
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012 391

Evolutionary Design of Both Topologies and
Parameters of a Hybrid Dynamical System

Jean-François Dupuis, Zhun Fan, Senior Member, IEEE, and Erik D. Goodman

Abstract—This paper investigates the issue of evolutionary
design of open-ended plants for hybrid dynamical systems, i.e.,
both their topologies and parameters. Hybrid bond graphs
(HBGs) are used to represent dynamical systems involving both
continuous and discrete system dynamics. Genetic programming,
with some special mechanisms incorporated, is used as a search
tool to explore the open-ended design space of hybrid bond
graphs. Combination of these two tools, i.e., HBGs and genetic
programming, leads to an approach called HBGGP that can
automatically generate viable design candidates of hybrid dy-
namical systems that fulfill predefined design specifications. A
comprehensive investigation of a case study of DC-DC converter
design demonstrates the feasibility and effectiveness of the
HBGGP approach. Important characteristics of the approach are
also discussed, with some future research directions pointed out.

Index Terms—Automated design, bond graphs, evolutionary
design, genetic programming, hybrid mechatronic systems.

I. Introduction

ALINE OF RESEARCH has been pursued to automate
the design process of mechatronic systems [1]–[5]. This

paper presents research that aims to extend work on evolution-
ary design of mechatronic systems based on the bond graph by
genetic programming (BGGP) approach that combines bond
graphs (BG) and genetic programming (GP) [6]. Interesting
results on a variety of case studies were obtained using
the BGGP approach, including electrical filter design [7],
[8], typewriter redesign [9], design of mechanical vibration
absorbers [10], embodiment of a vehicle suspension system via
co-design of controller and plant [11], [12], and micro-electro-
mechanical systems [13]. However, all of them are limited to
dealing only with continuous dynamics of mechatronic sys-
tems. In addition, even though bond graphs can also be used to
represent controllers, such as proportional integral-derivative

Manuscript received December 6, 2010; revised March 17, 2011; accepted
May 4, 2011. Date of current version May 24, 2012. This work was supported
in part by the Danish Agency for Science Technology and Innovation,
under Grant 645-06-0186, in part by the National Science Foundation under
Cooperative Agreement DBI-0939454, and in part by the National Nature
Science Foundation of China under Grant 61175073. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science
Foundation.

J.-F. Dupuis is with the Department of Management Engineering, Technical
University of Denmark, Lyngby 2800, Denmark (e-mail: jedu@man.dtu.dk).

Z. Fan is with the College of Electronics and Information Engineering,
Tongji University, Shanghai 201804, China (e-mail: zfan@tongji.edu.cn).

E. D. Goodman is with the BEACON Center for the Study of Evolution
in Action, Michigan State University, East Lansing, MI 48824 USA (e-mail:
goodman@msu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2011.2159724

or phase-lead controllers for continuous dynamics of a hybrid
mechatronic system [12], they do not have the capacity to
describe controllers that govern the discrete parts of the hybrid
mechatronic system. The proposed extension makes use of
hybrid bond graphs (HBGs) to represent both continuous and
discrete dynamics, and GP to explore the open-ended design
space of hybrid mechatronic systems, leading to the HBGGP
approach. With this method, systems containing both event-
driven and time-driven phenomena can now be evolved using
GP and bond graphs, considerably increasing the potential
applications previously covered with the BGGP approach. The
complexity of the methodology is, however, increased by the
need of controlling discrete events. A lookahead controller was
adopted to fulfill this task.

Actually, various representations, including a finite state
automaton (FSA) controller and a lookahead controller, have
been investigated in the previous work in an effort to identify
the best representations for hybrid controllers [14]–[16]. FSA
controllers have gained popularity in industry, and appeared
to be an effective representation. It has also been shown that
proper FSA controllers can be designed automatically using
an evolutionary approach. The controllers obtained were able
to successfully control a given hybrid mechatronic system
to achieve both predefined and varying control targets [16].
However, the evolutionary design of FSA controllers in this
way appeared to be too computationally expensive, which
interferes with the possibility of concurrently designing both
controller and plant of a hybrid mechatronic system, and thus
reduces the robustness of exploration for open-ended plant
designs. In fact, when we tried to evolve both the controller
represented by FSA and the plant represented by hybrid bond
graph, we found it impossible to obtain any reasonable results
in an acceptable period of time, because the search space
became prohibitively large. As an alternative, we have adopted
the lookahead controller to take advantage of its forthright
design procedure that can be easily automated. Therefore, for
each individual design candidate of the plant, an optimized
lookahead controller can be obtained automatically with a
fixed procedure. Our algorithm can then focus on exploration
of the open-ended design space of plants, with the definition
of an optimized lookahead controller and the evaluation of the
system performance being automated thereafter.

This paper makes three primary contributions.
1) The HBGGP method uses genetic programming to gen-

erate hybrid bond graphs so that it can also deal with
dynamical systems that contain discrete events.

1089-778X/$31.00 c© 2012 IEEE



392 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

TABLE I

Power Variables in Various Energy Domains

Energy Domain Effort Flow Variables
Mechanical translation Force Linear velocity
Mechanical rotation Torque Angular velocity
Electrical Electromotive force Current
Magnetic Magnetomotive force Flux rate
Hydraulic Pressure Volumetric flow rate
Thermal Temperature Entropy flow rate

2) The lookahead controller is adopted as a representation
for the discrete controller so that the search space of the
hybrid system design is effectively reduced.

3) A careful design of primitives and speciation mecha-
nisms applied to genetic programming ensures efficient
exploration of the reduced search space, and enables
the algorithm to find valid design candidates satisfying
predefined design specifications.

The remainder of this paper is organized as follows. First,
Section II introduces hybrid bond graphs and the looka-
head controller. Then, Section III describes the HBGGP
methodology that automatically generates viable designs of
hybrid dynamical systems represented by hybrid bond graphs.
Section IV provides a case study of design of a DC-DC
converter circuit. Finally, Section V concludes this paper with
observations and discussions of future research directions.

II. Hybrid Bond Graphs and Lookahead

Controllers

A. Hybrid Bond Graphs

Bond graphs [17], [18] and their hybrid extension [19],
[20] are graphical representations of the energy exchange in a
physical system. Bonds between components model the trans-
fer of power between them. In a bond, the power is divided
into its two subcomponents, effort and flow, whose product is
power. Using such a power-based modeling approach makes it
very easy to span multiple domains in a single representation.
Table I lists some effort and flow equivalents for various
physical domains.

The components used in a bond graph model are also very
generic. They simply model how energy is generated (Se, Sf ),
stored (C, I), transformed (GY, TF ), or dissipated (R). These
components can be connected through junctions at which they
share either the same effort value (0-junction), or flow value
(1-junction). Tables II–IV summarize the components used in
a bond graph model.

In order to model discrete phenomena within physical
system, a switch component (Sw) was added to the set of
bond graph components to allow the creation of hybrid bond
graphs. The switch acts as a zero-effort or zero-flow source
depending on its state. For example, if a switch is connected
to a 1-junction, the zero-flow state of the switch will block any
flow through that junction. On the other hand, the zero-effort
state will add a zero element in the effort summation, hence
correctly modeling an ideal switch.

TABLE II

Energy Generation, Storage and Dissipation Components

Symbol General Relation Linear Relation Example
⇀ R e = �R(f ) e = Rf Damping, friction, re-

striction
f = �−1

R (e) f = e/R

⇀ C q = �C(e) q = Ce Spring, tank, capaci-
tor

e = �−1
C (q) e = q/C

⇀ I p = �I (f ) p = If Mass, coil, inertia
f = �−1

I (p) f = p/I

Se ⇀ e = �e(t) Gravity, voltage
source

Sf ⇀ f = �f (t) Pump, current source

TABLE III

Energy Transformation Components

Symbol General Relation Example

e1
⇀
f1

TF
e2
⇀
f2

e1 = me2

f2 = mf1
Lever, pulley, gears

e1
⇀
f1

GY
e2
⇀
f2

e1 = rf2

e2 = rf1
DC motor, hall effect sensor

TABLE IV

Power Junctions

B. Lookahead Controller

A one-step lookahead controller was implemented to control
an example DC-DC converter. The one-step lookahead con-
troller was chosen mainly due to its simplicity. This controller
will, at run time, for each time step, perform a simulation in
order to predict the future state variable values of the system,
xSwi

, for all switch configurations, SW = {Swi|i = 1, . . . , n}.
Then the chosen configuration to be applied at the next time
step will be the one having the direction closest to that of the
target point xd from the current state. Thereby, the controller
minimizes the angle between the vector defined by the current
state x and the target xd , and the vector defined by the current
state and the predicted system trajectory xSwi

argmin
Swi∈SW

(
arccos

(x − xd)(x − xSwi
)

|x − xd ||x − xSwi
|
)

. (1)

An important characteristic of this type of controller is that
the controller does not need to be trained or redesigned for a
specific system. The controller only needs an accurate model
of the system to be controlled in order to be able to predict the
future state of the system. The only parameter of the controller



DUPUIS et al.: EVOLUTIONARY DESIGN OF BOTH TOPOLOGIES AND PARAMETERS OF A HYBRID DYNAMICAL SYSTEM 393

Fig. 1. Lookahead control with limited horizon.

is the lookahead horizon, which should be established with
regards to the available computing power and sampling time
between two adjacent controller commands. In our study, the
lookahead horizon was set to a single step in order to minimize
computation time.

III. Evolving Hybrid Bond Graph Using Genetic

Programming

GP has been applied in the past to a wide variety of
domains. In the beginning, GP was intended to evolve com-
puter programs [21]. Soon, people wanted to exploit the
power of GP to generate things other than tree-like systems.
In [22], the cellular encoding is proposed to evolve neural
networks, in which programs are interpreted as a sequence
of instructions that modify (grow) a simple initial structure
(embryo). This approach has notably been extended to evolve
electronic circuits [23] and to numerous other domains. The
edge encoding [24] has also been proposed as an alternative to
the cellular encoding to evolve general graphs. This approach
is very similar to the cellular encoding, but it uses edge
operators rather than node operators. A variation of the edge
encoding [25] has also been applied to evolved growing
creatures based on L-systems [26].

Following an idea resembling the cellular encoding, the
BGGP [6], [7] approach was proposed. Interesting results on a
variety of case studies were obtained, including electrical filter
design [7], [8], typewriter redesign [9], design of mechanical
vibration absorbers [10], co-design of controller and plant
embodiment of a vehicle suspension system [11], [12], and
design of micro-electromechanical systems [13].

As with cellular and edge encodings, an embryo is first
defined. Then a tree is generated by GP, containing bond-
graph-modifying functions that are executed to transform the
embryo into the bond graph to be evaluated. Unlike the
previous approaches, the BGGP operators can be applied on
both nodes (components) and edges (bonds) of the bond graph.

In order to evaluate an individual, its GP tree must first be
executed to grow the bond graph from the common embryo.
The growing process usually leads to a bond graph contain-
ing some junctions and components that can be simplified.
Therefore, a bond graph simplification algorithm is applied
before formulating the state-space equation of this bond graph.
Once the simplified hybrid bond graph is obtained, the number
of switches it contains is passed to the lookahead controller

Fig. 2. Individual evaluation procedure.

Fig. 3. Simple example of bond graph creation from an embryo. (a) GP tree.
(b) Embryo. (c) After AddR and InsertJ1. (d) After AddC.

before the integration of the state-space equation takes place.
The system can be simulated for many different scenarios.
The performances obtained for each of them are combined to
form the fitness that will be returned to the evolver. Fig. 2
summarizes this evaluation procedure.

A. Introduction to Bond Graph Construction

From the standard GP point of view, the GP tree used here
to grow hybrid bond graphs could be interpreted up-side down,
as the primitives are defined to receive a single argument and
to return a variable number of them. The received argument
is the modification point where the primitive will be applied.
After the execution of the primitives, a list of new modification
points where the bond graph can be further modified is
returned.

Fig. 3 shows a very simple example of how a bond graph
can be created from a GP tree.

It starts with an embryo, which is normally composed of
two parts: the subsystem that is not changeable, and modifiable



394 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

sites. The modifiable sites are carefully defined in the embryo
so that new structures of the system can be grown from them.
An embryo can be either small or big. In the former case,
almost the whole structure of the system needs to be grown
out of the embryo. In this case, the designer usually has no
or little knowledge on what the resultant design could be. In
the latter case, the major part of the design is usually known
in advance, and a certain subsystem needs to be redesigned.
In this case, it is worthwhile to note that previously obtained
solution can also be used as an embryo, so that successive
evolutionary design can be conducted [7], [9]. Here, the
embryo indicates that the system input will be a flow source.
The resistance, R1, could model, in the electronic domain, an
output load to which the system will be connected. Also, there
is a known amount of inertia that will be present in the system,
represented by including I1 in the embryo. The embryo also
defines the modification sites where the bond graph will be
allowed to grow. Here, the 0-junction represents a junction
modification point, while the bond connecting R1 represents
a bond modification point.

In the illustration, starting from the embryo, a primitive,
which may include new modification sites, is connected to
each modification site. Here, the AddR primitive is connected
to the 0-junction site and the InsertJ1 is connected to the
bond modification site. InsertJ1 will make the newly inserted
junction a new modification site that will be used by the
AddC primitive. Fig. 3(d) shows the resulting bond graph
structure obtained after the complete execution of the GP
tree represented by Fig. 3(a) on an embryo represented by
Fig. 3(b).

B. Typed GP for Bond Graph Evolution

In the BGGP approach, bond graphs are modified at specific
modification points. These points can be located on a bond or
a component, which in turn can be a junction or a terminal
component like a resistor or a capacitor. In order to have a
relevant operator applied at a certain modification point, the
GP tree needs to be constrained to only allow connections
between compatible GP primitives.

The initial BGGP method was extended to use a variation
of the usual strongly typed GP structure. Instead of having a
single argument type, each GP primitive defines a set of them.
Each returned argument could also define a set of valid types,
but the primitives currently used here only return a single type
per value.

The main advantage of including a set of supported input ar-
gument types is to be able to introduce more flexibility during
the modification of the GP tree. For example, two primitives
could modify the same junction in the bond graph. The first
one could be valid only if a 0-junction is given, while the sec-
ond one could be valid on either junction type. Therefore, the
set of the input argument types of the first primitive will only
include the 0-junction type, while the set of the second one
will include both junction types. As a result, both primitives
will be able to be matched at a 0-junction modification point.
However, only the second primitive could be attached to a 1-
junction site. As a result, the possible crossover and mutation
points for the second primitive are greatly enhanced.

TABLE V

Definition of Argument Types

Type Description
Bond Site located on a bond.

1-Bond Site located on a bond connecting a 1-junction.
0-Bond Site located on a bond connecting a 0-junction.

Jct Site located on a junction.
1-Jct Site located on a 1-junction.
0-Jct Site located on a 0-junction.

Node Site located on a terminal bond graph component.
Double Parameter value of a bond graph component.

Fig. 4. Representation of bond graph argument types. (a) 1-Bond.
(b) 0-Bond. (c) 1-Jet. (d) 0-Jct. (e) Node.

Without the use of a set to define the valid input argument
types, multiple versions of the same primitive would be
required to cover all cases. It would therefore prevent the
crossover and mutation operators from changing the type of
modification site on which the primitive could be applied. For
instance, if two versions of the same primitive were defined
to cope with two different cases, then when both of them
appeared in the GP tree, it would not be possible for the
crossover operator to exchange those sub-trees as their types
would not match. On the other hand, if a single instance of
the primitive is defined with a set of valid argument types,
these two sub-trees can be swapped by the crossover operator.
Hence, the genetic operators can more easily transport good
building blocks among different locations in the GP tree.

C. Bond Graph Argument Types

The argument types used in the proposed approach are
summarized in Table V and their graphical representation are
illustrated in Fig. 4. There are four main argument types–one
for each category of modification site.

The first category represents the modification sites that are
located on a bond. It can be a bond between two junctions or
between a junction and a terminal component. In the former
case, if the power stroke is located on the side of a 1-junction,
the bond will be called a 1-Bond; otherwise, it will be called
a 0-Bond. In the latter case, the type of bond will depend on
the junction type to which it is connected. The argument type
“Bond” serves as a wild card that can mean any bond type.

The second category consists of the modification sites that
are located on a junction. Depending on the junction type, the
argument type will be called a 1-Jct or a 0-Jct to refer to a
modification site located on a 1-junction or on a 0-junction,



DUPUIS et al.: EVOLUTIONARY DESIGN OF BOTH TOPOLOGIES AND PARAMETERS OF A HYBRID DYNAMICAL SYSTEM 395

respectively. Again, the argument type “Jct” defines a wild
card that means any junction type.

The other two categories are related to terminal components.
The Node argument type refers to a modification site that is
located on a terminal component such as R, C, I, or Sw.
The Double argument refers to a real number value, which
is mainly used to establish the parameter value of the related
component.

Finally, there is a special argument type called Parent’s.
This return argument type will take the same type as the one
received as input. This is useful for a primitive that can be
applied to a variety of modification site types, but needs to
return a corresponding type for its child primitives.

D. Primitives

In order to successfully evolve a bond graph, a set of
primitives that alter the current topology of the bond graph
needs to be defined. Table VI lists the primitives used in
the proposed approach. Most of them are a redesign or an
extension of the ones used in the original BGGP approach.

These primitives are designed to be applied on a single
modification site. Then the newly created modification sites,
as well as the site received as input, are returned as arguments,
so that they can be further modified by later primitives.

1) Closing Modification Site: In order to stop the growth
of a bond graph at a specific location, and thus have a GP tree
of finite size, a terminal primitive is needed. This primitive is
simply called End. It is used to close a modification site so
that further modification is not possible. It, together with the
ephemeral double (E) forms the terminal set of primitives.

2) Component Related Primitives: The add-component
primitive connects a new component to an existing junc-
tion. The primitive exists in the form of AddR, AddC and
AddI, which respectively add a resistor-, a capacitor-, and an
inductor-like component. This primitive acts on both junction
types and returns the junction type on which it was applied.

In addition, this primitive introduces a root point of a pa-
rameter sub-tree. This sub-tree forms a real number expression
that computes the parameter value of the added component.
It also introduces a node modification site, where the replace
component primitive can be applied. This latter one is used
to convert an existing component to a new one with its own
parameter sub-tree.

An important component-related primitive is the switch-
addition primitive. The addition of switches to the bond
graph makes the emergence of hybrid systems possible. It
should be noted that the number of switches in a hybrid
bond graph should be constrained within a certain acceptable
range. This constraint ensures that the control complexity of
the system does not explode. For instance, the simulation
time of the system using a lookahead controller will increase
exponentially with the number of switches. It is therefore
advisable to limit the number of switches present in a hybrid
bond graph to avoid excessive evaluation time.

3) Junction Related Primitives: Initially, only the simple
insertion primitive was used in its two forms, InsertJ0 and In-
sertJ1, which insert a 0-junction and a 1-junction, respectively.
These primitives insert new junctions of the specified types

Fig. 5. Example of ineffective primitive action on bond graph. (a) GP tree.
(b) Embryo of a three-tank system with two inputs. (c) After AddR and
InsertJ10. (d) After InsertJ01 and following AddR. (e) After simplification.

regardless of the junctions to which they will be connected.
Because of the properties of adjacent junctions of the same
type, this means that many redundant junctions can be inserted
successively, which will later be simplified into a single one.
As a result, the GP tree can grow to a substantial size, but
the net effect of this growth on the simplified bond graph can
still be negligible. It is worth noting that many applications
of these primitives have no net effect on the resulting bond
graph, but that these negligible operations are easily detected
and removed before state equations are formulated.

Fig. 5 illustrates the problem of ineffective junction inser-
tion. Both 0-junction insertion and the following resistance
addition operations vanish after simplification, as both resis-
tances are combined. Therefore, parts of the GP tree could
be removed to leave only the AddR primitive with a new
parameter computation sub-tree that reflects the merger of the
two resistances.



396 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

As GP already suffers from the bloating effect [27], it
would seem be worthwhile to design primitives that do not
stimulate bloating. For this reason, the junction pair inser-
tion primitive was designed. Instead of inserting a single
junction, this primitive inserts a connected pair of 0 and 1-
junctions. The order of the two junctions assures that two
junctions with the same type are not connected to each
other. This tends to reduce the number of redundant junction
insertions.

While having the potential to reduce bloating, the junction
pair insertion does not eliminate the possibility of topolog-
ically ineffective sub-trees. For instance, if one of the two
inserted junctions is not later connected to another component,
it results in an empty junction which will be eliminated during
the simplification phase. As a result, two similar junctions will
now be connected together and further simplifications will be
possible. In fact, the simplification step usually reduces the
size of the evolved bond graph by 60%.

In the end, the insert junction pair can be seen as a way to
stimulate the use of alternating 0 and 1-junction in the creation
of the bond graph, while not completely removing potentially
valuable introns in the genotype.

4) Loop Creation Primitive: The SplitBond primitive is
used to introduce loops in the system by splitting the power
into two parallel paths. Providing a loop generation primitive
in the GP tool set greatly improves the variety of systems the
evolutionary search can find.

5) Flip Bond Primitive: The flip bond primitive is used to
invert the power direction of a bond. It can be used to control
the power direction in the bond graph, notably in loops. This
primitive is similar to the primitive that inverts the polarity of
a component when evolving electrical circuits [28].

E. Genetic Operators

The genetic operators applied on the GP tree to evolve
hybrid bond graphs are essentially the same as the ones used
in standard GP. However, the crossover and mutation operators
used for basic strongly typed GP have been modified to
balance topological exploration and parameter optimization.
In addition, the operator set is augmented by the speciation
operator.

1) Crossover and Mutation: In this paper, we adopted a
crossover rate of 0.9 and mutation rate of 0.1. In standard
GP, crossover and mutation operators randomly select the
nodes where the tree will be modified. All nodes thus have
an equal chance of being selected. Since the parameters are
defined by numerical sub-trees within the same tree as the
structure nodes, parameter and structure nodes are chosen
with the same probability regardless of their nature. Because
there are often more numerical nodes than structure-modifying
ones, structure exploration is slowed down as more parameter-
modifying nodes are generated and are therefore more likely to
be picked by the crossover or mutation operators. As a result,
premature structural convergence can occur, as only parameter
nodes are likely to be selected for optimization.

In order to avoid this problem, structure and parameter
exploration must be controlled explicitly. Reference [29] pro-
posed to use a probabilistic method to first decide if a param-

Fig. 6. Hand-designed single-input double-output DC-DC converter.
(a) Physical system schematic. (b) Bond graph. (c) (GP-Tree).

eter or structure modification will be made. Then, mutation
or crossover are applied only to the relevant type of nodes.
Since new structures need time to tune their parameters,
a bias is introduced toward numerical nodes. As a result,
newly obtained structures have the opportunity to adjust their
parameters in order to show their full potential before being
discarded. A typical parameter versus structure modification
rate is as follows:

pstruct = 0.15

pparam = 0.85.

Reference [29] also proposed to control explicitly the pro-
cess of node selection when applying a parameter modification
in order to achieve balanced parameter evolution. First, the
root of each numerical sub-tree is listed and one of them is
chosen randomly with equal probability. Then, mutation or
crossover is applied to the sub-tree of the chosen root. This
process gives equal mutation and crossover probabilities to
each parameter as it avoids focusing attention on an oversized
numerical sub-tree.

2) Speciation: We propose to use several speciation mech-
anisms to prevent premature convergence of genetic program-
ming. These mechanisms include structure fitness sharing
(SFS), hierarchical fair competition (HFC), and utilization
of an aging factor. Premature convergence in evolutionary
computation has always been an important issue. Many ap-



DUPUIS et al.: EVOLUTIONARY DESIGN OF BOTH TOPOLOGIES AND PARAMETERS OF A HYBRID DYNAMICAL SYSTEM 397

Fig. 7. Performance of the hand-designed single-input double-output DC-DC converter shown in Fig. 6(a). (a) Initial values. (b) Optimized values.

proaches have been proposed throughout the years to keep a
good balance between exploration and exploitation. In genetic
algorithms (GA), common diversity maintenance techniques
include crowding [30], deterministic crowding [31], and fitness
sharing [32]. Those techniques work quite well for solving
problems that involve a fixed number of parameters.

On the other hand, when facing problems where only
the structure needs to be evolved, other methods have been
proposed. One approach is to use a multiobjective fitness
that includes a distance metric between two GP trees to
enforce diversity [33], [34]. A second method, implicit fitness
sharing [35], proposes to look at the results produced by the
individuals. In this approach, individuals are grouped together
based on their behaviors (or phenotypes) instead of their
genotypes.

However, when dealing with problems that involve the
optimization of both structure and parameters, the landscape of
the search space is changed significantly. Structure diversity
is required in order to discover innovative designs, but the
performance of a given structure can only be assessed if
enough parameter optimization has been done on that struc-
ture. Therefore, a balance between structure and parameter
optimization must be achieved.

Also, the structure space formed by the GP tree is a highly
non-linear space, as a change of a single node can have a
drastic impact on the behavior of the phenotype due to the
weak causality of GP [36]. As a result, distance metrics based
on the GP tree are not very efficient at predicting similarities
in performance.

With structure and parameter optimization in mind, tech-
niques called SFS [29] and HFC [37], [38] were proposed.
In traditional fitness sharing, for instance, the population is
distributed over multiple peaks in the search space; in the
neighborhood of each peak, a number of individuals propor-
tional to the height of the related peak is allowed. In the
same manner, SFS considers each GP tree structure as a peak
in the space of structures. It tracks operations that alter the
structure, as opposed to the parameter values, of the bond
graph, and marks a structure as a new “peak” only when its
bond graph structure changes. This allows one to control the
amount of parameter optimization that occurs around each new
structure and hence achieve a good balance between structure
and parameter exploration.

HFC has proved to be an efficient approach to fight
premature convergence. It allows a good balance between
structure and parameter optimization by allowing structures
with under-optimized parameters to compete in lower-fitness
subpopulation classes. However, while delivering important
performance improvements, HFC is not completely immune
to structural convergence, especially if there are broad local
minima in the search space that attract all most solutions.
Therefore, it is the practice here to combine HFC with a
version of structure fitness sharing that compares simplified
bond graph structures.

The proposed SFS works in the same way as proposed
in [29], but fully compares bond graphs obtained after
executing the GP tree and the simplification algorithm. As a
result, individuals are classified into species and their fitness



398 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

TABLE VI

Bond Graph Modification Primitives

can be adjusted according to the properties of the species to
which they belong. As in SFS, the fitness adjustment factor of
individual i is computed according to the size of its species,
ni

s, as follows:

ηi
SFS =

(
ni

s

N

)−α

(2)

where N is the number of allowed individuals per species and
α is a parameter usually set to 1.5.

Inspired by the neuro-evolution approach NEAT [39], an
aging factor is also added to the fitness computation. This
gives the opportunity to remove strong individuals that have
reached a dead end, like a strong local optimum. The aging
adjustment factor of individual i is computed as follows:

ηi
age =

⎧⎨
⎩

1 − ai
s − A

β
, if ai

s > A

1, otherwise
(3)

where ai
s is the age, in generations, of species s to which

the individual i belongs, A is the threshold at which age is
affecting the fitness, and β is a parameter defining the aging
speed. If ηi

age < 0, then ηi
age = 0.

The final adjustment factor is obtained by multiplying both
factors

ηi = ηi
SFSη

i
age (4)

If ηi > 1, then ηi = 1. (5)

Finally, the fitness of the individual, �, is adjusted according
to its adjustment factor

�i = ηi�i. (6)

In summary, the individual fitness adjustment factor is only
based on the size and age of its species. There is no measure of



DUPUIS et al.: EVOLUTIONARY DESIGN OF BOTH TOPOLOGIES AND PARAMETERS OF A HYBRID DYNAMICAL SYSTEM 399

TABLE VII

Parameters for the Hand-Designed DC-DC Converter

Fitness I C1 C2

Initial 176.047 75 μH 800 μF 146.6 μF
Optimized 604.366 429 μH 401.128 μF 103.683 μF

distance between individuals. Only the corresponding species
need to be established by comparing the simplified bond
graphs.

IV. Case Study

The single-input double-output DC-DC converter is used
to demonstrate the capabilities of the proposed approach to
evolve hybrid systems. An interesting aspect of this par-
ticular case study is that traditional circuit designs already
exist with which to compare the performance of the evolved
circuit.

A. Hand-Designed Topology

The traditional circuit against which the new design is
compared was proposed in [40]. The converter circuit is
reprinted here in Fig. 6(a) and its bond graph representation
is shown in Fig. 6(b).

The initial parameters given in [40] have been optimized in
order to ensure a fair comparison with this circuit topology.
The parameter optimization process was done within the
HBGGP framework by simply freezing the given topology and
allowing only modifications of the parameter-related nodes in
the GP tree. This can be done by initializing the population
with the GP-tree shown in Fig. 6(c) and setting the parameter
modification bias to 1. Consequently, only the three parameter
nodes of the initial GP tree will be allowed to be replaced by
numeric sub-trees.

Table VII lists the parameters obtained at the end of the
optimization using the training case values listed in Table IX.
The simulation period is set to 20 ms, to accommodate a
typical settling time for the studied DC-DC converter, given
the initial parameter taken from [40]. It is notable from
Table IX that while the input voltage and the target voltage
outputs remain the same during the simulation period, the
two resistors change their values for three times. The training
case is set up in this way so that we can also test the
behavior of the evolved circuit design under changing load
conditions. This is further explained in Section IV-C. Fig. 7
shows side-by-side the behavior of the system before and after
the parameter optimization. The dotted red line in this figure
and the remaining figures of this article represents the desired
target values.

The circuit with new parameters effectively reduces the
initial transient phase and the current ripple. Hence, the fitness
was greatly enhanced with the new component values.

B. Design of the Embryo

To evolve bond graphs, an embryo must be defined. In our
design, the embryo has a single voltage input, vin, and two
voltage outputs, v1 and v2. Two load resistances, R1 and R2,

Fig. 8. Embryo of the DC-DC converter circuit. (a) Schematic of the embryo
circuit. (b) Bond graph representation of the embryo circuit.

Fig. 9. Progression of the population fitness during the evolution of both the
parameters and topology of the DC-DC converter.

are used to model the loads to which the system is connected.
This description of the system interface leads to the embryo
represented in Fig. 8, in which Fig. 8(b) is a bond graph
representation of the schematic of the embryo circuit described
in Fig. 8(a). The embryo has four modification sites. The
first one is located on the 0-junction and the three others are
distributed on each bond.

C. Variable Load Resistances

In order to avoid the emergence of a solution that would
be tuned only for a specific load case, the load resistance
values are changed three times during the simulation. In fact,
in early experiments when the change of load resistance was
not introduced, the typical evolved designs did not involve any
switching at all, and only used fine-tuned capacitors and induc-
tors. This is because with carefully selected parameters, these
components can still form a well-behaving circuit to achieve
the desired outputs. However, as soon as the parameters of
the components are slightly changed, the system performance
breaks down. Therefore, changes in value of the load resistance
have been applied in simulated training, to effectively press the
evolution to propose solutions that are not heavily dependent
on specific parameter values, forcing the evolved system to
adopt a switching approach.



400 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

Fig. 10. Best DC-DC converter at the end of the evolution. (a) Bond graph of the best individual at the end of the evolution. (b) Interpretation of the bond
graph. (c) Parameter values.

TABLE VIII

Parameters Used to Evolve the DC-DC Converter System

Objective Find a single-input electrical system that
minimizes the error on two outputs

Topology function set ReplaceC, ReplaceI, ReplaceSwitch, Re-
moveComponent, AddSw, AddC, AddI, In-
sertJ01, InsertJ10

Parameter function set MUL, DIV, ADD, SUB
Terminal set EndBond, EndNode, EndJct, Ephemeral
Fitness Maximum sum squared error to target of the

two outputs
Selection HFC with tournament size 2
Termination Maximum number of generation reached
Parameters Population size of 300 and 7 × 100, 0.85

parameter modification, 0.9 crossover, 0.10
standard mutation, 0.05 shrink tree muta-
tion, 0.05 swap mutation, simulation time
step of 0.01 ms. Maximum of 7 switches
allowed

D. Experimental Setup

The evolution was conducted using the parameters of GP
listed in Table VIII. The topology modification set included
only functions to add switches and energy storage components,
because an ideal power converter should not dissipate any en-
ergy. On the other hand, the model accuracy can be increased
by using non-ideal energy storage components, such that paral-
lel and serial resistances are added to each capacitor and induc-
tor. In this case, the energy storage component and its accom-
panying resistances should therefore be seen as a compound
component. However, the added complexity has not been
judged necessary to demonstrate the evolvability of the circuit,
and therefore it has not yet been implemented in this research.

A strong bias toward the parameter search is used to allow
enough parameter tuning for every new topology, while HFC
is used to keep structural diversity in the population.

The number of switches in the circuit is limited to a
maximum of seven. Individuals with more than seven switches

TABLE IX

Training Case Values

t Vin R1 R2 V̂1 V̂2 Î

0 1.5 6.25 34.1 1.875 3.75 0.650
5e-3 1.5 10 50 1.875 3.75 0.422
10e-3 1.5 14 40 1.875 3.75 0.402
15e-3 1.5 20 100 1.875 3.75 0.211

receive a fitness value of zero. This prevents the explosion
of the simulation time required to evaluate the proposed
solutions.

To evaluate the fitness of the evolved controllers, the system
is integrated for a period of 20 ms. The outputs are then
compared with the targets listed in Table IX. The same targets
apply for all training cases in this paper.

The current target is calculated using the resistances and
voltages according to the following equation:

I =
V 2

1

VinR1
+

V 2
2

VinR2
. (7)

An objective function φ(k) is computed for each output at
the end of the simulation, based on their errors

φ(k) =
∫

(yk − Tk)2dt : k ∈ 1, 2, 3 (8)

where y = {V1, V2, I} are the actual output values, and T =
{V̂1, V̂2, Î} are the target ones.

Later, the fitness for this controller is defined as the worst
objective function

� =
1

max(φ(k))
: k ∈ 1, 2, 3. (9)



DUPUIS et al.: EVOLUTIONARY DESIGN OF BOTH TOPOLOGIES AND PARAMETERS OF A HYBRID DYNAMICAL SYSTEM 401

Fig. 11. Performance of the best evolved single-input double-output DC-DC
converter of Fig. 10.

Looking at the worst case proved to be the best approach to
push the search algorithm to reach the desired target. In fact,
when looking at the average, the incentives to reach the targets
were not strong enough, and the evolution tended to cease after
finding a compromise between the errors of the two outputs.

E. Results

The time of a single run of the algorithm was in the range
of a few days. The simulation time was greatly increased
compared to the original BGGP approach which had a runtime
of a few hours. The high frequency and switching behaviors
presented in the case study require a much smaller simulation
time step that drastically increases the computational cost of
the fitness evaluation using the library of hybrid bond graph
simulation we developed in the study.1 The library can be
improved in a future study by adopting a better step length
control algorithm. The progression of the population fitness
during the evolution of the DC-DC converter is plotted in
Fig. 9. A significant breakthrough in the structure design
occurred somewhere between the 189th and 192nd generation,
at which time the fitness jumped over 500. Afterwards, the
fitness progressed, mainly due to parameter optimization, until
a final plateau was reached.

The best DC-DC converter design found using the evolu-
tionary approach is the one shown in Fig. 10 and its behavior
on the training case is plotted in Fig. 11.

1This library is available at http://sourceforge.net/projects/libbondgraph.

TABLE X

Open State Ratio Over All Achieved Switch Configuration for

the Evolved DC-DC Converter

Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7

1.000 0.815 0.185 0.814 0.186 0.433 0.567

TABLE XI

Fitness Obtained on the Validation Set for the Evolved DC-DC

Converter of Fig. 10

Case A B C Gain
1 85.56 61.84 356.47 270.91
2 83.59 179.29 343.73 164.44
3 133.97 73.43 314.71 180.74
4 111.85 407.43 457.85 50.42
5 124.17 62.06 355.57 231.40
6 127.55 113.10 383.32 255.77
7 118.14 112.62 446.45 328.31
8 119.36 95.95 448.72 329.36
9 92.96 170.86 412.37 241.51
10 80.64 74.31 407.02 326.38
11 123.58 96.32 105.10 -18.48
12 96.24 56.25 336.40 240.16
13 80.89 150.75 321.14 170.39
14 126.97 51.93 324.22 197.25
15 116.46 54.93 115.01 -1.45
16 113.10 166.86 277.83 110.97
17 94.43 326.34 413.18 86.84
18 101.54 100.61 440.98 339.44
19 116.59 66.96 113.08 -3.51
20 90.56 73.64 116.34 25.78
21 155.51 250.68 295.79 45.11
22 104.88 235.99 427.16 191.17
23 107.75 56.26 217.27 109.52
24 91.54 113.85 379.79 265.94

A: hand-designed topology, hand-designed parameters.
B: hand-designed topology, evolved parameters.
C: evolved topology, evolved parameters.

It can be seen that the proposed design successfully gen-
erates the desired output with an acceptable ripple level. In
addition, the initial rise time is reduced to a large extent. The
discontinuity in the load resistance introduces high voltage
peaks that are, however, quickly damped.

The design also exploits the maximum number of switches
allowed to give a maximum of flexibility in the system control.
However, from inspection of the circuit diagram of Fig. 10(b),
Sw1 and Sw2 are redundant. One of these two could be
removed without any effect. This is confirmed by the switch
states analysis with results listed in Table X. Sw1 is always
kept open, i.e., no current passes through it.

The control flexibility offered by this design is highlighted
by the impressive performance on the randomly generated
cases that were not used during the evolution. In Table XI, the
performance of the evolved design with both evolved topology
and evolved parameters (case C) is compared against that
of the hand-designed circuit using either the hand-designed
parameters (case A) or the evolved parameters (case B). The
gain in the table is the performance difference between the
evolved circuit (case C) and the better of the two hand-
designed ones (cases A and B). It can be easily seen that the
hand-designed circuit with evolved parameters (case B) fails
to obtain better performances than circuit case A in many of



402 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

Fig. 12. DC-DC converter behaviors of case A, B, and C on case 18 of the validation set presented in Table XI.

Fig. 13. DC-DC converter behaviors of case A, B, and C on case 13 of the validation set presented in Table XI.

the test cases, even though it performs much better in the
training case. In contrast, the circuit case C shows a much
more consistent performance improvement over circuit case
A. A selection of output behaviors for these cases can be seen
in Figs. 12–14, where each figure shows the output behaviors
of three circuit cases A, B, and C according to a set of selected
load conditions. To cover a complete spectrum, we included
the best and the worst cases, as well as an average one. In
each figure, the first subfigure A relates to the output behavior
of the circuit case A, subfigure B to the circuit case B, and
subfigure C to the circuit case C.

In terms of the fitness definition adopted in this paper, the
evolved design outperforms by a significant margin both hand-
designed ones in all except three cases. In those cases, the
evolved design is outperformed by a slight margin by the
original hand-design (case A), due to an increase in ripple
for the last load resistance combination. Fig. 14 shows the
worst performance on the validation set, where the last target
values introduce some instabilities.

In defining the fitness function, this paper takes into account
only the differences of the current and voltage outputs from
their target values. Thus, it ignores many other possibly
relevant considerations such as amount of ripple, suppression
of spikes, and even circuit complexity. Although it will be
important to include such considerations in a multiobjective
approach, we chose to leave that as a topic for future research.
In the first step taken here, the focus is on finding an approach

that can generate novel designs automatically, based on a
predefined design objective.

F. Generation of Alternative Design Concepts

Being a stochastic process, each independent evolutionary
run can converge to a different solution. For example, the
design shown in Fig. 15 was obtained from another evolution
run. This design performs even better than the design of
Fig. 10 in every single case on both the training and validation
sets, as shown in Table XII.

It can also be seen from Fig. 16 that the initial rise time
of both voltage outputs is reduced to less than 1 ms. This
is a significant improvement because the traditional human
design has a typical rise time of more than 10 ms. The ripples
are further compressed in the voltage outputs, especially for
V2. These results show that with the method proposed in this
paper, given a user-defined specification, we can automatically
generate novel designs that have a striking different character-
istic compared to the traditional design.

This also illustrates how the proposed approach can be
applied multiple times to generate a set of solution concepts
that the designer can eventually choose among.

G. Observations

This case study demonstrates that the HBGGP method
can generate novel, competitive designs based on predefined



DUPUIS et al.: EVOLUTIONARY DESIGN OF BOTH TOPOLOGIES AND PARAMETERS OF A HYBRID DYNAMICAL SYSTEM 403

Fig. 14. DC-DC converter behaviors of case A, B, and C on case 19 of the validation set presented in Table XI. This is the worst behavior observed on the
validation set.

Fig. 15. Alternate DC-DC converter design obtained from a second evolution run. (a) Bond graph of the best individual at the end of the evolution.
(b) Interpretation of the bond graph. (c) Performance on the training case. (d) Parameter values.

design specifications. This is achieved by optimizing both the
topology and the parameters. It is notable that even though
optimizing only the parameters could generate better design
for a specific load condition, it was not able to improve the
performance in many other load conditions tested. This means
that the parameter optimization is over-trained for a specific
load condition in our case study. On the other hand, optimizing
the parameters and meanwhile allowing the structure of the
circuit to be changed has made it possible to design novel
circuits that can deliver robustly good performance in a large
variety of load conditions.

The fitness function has a major impact on the resulting
evolved designs. Here, only the integrated error to the target
was taken into account in the fitness function. Hence, the
errors caused by the start rising transition and those caused by

ripple and transient voltage spikes are not differentiated. As
a result, the generated designs minimize the initial rise time
successfully, but also induce a certain amount of ripple and
transient voltage spikes that are not more severely penalized
during the evaluation of the circuit performance under the
chosen fitness function.

The method could be improved by using a multiobjective
approach in the fitness evaluation to introduce more design
considerations. For example, the fitness function could in-
clude objectives dealing with reducing ripple, transient voltage
spikes, as well as circuit complexity. It is also worthwhile
to point out that the main purpose of this paper is not
to find a DC-DC converter design that can outperform the
current human design in all aspects. Instead, we proposed
a methodology that can generate novel designs based on



404 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

Fig. 16. Performance of the alternative DC-DC converter design of Fig. 15 on validation set cases 13, 18, and 19.

TABLE XII

Comparison of the Fitness Obtained on the Training and

Validation Set for the Two Evolved DC-DC Converters

Case Fitness (Fig. 10) Fitness (Fig. 15)
Training 709.41 1089.71
1 356.47 661.82
2 343.73 716.46
3 314.71 872.68
4 457.85 903.87
5 355.57 748.64
6 383.32 903.02
7 446.45 715.97
8 448.72 766.36
9 412.37 842.03
10 407.02 692.42
11 105.10 598.84
12 336.40 658.80
13 321.14 740.89
14 324.22 747.94
15 115.01 405.98
16 277.83 773.11
17 413.18 865.58
18 440.98 881.33
19 113.08 580.18
20 116.34 582.97
21 295.79 777.65
22 427.16 826.28
23 217.27 586.98
24 379.79 777.50

predefined design specification, which paves the way for more
detailed design considerations to be integrated in a practical
real world design. This will be a major work of the next step in
an attempt to extend the current method using multiobjective
evolutionary computation.

V. Conclusion

The paper proposed an evolutionary method for automated
design of hybrid mechatronic systems. The method, HBGGP,
combines hybrid bond graphs representing both discrete and
continuous dynamics for mechatronic systems, with genetic
programming as a strong search tool to explore the open-
ended design space, optimizing topologies and parameters

simultaneously. Lookahead controllers are implemented as the
default controller to control the discrete events of the system.
One good feature of a lookahead controller is that its design
procedure is very straightforward and can be conveniently
automated in the loop of an evolutionary design algorithm.
A case study of design of a DC-DC converter circuit shows
that the HBGGP approach can evolve designs with novel
topologies that are independent of human design experiences.
Because the parameter sizing of the evolved design topologies
is also automatically and properly determined by genetic
programming, the evolved novel circuits can achieve improved
performance in terms of criteria embedded in the fitness
function and predefined by the user.

References

[1] H. Coelingh, T. D. Vries, and J. V. Amerongen, “Automated conceptual
design of mechatronic systems,” Journal A, vol. 38, no. 3, pp. 26–29,
1997.

[2] J. Cagan, M. I. Campbell, S. Finger, and T. Tomiyama, “A framework
for computational design synthesis: Model and applications,” J. Comput.
Inform. Sci. Eng., vol. 5, pp. 171–181, Sep. 2005.

[3] M. I. Campbell, J. Cagan, and K. Kotovsky, “A-design: An agent-based
approach to conceptual design in a dynamic environment,” Res. Eng.
Des., vol. 11, pp. 172–192, Oct. 1999.

[4] T. Kurtoglu and M. I. Campbell, “Automated synthesis of electrome-
chanical design configurations from empirical analysis of function to
form mapping,” J. Eng. Des., vol. 20, no. 1, pp. 83–104, Feb. 2009.

[5] Z. Fan, “Design automation of mechatronic systems using evolutionary
computation and bond graph,” Ph.D. dissertation, Dept. Electr. Comput.
Eng., Michigan State Univ., East Lansing, MI, 2004, adviser E. D.
Goodman.

[6] J. Hu, Z. Fan, J. Wang, S. Li, K. Seo, X. Peng, J. Terpenny, R. Rosen-
berg, and E. Goodman, “GPBG: A framework for evolutionary design of
multi-domain engineering systems using genetic programming and bond
graphs,” in Design by Evolution. Berlin/Heidelberg, Germany: Springer,
2008, pp. 319–345.

[7] K. Seo, Z. Fan, J. Hu, E. D. Goodman, and R. C. Rosenberg, “Toward
a unified and automated design methodology for multi-domain dynamic
systems using bond graphs and genetic programming,” Mechatronics,
vol. 13, nos. 8–9, pp. 851–885, 2003.

[8] Z. Fan, K. Seo, J. Hu, E. D. Goodman, and R. C. Rosenberg, “A novel
evolutionary engineering design approach for mixed-domain systems,”
Eng. Optimiz., vol. 36, no. 2, pp. 127–147, 2004.

[9] Z. Fan, J. Wang, and E. Goodman, “Exploring open-ended design space
of mechatronic systems,” Int. J. Adv. Robot. Syst., vol. 1, no. 4, pp.
295–302, 2004.



DUPUIS et al.: EVOLUTIONARY DESIGN OF BOTH TOPOLOGIES AND PARAMETERS OF A HYBRID DYNAMICAL SYSTEM 405

[10] J. Hu, E. D. Goodman, S. Li, and R. Rosenberg, “Automated synthesis
of mechanical vibration absorbers using genetic programming,” Artif.
Intell. Eng. Des., Anal. Manuf., vol. 22, no. 3, pp. 207–217, 2008.

[11] J. Wang, Z. Fan, J. P. Terpenny, and E. D. Goodman, “Knowledge
interaction with genetic programming in mechatronic systems design
using bond graphs,” IEEE Trans. Syst., Man Cybern., Part C, vol. 35,
no. 2, pp. 172–182, May 2005.

[12] J. Wang, Z. Fan, J. P. Terpenny, and E. D. Goodman, “Cooper-
ative body-brain coevolutionary synthesis of mechatronic systems,”
Artif. Intell. Eng. Des., Anal. Manuf., vol. 22, no. 3, pp. 219–234,
2008.

[13] Z. Fan, J. Wang, S. Achiche, E. Goodman, and R. Rosenberg, “Struc-
tured synthesis of MEMS using evolutionary approaches,” Appl. Soft
Comput., vol. 8, no. 1, pp. 579–589, 2008.

[14] J.-F. Dupuis, Z. Fan, and E. Goodman, “Evolved finite state controller
for hybrid system,” in Proc. 1st ACM/SIGEVO Summit GEC, 2009, pp.
105–112.

[15] J.-F. Dupuis and Z. Fan, “Evolved finite state controller for hybrid
system in reduced search space,” in Proc. IEEE/ASME Int. Conf. Adv.
Intell. Mechatronics, Jul. 2009, pp. 833–838.

[16] J.-F. Dupuis and Z. Fan, “Comparing an evolved finite state controller
for hybrid system to a lookahead design,” in Proc. IEEE World CEC,
Jul. 2010, pp. 1–6.

[17] R. C. Rosenberg, “State-space formulation for bond graph models of
multiport systems,” Trans. ASME J. Dyn. Syst., vol. 93, no. 1, pp. 35–
40, 1971.

[18] D. Karnopp, D. Margolis, and R. Rosenberg, System Dynamics: Model-
ing and Simulation of Mechatronic Systems, 4th ed. Hoboken, NJ: Wiley,
2005.

[19] P. J. Mosterman, “Hybrid dynamic systems: A hybrid bond graph
modeling paradigm and its application in diagnosis,” Ph.D. dissertation,
Vanderbilt Univ., Nashville, TN, 1997 [Online]. Available: http://macs.
isis.vanderbilt.edu/publications/db/mosterman97\ thesis.pdf

[20] U. Söderman and J.-E. Strömberg, “Switched bond graphs: Multiport
switches, mathematical characterization and systematic composition of
computational models,” Ph.D. dissertation, Linköping Univ., Linköping,
Sweden, 1995 [Online]. Available: citeseer.ist.psu.edu/96874.html

[21] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[22] F. Gruau, “Genetic micro programming of neural networks,” in Advances
in Genetic Programming, vol. 1. Cambridge, MA: MIT Press, 1994, pp.
495–518.

[23] J. Lohn and S. Colombano, “A circuit representation technique for
automated circuit design,” IEEE Trans. Evol. Computat., vol. 3, no. 3,
pp. 205–219, Sep. 1999.

[24] S. Luke and L. Spector, “Evolving graphs and networks with edge
encoding: Preliminary report,” in Proc. Late Breaking Papers Genet.
Program. Conf., 1996, pp. 117–124.

[25] G. S. Hornby and J. B. Pollack, “Creating high-level components with
a generative representation for body-brain evolution,” Artif. Life, vol. 8,
no. 3, pp. 223–246, 2002.

[26] A. Lindenmayer, “Mathematical models for cellular interactions in
development, II, simple branching filaments with two-sided inputs,” J.
Theor. Biol., vol. 18, no. 3, pp. 300–315, Mar. 1968.

[27] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic
Programming: An Introduction, On the Automatic Evolution of Com-
puter Programs and Its Applications (The Morgan Kaufmann Series in
Artificial Intelligence). San Mateo, CA: Morgan Kaufmann, Nov. 1997.

[28] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane, Genetic
Programming III: Darwinian Invention and Problem Solving, 1st ed.
San Mateo, CA: Morgan Kaufmann, May 1999.

[29] J. Hu, K. Seo, S. Li, Z. Fan, R. C. Rosenberg, and E. D. Goodman,
“Structure fitness sharing (SFS) for evolutionary design by genetic
programming,” in Proc. GECCO, 2002, pp. 780–787.

[30] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems,” Ph.D. dissertation, Dept. Comput. Sci., Univ. Michigan, Ann
Arbor, 1975.

[31] R. Manner, S. Mahfoud, and S. W. Mahfoud, “Crowding and preselec-
tion revisited,” in Parallel Problem Solving from Nature. Amsterdam,
The Netherlands: North Holland, 1992, pp. 27–36.

[32] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, 1st ed. Reading, MA: Addison-Wesley, Jan. 1989.

[33] E. D. de Jong and J. B. Pollack, “Multiobjective methods for tree size
control,” Genet. Program. Evol. Mach., vol. 4, no. 3, pp. 211–233, Sep.
2003.

[34] A. Ekárt and S. Z. Németh, “A metric for genetic programs and fitness
sharing,” in Proc. Eur. Conf. Genet. Program., 2000, pp. 259–270.

[35] R. I. McKay, “Fitness sharing in genetic programming,” in Proc. Genet.
Evol. Computat. Conf., Jul. 2000, pp. 435–442.

[36] J. P. Rosca and D. H. Ballard, “Causality in genetic programming,” in
Proc. 6th Int. Conf. Genet. Algorithms, 1995, pp. 256–263.

[37] J. J. Hu and E. D. Goodman, “The hierarchical fair competition (HFC)
model for parallel evolutionary algorithms,” in Proc. CEC, vol. 1. 2002,
pp. 49–54.

[38] J. Hu, E. Goodman, K. Seo, Z. Fan, and R. Rosenberg, “The hierar-
chical fair competition (HFC) framework for sustainable evolutionary
algorithms,” Evol. Comput., vol. 13, no. 2, pp. 241–277, 2005.

[39] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.

[40] M. Senesky, G. Eirea, and T. J. Koo, “Hybrid modeling and control
of power electronics,” in Proc. 6th Int. Workshop HSCC, LNCS 2623.
2003, pp. 450–465.

Jean-François Dupuis received the B.Eng. degree
in mechanical engineering and the M.S. degree in
electrical engineering from Laval University, QC,
Canada, in 2003 and 2007, respectively, and the
Ph.D. degree in mechanical engineering from the
Technical University of Denmark, Lyngby, Den-
mark, in 2011.

Zhun Fan (SM’10) received the B.Sc. and M.Sc. de-
grees in control engineering from the Huazhong Uni-
versity of Science and Technology, Wuhan, China,
in 1995 and 2000, respectively, and the Ph.D. de-
gree in electrical engineering from Michigan State
University, East Lansing, in 2004.

From 2004 to 2007, he was an Assistant Professor
with the Technical University of Denmark, Lyngby,
Denmark. From 2007 to 2011, he was an Associate
Professor with the Technical University of Denmark.
He is currently a Full Professor with the College

of Electronics and Information Engineering, Tongji University, Shanghai,
China. He has been a principle investigator of various projects sponsored
by the Danish Research Agency of Science Technology and Innovation. His
research is also supported by the National Science Foundation. His major
research interests include evolutionary computation, intelligent control and
robotic systems, robot vision and cognition, MEMS, design automation and
optimization, intelligent power systems and transportation systems, and so
on.

Dr. Fan is a member of ACM and ASME.

Erik D. Goodman received the Ph.D. degree in
computer and communication sciences from the Uni-
versity of Michigan, Ann Arbor, in 1971.

He is currently the PI and Director of the BEA-
CON Center for the Study of Evolution in Action, an
NSF Science and Technology Center headquartered
at Michigan State University (MSU), East Lansing,
and funded beginning in 2010. He was an Assistant
Professor of electrical engineering and systems sci-
ence in 1972, an Associate Professor in 1978, and
a Professor in 1984, all with MSU, where he also

holds appointments in mechanical engineering and in computer science and
engineering. He directed the Case Center for Computer-Aided Engineering
and Manufacturing from 1983 to 2002, and MSU’s Manufacturing Research
Consortium from 1993 to 2003. He has co-directed MSU’s Genetic Algorithms
Research and Applications Group since its founding in 1993. He is the Co-
Founder and Vice President of Red Cedar Technology, Inc., East Lansing, a
firm that develops design optimization software for use in industry. His current
research interests include application of evolutionary principles to solution of
engineering design problems.

Dr. Goodman was the Chair of the Executive Board and a Senior Fellow
of the International Society for Genetic and Evolutionary Computation from
2003 to 2005. He was the Founding Chair of ACM’s Special Interest Group
on Genetic and Evolutionary Computation, serving from 2005 to 2007. He
was chosen the Michigan Distinguished Professor of the Year in 2009, by the
Presidents Council, State Universities of Michigan.


