multi-objective

genetic algorithm, a comprehensive design optimization is

carried out for three manipulators with 3 degrees of free-

dom in literature [35]. According to the optimization

results, it is proven that the genetic algorithm can obtain

global optimal solutions, which cannot be obtained by

human design before. Similarly, a micro accelerometer is

optimized by using multi-objective genetic algorithm in

literature [36]. The robustness, stability, sensitivity and

other indexes of a gyroscope are also optimized by using

multi-objective genetic algorithm in literature [37]. The

experimental results show that the proposed algorithm has

obtained designs with better performance than those of

human designs obtained mainly by empirical studies.

2.4 Robustness design

With the current micro mechanical technology conditions,

the variation caused by the MEMS manufacturing process

is inevitable. It therefore has become a very important issue
Fig. 2 Pareto optimization for minimization problems of two-dimen-

sional objects

Cluster Computing

123



on how to design MEMS insensitive to the variation caused

by the manufacturing process. The concept of robustness is

thus introduced to help study how to improve the quality of

the product when there are significant uncertainties in the

process. Some research groups have tried robustness design

in the MEMS optimization design. On the basis of previous

researches on mask design and process synthesis [22], Ma

proposed a robust design technique called Genetic Algo-

rithm with Robust Solution Search Technique [38]. In their

approach, interference factors are first loaded into the

design process, and then a design solution is obtained by

using GA. Hornby proposed two modification strategies to

obtain better robustness for generating a design solution by

GA cyclic evolution [39]. One strategy is loading local

interferences, and the other is applying pre-stressing to the

design.

Fan formulated the robustness design problem as a

constrained multi-objective optimization problem in which

the two design objectives were minimized in the MEMS

layout design. Then an efficient algorithm, NSGA-II, was

used to find the optimized solutions [16]. In this approach,

only a modification of the objective function is required

without modifying any algorithmic process. In Fan’s more

recent studies, an improved differential evolution (DE)

algorithm based on stochastic sorting is developed, which

has better performance [41] in the robustness design of

MEMS than the NSGA-II [40].

In the literature [42], to address the uncertainty of

etching process in MEMS machining, all types of possible

uncertainties are considered as unknown and bounded. An

etching process uncertainty set is designed according to

different conditions, which is combined with topology

optimization to adapt to the uncertainty in the etching

process. In the literature [43], various uncertain factors that

affect the performance of MEMS are analyzed, with the

strength, reliability and performance index of MEMS

machining process modeled. Then, genetic algorithm is

used to optimize the indicators in order to obtain an opti-

mal scheme considering various possible uncertainties.

2.5 Efficiency improvement

The large evolutionary population of each generation

makes the computational cost of the simulation process

very high. As a result, the evolutionary optimization design

process of MEMS is usually complex and time-consuming.

It is a very important research to improve the efficiency of

finding the global optimal design solutions in the real world

applications.

A hybrid evolutionary computation method with two

layer optimization techniques, global random search and

local optimization based on gradient, is proposed by Zhang

et al. [30], which is an extension of Zhou’s work [4]. The

method utilizes a geometric model of a fixed design by the

end of the global search, thus effectively integrates local

optimization technology based on gradient to further opti-

mize and finetune a promising design solution.

Kamalian et al. carried out the work of embedding sight

control of the designer and interactive evolution compu-

tation (IEC) of the domain knowledge in the MEMS

computer aided design process [6]. The example of

meander resonators shows the effectiveness of the IEC

method. Zhang developed an interactive hybrid algorithm

(IHC) [29] to avoid the heavy workload on the IEC and to

compensate for the lack of recognition of good patterns for

hybrid GAs. IEC and IHC both treat preference problems

in a forthright way.

Since the initial population of MOGA is set up by the

user or randomly generated, the case-based reasoning

(CBR) method proposed by Cobb et al. can be integrated

into the MEMS design process to speed up the synthesis

process [7]. A case index library of previously successful

MEMS designs and semi-finished products is created. The

CBR provides a repository of approximate designs for

current goals, which can store current best designs for

future use. Their experimental results show that combining

CBR and MOGA tools helps to increase the number of

viable conceptual designs. Their more recent work in this

field can be seen in literature [8].

In order to improve the speed of evolutionary compu-

tation in parameter optimization of MEMS relay, a parallel

evolutionary computation method is designed in literature

[44]. In order to improve the efficiency and load balancing

of computer resources, the fitness calculation process of

evolutionary algorithm is processed in parallel. Multiple

machines connected in a LAN communicate with each

other in a master–slave mode. The individuals of the

population are distributed to the client by the server for

evaluations, and finally the individuals are collected, to

reduce the running time of the algorithm. Experimental

results show that the parallel evolutionary algorithm has

high computational efficiency and can obtain better solu-

tions in a short period of time.

3 The main problems of MEMS evolutionary
design

Although many progresses have been made in MEMS

evolutionary design, as an emerging field, three major open

issues still exist:

(1) As Chaudhuri and Deb pointed out on a broader

level, the evolutionary optimization community

rarely considers the preferences of traditional deci-

sion makers systematically and comprehensively

Cluster Computing

123



[45]. However, for design issues, preferences are not

to be ignored, and sometimes even crucial [46–49].

Therefore, it is an important research topic to

integrate preference into MEMS evolutionary

design.

(2) The complexity and complex systems have drawn

wide attention from academia. The journal Science

has published a series of complexity and complex

systems in nearly 10 years. Some MEMS (such as

distributed MEMS, distributed intelligent MEMS

[58, 59]) are undoubtedly complex systems. The

current MEMS evolutionary design research has not

yet fully exploited methods for complex systems,

and utilized existing research results of complex

systems, such as in literature [50–59].

(3) After the design has been completed, the system

augmented performance evaluation of multiple

schemes will be conducted, which integrates pro-

gram selection design, performance evaluation, and

selection of interdisciplinary research ideas and

technical route. This research has not been reported

elsewhere.

Research on these issues has important scientific and

practical value for the development of new methods for

MEMS evolutionary design. In summary, the following

research directions are suggested.

(1) Apply the idea of preferences before, during, and

after the design process and combine human intel-

ligence with machine intelligence. It is beneficial to

realize man–machine combination reasonably and

effectively, to construct a scientific, feasible and

even innovative design scheme of MEMS. In this

regard, there are many research opportunities with

great scientific significance.

(2) Integrate preference based evolutionary design

method into computer decision support system for

MEMS. It is the development of the current MEMS

design tool, which has wide application prospect,

and can be expected to obtain high economic value.

4 Conclusions

As an important part of the internet of things (IoTs) and

cyber-physical systems (CPS), Micro-Electro-Mechanical-

Systems (MEMS) is playing more and more irreplaceable

role in current industrial community and the forthcoming

era of the Industry 4.0.

Design is the foundation of manufacturing. This paper

reviews the related research on the evolutionary approa-

ches applied for optimizing MEMS design. These

approaches are applied in different aspects of the MEMS

design process, from the system level, device level, to the

physical level and the process level. In this review, we find

that to a large extent, these evolutionary approaches are

more capable of solving multi-objective problems and gain

better performance for searching global optimum solutions.

Although with great potential, this field is facing some

difficulties, including e.g., how to consider the preferences

in the multi-objective optimization process, and how to

adopt the fruit achievements of the complex science. These

open issues are important and interesting, and are worth-

while to be investigated and explored in depth.
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