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a b s t r a c t 

Diversity estimation of Pareto front (PF) approximations is a critical issue in the field of 

evolutionary multiobjective optimization. However, the existing diversity indicators are 

usually inappropriate for PF approximations with more than three objectives. Many of 

them can be utilized only when compared with approximations obtained by multiple mul- 

tiobjective optimizers, which makes them difficult to use online. In this paper, we pro- 

pose a unary diversity indicator based on reference vectors (DIR) to estimate the diver- 

sity of PF approximations for many-objective optimization. In DIR, a set of uniform and 

widespread reference vectors are generated. The coverage of each solution in the objec- 

tive space is evaluated by the number of representative reference vectors it is associated 

with. The diversity (both spread and uniformity) is determined by the standard deviation 

of the coverage for all the solutions. The smaller value of DIR, the better the diversity of a 

PF approximation is. DIR can be applied to a unary approximation without any compared 

approximations needed. Thus, DIR is easy to use as either an offline indicator to estimate 

the performance of an optimizer or an online indicator for the selection of solutions in 

a MOEA. In the experimental studies, both the artificial and the real PF approximations 

generated by seven different many-objective algorithms are used to verify DIR as an of- 

fline indicator. The effects of the number of reference vectors on DIR are also investigated. 

In addition, as an online indicator, DIR is integrated into a Pareto-dominance-based evolu- 

tionary multiobjective optimizer, NSGA-II. The experimental studies show it has the signifi- 

cant performance enhancements over the original NSGA-II on many-objective optimization 

problems. 

© 2017 Elsevier Inc. All rights reserved. 

 

1. Introduction 

A multiobjective optimization problem (MOP) can be defined as follows: 

minimize F (x ) = ( f 1 (x ) , . . . , f m 

(x )) T (1)

subject to x ∈ �
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where � is the decision space, F : �→ R m consists of m real-valued objective functions. The attainable objective set is

{ F ( x )| x ∈ �}. Let u, v ∈ R m , u is said to dominate v , denoted by u ≺v , if and only if u i ≤ v i for every i ∈ { 1 , . . . , m } and u j < v j for

at least one index j ∈ { 1 , . . . , m } . 1 A solution x ∗ ∈ � is Pareto-optimal to (1) if there exists no solution x ∈ � such that F ( x )

dominates F ( x ∗). The set of all the Pareto-optimal points is called the Pareto set ( PS ) and the set of all the Pareto-optimal

objective vectors is the Pareto front ( PF ) [37] . A PF approximation apparently can be very helpful for decision makers to

understand the tradeoff relationship among different objectives and choose their preferred solutions. Over the past decades,

multiobjective evolutionary algorithms (MOEAs) have been recognized as a major methodology for approximating the PFs

in MOPs [9,15] . 

With the rapid growth of MOEAs [7,8,16,45] and other multiobjective optimizers [29] in the field of multiobjective opti-

mization, the issue of performance assessment has become increasingly important. Various quality indicators [39,44,47] have

already been proposed for performance evaluation. These indicators focus on one or several of the following aspects: 1) the

convergence of the obtained PF approximation, 2) the spread (i.e., extensity) of the approximation and 3) the uniformity of

the approximation. The latter two are closely related. Their combination is usually called the diversity of the approxima-

tion [32,39] . 

Many-objective optimization problems (MaOPs), i.e., MOPs with more than three objectives, appear widely in industrial

and engineering design [18,24] . Over the recent years, the increasing amount of attention has been given to many-objective

optimization in the community of MOEAs; and a wide variety of many-objective optimizers [10,13,33,43,48] have been de-

veloped and verified on problems with different characteristics [17,21,23] . 

However, the quality indicators to evaluate the performance of many-objective optimizers have not yet gained enough

attention and concern [25] . Most indicators are infeasible or improper to evaluate PF approximations with a large number of

objectives. In general, the difficulties of comparing multiple PF approximations may be summarized in the following reasons.

1. The unavailability of visual comparison for PF approximations with more than three objectives: When the number of

objectives of PF approximations is more than three, visual and intuitive quality indicator can be misleading or even

impossible, even though it is a prevailing comparison tool in the literature [32] . 

2. A compared set needed: Many indicators can only be used when compared two or more PF approximations, which makes

it difficult for online investigations of a many-objective optimizer during its optimization process. In fact, the indicator

that works on unary approximation not only can conduct offline estimations of the quality of an PF approximation, but

also can be used to guide the selection in MOEAs in an online manner [3,5,48] . 

3. The lack of a reference set as a substitution of the real PF: The number of points required to accurately approximate

the PF grows exponentially with more objectives. Thus, the choice of appropriate representative Pareto optimal solu-

tions becomes an increasingly difficult task. Even worse, the true shapes and distributions of PFs are usually unknown

beforehand for real-world MOPs. 

4. Escalating time and space complexity: More objectives result in an exponential increase on the time and space com-

plexity for some commonly used indicators, such as Hypervolume [49] , diversity measure [14] and hyperarea difference

[42] . In fact, the high space and time complexity not only limit their applicability in offline performance comparisons of

high-dimensional PF approximations obtained by various many-objective optimizers, but also make it inappropriate for 

online evaluations of the performance of a single many-objective optimizer. 

In the literature, a variety of convergence indicators have been proposed to avoid the aforementioned challenges. For this

purpose, either the characteristics of the PFs in the considered test problems [26,41] or the dominance relations between the

individuals [10,47] are utilized. Nevertheless, the diversity indicator seems much more difficult to design for appropriately

reflecting the distribution of the approximations in many-objective optimization [39] . Over the recent years, the indicators

that consider both diversity and convergence, such as Hypervolume (HV) [49] and Inverted Generational Distance (IGD) [6] ,

are very popular in the multiobjective evolutionary optimization community [5,25,45] . IGD and HV can be defined as follows.

• Inverted Generational Distance (IGD) [6] : Let P ∗ be a set of points uniformly sampled over the true PF, and S be the set

of solutions obtained by an EMO algorithm. The IGD value of S is computed as: 

IGD (S, P ∗) = 

∑ 

x ∈ P ∗ dist(x, S) 

| P ∗| (2) 

where dist ( x, S ) is the Euclidean distance between a point x ∈ P ∗ and its nearest neighbor in S , and | P ∗| is the cardinality

of P ∗. The lower is the IGD value, the better is the quality of S for approximating the whole PF. 

• Hypervolume (HV) [49] : Let r ∗ = (r ∗
1 
, r ∗

2 
, . . . , r ∗m 

) T be a reference point in the objective space that dominated by all solu-

tions in a PF approximation S . HV metric measures the size of the objective space dominated by the solutions in S and

bounded by r ∗. 

HV (S) = V OL ( 
⋃ 

x ∈ S 
[ f 1 (x ) , r ∗1 ] × . . . [ f m 

(x ) , r ∗m 

]) (3)

where VOL ( • ) indicates the Lebesgue measure. Hypervolume can measure the approximation in terms of both diversity

and convergency. The larger is the HV value, the better is the quality of S for approximating the whole PF. 
1 In the case of maximization, the inequality signs should be reversed. 
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Nevertheless, certain prerequisites must be satisfied before using these metrics, which limits their applications on esti-

mating the diversity of high-dimensional PFs. For instance, although Monte Carlo sampling-based approximation can sig-

nificantly reduce the computational cost of HV [3] and makes it possible to use for high-dimensional PFs, the proper

choice of the reference point when calculating the value of HV can largely affect its accuracy [1] . Similarly, a reference

set that can well-represent PF is required to calculate IGD. HV, IGD and a recent one, i.e. a reference vector based metric

( p -metric) [20] measure an overall performance of convergence and diversity. However, they are unable to separately reflect

the distribution of approximations. Such a characteristic may be desirable for the users to understand the diversity perfor-

mance of an optimizer in an offline manner [50] or even use the diversity information to guide the selection of solutions in

an online manner. 

In this paper, we propose a diversity indicator based on reference vectors (DIR) for many-objective optimization. 1) A

reference vector can be considered as a representative of a subregion in the objective space. The number of reference vectors

a solution covers can be used to roughly estimate the coverage of such solution in an approximation. 2) Both the overall

spread and uniformity of an approximation can be measured by the standard deviation of the coverage of all the solutions

in an approximation. These motivations have been further discussed in Section 3.5 . As DIR is a unary indicator which does

not needs any compared approximation or the substitution of a PF, it is able to either conduct an offline measurement for

the performance of a single many-objective optimizer or an online measurement to guide the selection of solutions for a

many-objective optimizer. 

The rest of this paper is organized as follows. Previous work on diversity indicators is summarized in Section 2 .

Section 3 elaborates DIR. In Section 4 , the systematic experiments are conducted to verify the effects of DIR. In Section 5 ,

DIR is integrated into a classical Pareto-dominance-based MOEA, NSGA-II, to enhance its performance for MaOPs. Finally,

Section 6 concludes this paper. 

2. Previous work 

This section discusses the existing diversity indicators in the literature. Some diversity indicators only focus on a single

aspect (i.e., spread or uniformity) of the diversity for PF approximations. Indicators considering only spread include 

• Metric of extent ( M(S) ) [46] : It is to calculate the sum of maximal difference value of each objective, using Eq. (4) . 

M(S) = 

√ 

m ∑ 

i =1 

max ( ‖ 

x i − y i ‖ ) , ∀ x, y ∈ S (4)

where S is a PF approximation; m is the number of objectives; x i denotes the i -th objective of a solution x and y i denotes

the i -th objective of a solution y . A higher M ( S ) value indicates a wider spread of the approximation. 

• Overall Pareto spread [42] : It is defined as the volume ratio of two hypercubes. The one is defined by the best and worst

solutions with respect to each objective and the other hypercube is defined by the extreme solutions of the tested PF

approximation. 

• Spread assessment metric [34] : It is a spread metric by using boundaries of a PF approximation. It projects the boundary

solutions to the low-dimensional spaces to evaluate the extent. 

Indicators dealing only uniformity include: 

• Uniform distribution UD [40] : It evaluates the uniformity of an approximation S as follows: 

UD (S) = 

1 

1 + Q sd 

(5)

where Q sd is the standard deviation of niche counts for all solutions in S . 

• Spacing [4] : It can be defined as: 

Spacing = 

√ 

1 

| S | 
| S | ∑ 

i =1 

(d i − d) 2 (6)

where S is the tested set and d i = min k ∈ S∧ k 
 = i 
∑ m 

t=1 

∣∣ f i t − f k t 

∣∣, where f i t and f k t is the t -th objective value of i th or k th

solution; and d is the mean of all d i s. 

• Cluster [42] : It puts all the solutions into the hyperboxes and the uniformity is calculated by the ratio of the number of

solutions and the hyperboxes occupied by solutions. 

• Uniform assessment [35] : It constructs a minimum spanning tree (MST) for all the PF solutions. The distribution of

neighboring solutions are estimated by MST for uniformity. 

Although these indicators can correctly evaluate the diversity in either spread or uniformity, they may fail to reflect the

whole distribution of a PF approximation [32] as exemplified in Fig. 1 . In this example, all the solutions in the approximation

are uniformly distributed on the boundaries of PF rather than covering the whole PF [32] . Such approximation is considered

to have good diversity evaluated by either a spread or uniformity indicator, as the uniformity indicator only considers the
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Approximated solutions

Fig. 1. An illustration of a PF approximation that is located on the boundaries of the real PF. Either spread or uniformity indicator fails to give the right 

evaluation of diversity in this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uniformity among the neighboring solutions and the spread indicator only measures the ranges of the boundary solutions.

Note that for accuracy, in the remainder of the paper, spread is replaced with “coverage” to refer to the performance of an

approximation to cover the whole PF, as spread only refers to the outward extension but the coverage considers both inward

and outward extensions of an approximation. 

Another category of the diversity indicators considers both coverage and uniformity as a whole. 

1. � Metric [16] measures the diversity of the approximation P as follows. 

� = 

d f + d l + 

∑ N−1 
i =1 

∣∣d i − d 
∣∣

d f + d l + (N − 1) d 
(7) 

where d f and d l are the Euclidean distances between extreme solution of the PF and the boundary solutions in the ap-

proximation regarding each objective, respectively. N denotes the size of the approximation P. d i , where i = 1 , 2 , . . . , N − 1 ,

denotes the Euclidean distance between consecutive solutions in P and d is the average of all d i . � Metric is mainly de-

signed to estimate the diversity of an approximation in a bi-objective problem although it can be extended to evaluate a

high dimensional approximation by using Voronoi diagram approach. However, finding the Voronoi diagram of a solution

set is a very difficult (or even an infeasible) task when more than three objectives are involved [2,32] . 

2. Sigma Diversity Metric (SDM) [38] computes the angular positions of solutions in an approximation in the objective space

divided by a set of reference vectors. The outputs of SDM are a percentage of the space and the position information

of a given approximation in the space rather than a scalar value. However, SDM is difficult to be extended to many-

objective optimization, as it depends on several parameters, such as the distance around each reference line, the number

of reference line, and the shape of the PF. 

3. Diversity Metric (DM) [14] measures the diversity by comparing the PF approximation with a reference set. To calcu-

late the DM, solutions in the approximation are projected on a (m − 1) -dimensional hyperplane which is divided into

a number of hyperboxes. The indicator considers each hyperbox and gives it an evaluated value based on both the dis-

tribution of the solutions in it and its neighbors. The more the hyperbox that contain both a member of the reference

set and a member of the approximation simultaneously, the higher the indicator value is. However, DM needs to access

each hyperbox to estimate the distribution, which greatly increase its computational cost. In addition, DM needs to use

a reference set, in which the solutions are uniformly distributed over the PF. However, the requirement that the number

of solutions in the reference set is equal to the number of solutions in the approximation becomes an obstacle for DM

to be used for high-dimensional approximation. In addition, the requirement of a reference set makes it difficult to be

used as an online indicator. 

4. Diversity Comparison Indicator (DCI) [32] evaluates the relative quality of different PF approximations rather than pro-

vides an absolute measure of distribution. The underlying idea behind the DCI is to consider the contribution of different

PF approximations to the hyperboxes that have at least one nondominated solution. All the concerned approximations

are put into a number of hyperboxes and DCI is a value that reflects the contribution of each approximation to the hy-

perboxes that have at least one nondominated solution. Therefore, the number of hyperboxes is very likely to affect the

precision of DCI. In addition, DCI only works when comparing multiple approximations, which makes it difficult to be

used as an online indicator. 

5. Online Diversity Metric [19] is an online diversity assessment to measure the diversity loss caused by any individual in
the population. But unfortunately, it can only be applied to a single individual rather than the whole PF approximation. 
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Table 1 

The comparison between previous indicators and proposed indicator. 

Diversity indicator � metric SDM DM DCI DIR 

A substitution of PF needed � � 

Difficult for high dimensional PFs � � 

Parameters to be tuned � � 

The number of approximations unary unary unary multivariate unary 

The number of metric values single multiple single single single 

Computational effect quadratic linear time exponential in m quadratic quadratic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Major properties of the existing diversity indicators and our proposed DIR are summarized in Table 1 . As it can be ob-

served that, unlike � metric and DM, DIR does not require a substitution of PF, besides that it can work well for high

dimensional PF approximation. Different from DCI and SDM, where a parameter needs to be tuned carefully, DIR is param-

eterless. In addition, DIR is a unary metric with relatively low computational cost, which makes it practical as an online

indicator for many-objective optimizers. 

3. The diversity indicator based on reference vectors 

In this section, DIR is detailed as follows. For a m -objective optimization problem, given a Pareto approximation S ( | S| =
N), DIR is used to estimate the diversity of S . 

3.1. The framework of calculating DIR 

The main procedure to calculate DIR is presented in Algorithm 1 . Firstly, a set of M reference vectors are generated, each

Algorithm 1: Diversity indicator based on reference vectors (DIR). 

Input : S = 

{
s 1 , s 2 , . . . , s N 

}
; 

Output : DIR; 

Step 1 The initialization of reference vectors: 

1 Initialize V = 

{
λ1 , λ2 , . . . , λM 

}
; 

Step 2 Computing the coverage vector based on reference vectors: 

2 c = Computing _ cov erage (S, V ) ; 

Step 3: Computing DIR based on coverage vector: 

3 DIR = Computing _ DIR (c) ; 

4 return DIR; 

of which is a representative of the subregion in the objective space. Then, the coverage of each solution in S is calculated

based on reference vectors and stored in a coverage vector c = (c 1 , c 2 , . . . , c N ) 
T in S . Lastly, DIR is estimated by evaluating

the standard deviation of c . Each step is detailed in the following sections. 

3.2. The initialization of reference vectors 

To implement DIR, a set of reference vectors V ( | V | = M), each of which represents a subregion in the objective space, is

firstly generated either by uniform generation [11] or two-layered generation of reference vectors [13] . 

3.3. Computing the coverage vector based on the reference vectors 

The evaluation of coverage for all the solutions is presented in Algorithm 2 . For each reference vector, it finds its closest

solution. The closeness between a reference vector λi and a solution s j is defined by: 

angle (λi , F (s j )) = arccos ( 
(λi ) T · (F (s j ) − z ∗) 
‖ λi ‖‖ F (s j ) − z ∗‖ 

) (8)

where z ∗ = (z ∗
1 
, z ∗

2 
, . . . , z ∗m 

) T is the ideal objective vector with z ∗
i 

= min x ∈ � f i (x ) , i ∈ { 1 , 2 , . . . , m } . 
If a reference vector λi is closest to a solution s j , we say that solution s j covers the reference vector λi . More precisely

speaking, solution s j covers the subregion that the reference vector λi represents. The coverage vector c is used to record

the number of reference vectors covered by each solution, where c i denotes the number of reference vectors covered by the

i th solution. 

In Algorithm 2 , each reference vector λi finds its closest solution s minsub based on Eq. (8) (lines 4–10), where minsub is

the index of the closest solution. The coverage of solution s minsub , denoted by c , is incremented by one accordingly. 
minsub 
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Algorithm 2: Computing _ coverage(S , V) . 

Input : S = 

{
s 1 , s 2 , . . . , s N 

}
; 

Reference vectors V = 

{
λ1 , λ2 , . . . , λM 

}
; 

Output : c. 

1 Initialize c : ( c 1 , c 2 , . . . , c N ) 
T , and each c i = 0 ; 

2 for i = 1 ; i < = M; i + + do 

3 minsub = + ∞ , minangle = + ∞ ; 

4 for each solution s j in S do 

5 θ j = angle (λi , F (s j )) ; 

6 if θ j < minangle then 

7 minsub = j; 

8 minangle = θ j ; 

9 end 

10 end 

11 c minsub = c minsub + 1 ; 

12 end 

13 return c; 

 

 

 

 

 

 

 

 

3.4. Computing DIR based on the coverage vector 

The DIR of the whole approximation, for both coverage and uniformity, can be estimated by evaluating the standard

deviation of c = (c 1 , c 2 , . . . , c N ) 
T according to Eq. (9) , where mean ( c ) is the average value of c . 

DIR 

∗ = std(c) = 

√ 

1 

N 

N ∑ 

i =1 

( c i − mean (c) ) 
2 

(9) 

Note that in the best case where the approximation is evenly and widely spread in the objective space, the value of DIR

is 0, which represents each solution covers the same number of reference vectors. In the worst case, one solution covers all

M reference vectors and the rest solutions covers no reference vectors and the coverage vector becomes c = (M, 0 , . . . , 0) T .

The maximum DIR value in the worst is std(c) = 

√ 

1 
N 

[ (
M − M 

N 

)2 + ( N − 1 ) M 

2 

N 2 
) 
] 
, which can be simplified as: 

DIR max = 

M 

N 

√ 

N − 1 (10) 

Therefore, it is clear to know that DIR value ranges from 0 to M 

N 

√ 

N − 1 and the normalized DIR is as follows: 

DI R = 

DI R 

∗

DI R max 
= 

√ 

1 
N 

∑ N 
i =1 ( c i − mean (c) ) 

2 

M 

N 

√ 

N − 1 

(11) 

All above procedures computing DIR based on coverage vector are given in Algorithm 3 . 

Algorithm 3: Computing _ DIR(c) . 

Input : c : { c 1 , c 2 , . . . , c N } 
Output : DIR. 

1 DIR ∗ = std(c) ; 

2 DIR max = 

M 

N 

√ 

N − 1 ; 

3 DIR = 

DIR ∗
DIR max 

; 

4 return DIR; 

3.5. DIR for three typical PF approximations 

Fig. 2 provides three typical PF approximations for further explaining DIR. Among them, Fig. 2 (a) shows a PF approx-

imation with the ideal distribution. In Fig. 2 (a), each solution covers one subregion represented by one reference vector.

Therefore, the coverage vector of such PF approximation is c = (1 , 1 , 1 , 1 , 1 , 1) T and DIR value is equal to 0 (the best case).

Fig. 2 (b) shows a PF approximation with good coverage but bad uniformity. It is clear to see that the coverage vector of
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Fig. 2. Examples of DIR on MaOPs with different PF approximations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

such PF approximation is c = (1 , 0 , 2 , 2 , 0 , 1) T and its corresponding DIR value is 0.3651. In the third case, the PF approxi-

mation does not cover all the objective regions, as shown in Fig. 2 (c). It can be observed that the coverage vector of such

PF approximation is c = (3 , 0 , 1 , 1 , 0 , 1) T and DIR value is 0.4472. 

Three typical PF approximations and their corresponding DIR values indicate that DIR is able to reflect both the coverage

and uniformity for a PF approximation. The smaller the DIR, the better the diversity of a PF approximation is. 

3.6. Discussions on the accuracy of DIR 

Given the limited number of reference vectors ( M ), DIR may have accuracy limit, which can be explained as follows.

Fig. 3 (a) shows the coverage vector and the DIR value of an evenly distributed PF approximation S 1 with M = 6 reference

vectors; and Fig. 3 (d) shows the coverage vectors and the DIR value of an unevenly distributed PF approximation S 2 , also

with M = 6 reference vectors. Although the coverage vectors and the DIR values of S 1 and S 2 are the same when M = 6

reference vectors are used for computing DIR, it is apparent that the actual diversity of S 2 in Fig. 3 (d) is worse than that of

S 1 in Fig. 3 (a). 

The accuracy of the DIR for PF approximations can be improved by simply increasing the number of reference vectors.

For the PF approximation S 1 but with M = 11 reference vectors ( Fig. 3 (b)), its coverage vectors becomes (2, 2, 2, 2, 2, 1) T

and DIR value is 0.0909. For the same PF approximation S 2 with M = 11 reference vectors ( Fig. 3 (e)), its coverage vectors

becomes (2, 1, 2, 3, 2, 1) T and DIR values is 0.1676. It is clear to see that DIR values with M = 11 reference vectors already

successfully reflect the actual diversity of these two PF approximations, as the DIR value of S 1 is lower (better) than that of

S 2 . In fact, when M becomes a positively infinite number, the coverage of one solution can be seen as the hypercone volume

covered by such a solution, as shown in Fig. 3 (c) and (f). It can be seen clearly that the more differently these hypercone

volumes vary from each other, the higher DIR value of a PF approximation is (i.e. the worse diversity). 

3.7. More discussions on DIR and p -metric 

p -metric [20] is a recently proposed performance indicator for high-dimensional PF approximations. It divides the

objective space into subregions of hypercones by reference vectors. A solution s belongs to i -th subregion �i if i =
argmax λi ∈ V 

(λi ) T ·F (s ) 

‖ λi ‖‖ F (s ) ‖ , where λi is the i -th reference vector and F ( s ) is the objective vector of the solution s . In each sub-

region �i , the solution that has the closest distance r i to the origin point, is tracked and used to define p -metric, as follows.

p -metric = 

M ∑ 

i =1 

1 

r i 
(12)

where M is the number of subregions and 

1 
r = 0 for the subregion containing no solution. It is clear to see from Eq. (12) that

the diversity of a PF approximation, in terms of the p -metric, is measured by the number of reference vectors (subregions)

that have the associated solution(s). 

In this section, the differences of DIR and p -metric are discussed as follows. 

1. p -metric is a comprehensive indicator that considers both convergence and diversity while DIR is a diversity indicator. 

2. For a PF approximation with N solutions and limited M reference vectors, both DIR and p -metric have their accuracy

limits. However, different from p -metric, the accuracy of DIR can be improved by increasing M , as described in the last
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Fig. 3. An illustration of two PF approximations and their corresponding DIR values with M = 6 , 11 and infinite reference vectors. 

 

 

 

 

 

 

 

 

 

 

section. This is due to their fundamentally different ways in associating solutions with reference vectors (or located

subregions). In DIR, each reference vector finds its nearest solution while in p -metric, each solution finds its closest

reference vector (or its located subregion). In other words, for DIR, one solution can be associated with multiple reference

vectors and one reference vector can associate with only one solution. On the contrary, for p -metric, one solution can

be located in only one subregion and one subregion may contain multiple solutions. Its accuracy cannot be improved by

increasing M , as N solutions can be at most located in N subregions. 

3.8. Computational cost of DIR 

In the Step 1 of Algorithm 1 , generating M reference vectors requires O ( M ) computations. Step 2 requires O ( mNM ) to

compute coverage for all solutions. In Step 3, O ( N ) is needed to calculate standard deviation of the coverage vector. In

summary, the computational complexity of DIR is O ( mNM ), where M is the number of reference vectors, N is the number of

solutions in a PF approximation and m is the number of objectives. 

4. Experiments and discussions 

In this section, we conduct experiments to validate DIR on both artificially generated PF approximations and the ones

obtained by seven many-objective optimizers. The effects of the number of reference vectors on DIR are also discussed in

this section. 
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Fig. 4. The artificial PF approximations with different coverage, uniformly located on the hyperplane f 1 + f 2 + f 3 = 1 . 
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Fig. 5. The artificial PF approximations with different uniformity, located on the hyperplane f 1 + f 2 + f 3 = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Experimental setups 

The uniform generation of reference vectors [11] is adopted for 3-, 4- and 5-dimensional PF approximations; and multi-

layered generation of reference vectors [13] is used for 8- and 10-dimensional PF approximations. For convenience, the

number of reference vectors M is set to N without specification. 

4.2. DIR on artificial PF approximations 

Two groups of artificially generated approximations are generated and presented in Figs. 4 and 5 , respectively. All ap-

proximations are located on the hyperplane f 1 + f 2 + f 3 = 1 and each approximation contains N = 105 solutions. In the first

group of the artificial PF approximations, all the approximations are uniformly distributed but the coverage of them is very

different from each other. In Fig. 4 a, every objective value of all the solutions ranges in [ 01 ] . In Fig. 4 (b), every objective

value of all the solutions ranges in [0.05, 0.9]. In Fig. 4 (c), every objective value of all solutions ranges in [0.1, 0.8]. In

Fig. 4 (d), every objective value of all solutions ranges in [0.2, 0.6]. It can be observed from these figures that the wider

distribution of an approximation, the smaller DIR value it has, which indicates that DIR can accurately reflect the coverage

of PF approximations. 

In the second group, all the approximations are distributed over the entire PF, but the uniformity of each approximation

is different from each other. The approximations are generated as follows. Firstly, the solutions are uniformly generated on

the plane f 1 + f 2 + f 3 = 1 , ranging in [0, 1], as shown in Fig. 5 (a). After that, when 10%, 50% or 100% of solutions are replaced

with randomly generated solutions on the same plane, different solution sets can be obtained, as shown in Fig. 5 (b)–(d).

It can be observed in Fig. 5 (a)–(d), that DIR values become increasingly larger when the uniformity of the solution sets

becomes increasingly worse. Obviously, DIR can correctly reflect the uniformity of those PF approximations. 

4.3. DIR on real PF approximations 

In this section, DIR is used to estimate the diversity of PF approximations, obtained by seven classical MOEAs (MOEA/D-

DE [30] , IBEA [48] , GDE3 [28] , PAES [27] , SPEA2+SDE [33] , GrEA [43] and NSGA-III [13] ) on many-objective DTLZ benchmark

problems [17] . All their parameters are set as suggested in the original papers. Each optimizer is run 30 times on each

instance and the approximation with the median DIR value is used for comparisons. 

The population or approximation sizes for MaOPs with different number of objectives are listed in Table 2 . It is noted

that the population (or the solution set) in an evolutionary optimizer is used to approximate the PF of an MaOP. To avoid

the confusion, the “population size” is replaced with “the approximation size”, in the rest of the paper. 

The selection of the approximation size for MaOPs with different number of objectives can be justified as follows. For

some selected many-objective evolutionary algorithms (e.g., MOEA/D-DE [30] and NSGA-III [13] ), the population size (the
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Table 2 

The approximation size for MaOPs with the different number of ob- 

jectives. 

The number of objectives 3 4 5 8 10 

The approximation size 120 120 126 156 275 
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(g) GrEA, DIR = 0.0603444

Fig. 6. PF approximations obtained by seven algorithms on 3-objective DTLZ2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

approximation) is equal to the number of reference vectors in the original paper. In NSGA-III [13] , Das and Dennis’s system-

atic approach [11] is adopted for generating reference vectors by uniformly sampling reference points on a unit simplex. In

this way, the number of reference vectors (i.e., the approximation size) is 

N = 

(
m − 1 

H + m − 1 

)
(13) 

where H > 0 is the number of divisions along each objective coordinate and m is the number of objectives. 

Based on Eq. (13) , H is set to 12 or the number of reference vectors (population size) is 120 for tri-objective problems;

H is set to 7 or the number of reference vectors (population size) is 120 for 4-objective problems; and H is set to 5 or the

number of reference vectors (population size) is 126 for 5-objective problems. 

However, the direct use of Das and Dennis’s approach may not suite for MaOPs with more than 6 objectives [13] . This

can be explained as follows. As long as H ≥ m is not chosen, no intermediate reference points on the simplex will be created

by Das and Dennis’s approach. In other words, all the generated reference vectors only have the intersecting reference

points on the boundaries of the unit simplex. For MaOPs with more than 6 objectives, setting H ≥ m leads to a huge number

of reference vectors, based on Eq. (13) . For example, for a 7-objective problem, H = 7 results in 

(
7 −1 

7+7 −1 

)
= 1716 reference

vectors. To avoid such a situation, two layers including a boundary layer and an inside layer of reference points are used

in [13,31] for MaOPs with more than 6 objectives. As suggested in [13,31] , we use H = 3 and H = 2 for boundary and

inside layers, respectively, thereby requiring a total of 
(

8 −1 
3+8 −1 

)
+ 

(
8 −1 

2+8 −1 

)
= 156 reference vectors for 8-objective problems

and 

(
10 −1 

3+10 −1 

)
+ 

(
10 −1 

2+10 −1 

)
= 275 reference vectors for 10-objective problems. 

DTLZ2 [17] , that has a regular PF, is selected to verify the effectiveness of DIR. All the optimizers are relatively easy to

converge to the PF of the DTLZ2. This is very helpful to test the diversity of the approximation sets obtained by the different

optimizers. 

The PF approximations obtained by seven algorithms on 3-objective DTLZ2 are plotted in Fig 6 and the parallel coordinate

plots of seven approximations for 5- and 10-objective DTLZ2 are plotted in Figs. 7 and 8 , respectively. The corresponding

DIR values for them are listed in Table 3 . 

For 3-objective DTLZ2, it can be seen in Fig 6 that the approximation obtained NSGA-III has the best (lowest) DIR value

(0). GrEA delivers the second best DIR value as its obtained approximation is well-spread although not as uniform as the

one obtained by NSGA-III. The DIR values of the approximations obtained by IBEA and MOEA/D-DE are similar. The approx-
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(c) GDE3, DIR = 0.0850770
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(d) IBEA, DIR = 0.1159015
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(e) PAES, DIR = 0.2844097
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(g) GrEA, DIR = 0.0606638

Fig. 7. Parallel coordinate plots obtained by seven algorithms on 5-objective DTLZ2. 
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(a) NSGA-III, DIR = 0.0036363
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(c) GDE3, DIR = 0.0777068
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(d) IBEA, DIR = 0.1584166

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Objective No.

O
bj

ec
tiv

e 
V

al
ue

(e) PAES, DIR = 0.1513914

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Objective No.

O
bj

ec
tiv

e 
V

al
ue

(f) SPEA2+SDE, DIR
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Fig. 8. Parallel coordinate plots obtained by seven algorithms on 10-objective DTLZ2. 

Table 3 

DIR for PF approximations with different number of objectives obtained by seven algorithms. 

the number of objectives NSGA-III MOEA/D-DE GDE3 IBEA PAES SPEA + SDE GrEA 

3 0 0.0811334 0.0853399 0.0824172 0.2638329 0.1038475 0.06034 4 4 

4 0 0.1429971 0.0828417 0.0776041 0.3424976 0.0843384 0.0668060 

5 0.0111796 0.1868706 0.0853399 0.1159015 0.2844097 0.0666667 0.0606638 

8 0 0.2244375 0.1076096 0.1132277 0.2890331 0.0622496 0.0749966 

10 0.0036363 0.1950277 0.0777068 0.1584166 0.1513914 0.0465098 0.0734938 
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(g) GrEA, DIR = 0.1719064

Fig. 9. PF approximations obtained by seven optimizers on 3-objective DTLZ7 problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

imation obtained by IBEA is distributed more uniformly but the approximation obtained by MOEA/D-DE is distributed more

widely. This observation is consistent with the fact that most of the solutions obtained by IBEA are uniformly distributed

only on the boundary of the real PF without proper coverage inside the PF while the solutions obtained by MOEA/D-DE are

located over the whole PF without good uniformity. The PF approximation obtained by GDE3 is less uniformly distributed

than that obtained by MOEA/D-DE and thus it has an even worse DIR value. The approximation obtained by SPEA2+SDE is

very similar to that of IBEA. However, the uniformity of solutions obtained by SPEA2+SDE is worse than that of IBEA which

leads to a worse (higher) DIR value. The approximation obtained by PAES has the worst diversity in terms of both cover-

age and uniformity which leads to a worst (highest) DIR value. Fig. 7 shows the approximations obtained by 7 optimizers

on 5-objective problems. NSGA-III, according to parallel coordinates [22] , has the best performance and lowest DIR value

(0.0111796). Meanwhile, the approximation obtained by GrEA is not distributed uniformly enough so it has a worse DIR

value (0.0 60 6 6388). For SPEA2+SDE (DIR = 0.0 6 6 6 6 67), as shown in Fig. 7 (f), its approximation is distributed less widely

and uniformly than that of GrEA. The approximation obtained by IBEA (DIR = 0.1159015) is more uniformly distributed

but covers less regions than that obtained by GDE3 (DIR = 0.0850770). MOEA/D-DE (DIR = 0.1868706) and PAES (DIR =
0.2844097) perform worse than other compared algorithms, based on their DIR values, as the approximation of MOEA/D-DE

concentrates on the several small regions and the approximation of PAES misses some boundary regions of the PF. Similar

results can be observed on approximations for 10-objective DTLZ2, as shown in Fig. 8 . From the above observations, DIR is

obviously able to correctly reflect the diversity of the PF approximations obtained by seven different algorithms. 

4.4. DIR on MaOPs with irregular PFs 

In this section, we further validate the effectiveness of DIR on MaOPs with irregular PFs. DTLZ7 is a typical irregular

problem, consisting of 2 m −1 disconnected PFs, whose shapes may be either convex or concave. 

The approximations and the corresponding DIR values obtained by seven algorithms on DTLZ7 are shown in Fig. 9 . It

can be observed that NSGA-III has the best (lowest) DIR value (0.1201073) due to its best coverage and SPEA2+SDE has the

second best DIR value (0.1473387) as the solutions it produces are uniformly distributed. The DIR value obtained by GDE3

(0.1547565), GrEA (0.1719064) and IBEA (0.1763286) are worse than that of SPEA2 + SDE due to either worse coverage or

uniformity of approximations obtained by them. The DIR value obtained by MOEA/D is as low as 0.2770392, because the

one entire segment of PF is not well approximated by MOEA/D. The DIR value (0.5751629) obtained by PAES is the worst,

as PAES fails to approximate four segments of PF. The values of DIR on different approximations are consistent with our

observations in Fig. 9 , which validates the effectiveness of DIR on MaOPs with irregular PFs. 

It is worth to note that DIR prefers more on coverage than uniformity for MaOPs with irregular PFs. This phenomenon

can be explained as follows. As many reference vectors have no interactions with the irregular PF (e.g., the PF of DTLZ7),

the boundary solutions are likely to cover a great number of such reference vectors and thus these boundary solutions are

more biased when calculating DIR. 
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Table 4 

DIR on different number of reference vectors. 

Divisions (H) The number of reference vectors IBEA MOEA/D-DE GDE3 NSGA-III PAES SPEA2 + SDE GrEA 

2 15 0.24226 0.24331 0.24331 0.24355 0.32249 0.24331 0.24355 

4 70 0.14381 0.17038 0.10453 0.08077 0.27926 0.08253 0.08077 

6 210 0.09152 0.16241 0.07251 0.04720 0.27614 0.06306 0.04720 

8 495 0.08628 0.15154 0.06441 0.04628 0.28313 0.06357 0.03677 

10 1001 0.08495 0.13539 0.05854 0.02842 0.28573 0.05199 0.03040 

12 1820 0.08557 0.13709 0.05461 0.02194 0.29091 0.04359 0.02789 

14 3060 0.08810 0.13893 0.05331 0.02417 0.29263 0.04362 0.02854 

16 4845 0.08958 0.13634 0.05230 0.02522 0.29409 0.04092 0.02820 

Fig. 10. DIR on different divisions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5. The effects of the number of reference vectors on DIR 

In this section, we investigate the effects of the number of reference vectors ( M ) on DIR. In the experiments, uniform

generation of reference vectors is adopted and the number of vectors is controlled by changing the number of divisions

H [11] . Table 4 shows the DIR values obtained by seven algorithms on 5-objective DTLZ2. For better visualization, the results

of Table 4 are also plotted in Fig. 10 . From Table 4 and Fig. 10 , we can have the following observations. 

1. DIR values gradually decline and level off with the increase of the number of reference vectors. 

2. The disparities of DIR values on different approximation become larger with the increasing number of reference vectors.

Therefore, the precision of DIR can be controlled by increasing the number of reference vectors. 

3. The DIR values produced by GrEA slightly interwinds with that produced by NSGA-III along with the increase of the

number of reference vectors. One explanation is that diversity evaluated by DIR is a tradeoff between coverage and

uniformity. The preference of the two aspects for diversity may slightly change when adopting different sets of reference

vectors. 

To ensure that each solution in the approximation can cover at least one reference vector (subregion), the value of M

(the number of reference vectors) is suggested to set to at least N (the size of the approximated set). In addition, with the

increase of M , both the accuracy and the computational cost ( O ( mNM )) of DIR also increase. In other words, the selection

of M depends on the appropriate balance between the accuracy and the computational cost of DIR. With the affordable

computational cost, the value of M can be set as large as possible. 

One possible guideline of using DIR is to set the parameter M to N initially. If DIR is not able to distinguish two ap-

proximations, then the value of M can be increased until it can distinguish the approximations or the computational cost

of computing DIR values reaches the largest affordable value. The latter indicates that the diversity values of these two

approximations are very close to each other. 

5. A DIR-enhanced NSGA-II for MaOPs 

The above empirical studies suggest DIR is an effective offline diversity metric that is able to reflect both coverage and

uniformity of a PF approximation. In this section, DIR is used as an online diversity metric, which can be integrated into the

selection procedure of NSGA-II [16] and further enhance its performance on MaOPs. 
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Fig. 11. An illustration of how DIR based selection works. 

 

 

 

 

 

 

 

 

 

 

To avoid high computational burden, instead of selecting N solutions with the best (lowest) DIR value, a more greedy

method, that selects the first N solutions covering most reference vectors, is used. Such an example is given in Fig 11 , where

s 4 is considered as a more diverse solution because it covers both reference vectors λ4 and λ5 and s 6 is regarded as a less

diverse solution as it covers no reference vectors. 

5.1. Integration of DIR into NSGA-II 

In the DIR-enhanced NSGA-II (d-NSGA-II), all procedures are exactly the same as NSGA-II except that the crowding-

distance-based estimation is replaced with DIR. The main procedure of the DIR-based selection is given in Algorithm 4 .

Algorithm 4: DIR _ Selection(S , F l , N , V) . 

Input : N: The PF approximation size; 

V : The reference vectors; 

S: The input solution set ( | S | < N); 

F l = { s 1 
f 
, s 2 

f 
, . . . , } : The last non-domination level; 

Output : S: The returned solution set ( | S | = N). 

1 T = | S| ; 
2 U = S 

⋃ 

F l ; 

3 c = Computing _ cov erage (U, V ) ; 

/* use Algorithm 2 to set coverage */ 

4 c ′ = c[ T + 1 : T + | F l | ] ; 
/* copy all c values of solutions in F l to c ′ */ 

5 [ c ′ , I] = Sort(c ′ ) ; 
/* sort c ′ in a descending order and I stores the indexes of the solutions after sorting */ 

6 for i = 1 ; i ≤ N − T ; i + + do 

7 S = S 
⋃ { s I i 

f 
} ; 

8 end 

9 return S; 

Suppose the last non-domination level is F l and solutions of the first l − 1 levels have been added to S . The main task

of DIR-based selection is to select N − | S | solutions from F l and add them to S . As it can be seen in Algorithm 4 , firstly,

the coverage c j of each solution s j , estimated by the number of reference vectors a solution covers, is calculated by calling

Algorithm 2 . The first | N − | S | | solutions with the largest coverage values are added to S . 

5.2. Experimental settings 

To verify the performance of d-NSGA-II on MaOPs, it is compared with its original version NSGA-II [16] and the state-

of-art many-objective optimizer, NSGA-III [13] on DTLZ [17] and WFG [21] test suites. To make a fair comparison, simulated
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Table 5 

The approximation size for all the compared algorithms on 

MaOPs with different number of objectives. 

The number of objectives 3 5 8 10 

The approximation size 120 126 156 275 

Table 6 

Mean and standard deviations of IGD values obtained by NSGA-II, NSGA-III and d-NSGA-II on DTLZ1 to DTLZ4 

problems over 30 runs. Wilcoxons rank sum test at a 0.05 significance level is performed to IGD values. 

Problem m NSGA-II NSGA-III d-NSGA-II 

3 4 . 9309 E − 02 (2 . 52 E − 03) − 3 . 8399 E − 02 (8 . 70 E − 03) − 3 . 5176 E − 02 (4 . 28 E − 05) 

DTLZ1 5 1 . 6002 E + 01 (1 . 70 E + 01) − 1 . 3242 E − 01 (2 . 21 E − 02) − 1 . 2855 E − 01 (1 . 94 E − 04) 

8 8 . 6421 E + 01 (4 . 56 E + 01) − 3 . 9603 E − 01 (1 . 01 E − 01) − 1 . 8042 E − 01 (2 . 52 E − 03) 

10 9 . 1170 E + 01 (4 . 79 E + 01) − 4 . 5518 E − 01 (6 . 93 E − 02) − 1 . 9582 E − 01 (8 . 79 E − 03) 

3 6 . 2893 E − 02 (1 . 27 E − 03) − 4 . 6613 E − 02 (8 . 87 E − 05) ≈ 4 . 6606 E − 02 (4 . 88 E − 05) 

DTLZ2 5 3 . 2745 E − 01 (2 . 62 E − 02) − 1 . 9500 E − 01 (6 . 07 E − 05) ≈ 1 . 9516 E − 01 (5 . 24 E − 05) 

8 1 . 9777 E + 00 (1 . 12 E − 01) − 6 . 1565 E − 01 (2 . 47 E − 01) − 3 . 9167 E − 01 (5 . 43 E − 04) 

10 2 . 1461 E + 00 (1 . 56 E − 01) − 7 . 6023 E − 01 (2 . 10 E − 01) − 4 . 5666 E − 01 (2 . 16 E − 03) 

3 6 . 2035 E − 02 (2 . 33 E − 03) − 4 . 6805 E − 02 (2 . 70 E − 04) ≈ 4 . 6645 E − 02 (8 . 34 E − 05) 

DTLZ3 5 1 . 2116 E + 02 (5 . 16 E + 01) − 1 . 9831 E − 01 (6 . 56 E − 03) − 1 . 9674 E − 01 (1 . 22 E − 03) 

8 4 . 8112 E + 02 (1 . 57 E + 02) − 6 . 7146 E − 01 (2 . 29 E − 01) + 1 . 8415 E + 00 (1 . 16 E + 00) 

10 6 . 3822 E + 02 (1 . 83 E + 02) − 8 . 6548 E − 01 (1 . 21 E − 01) + 4 . 8436 E + 00 (3 . 46 E + 00) 

3 6 . 1731 E − 02 (2 . 50 E − 03) − 1 . 1252 E − 01 (1 . 71 E − 01) − 4 . 6599 E − 02 (3 . 56 E − 05) 

DTLZ4 5 2 . 6674 E − 01 (1 . 04 E − 02) − 2 . 0985 E − 01 (8 . 14 E − 02) − 1 . 9514 E − 01 (6 . 38 E − 05) 

8 2 . 1950 E + 00 (4 . 39 E − 02) − 3 . 9359 E − 01 (2 . 24 E − 02) − 3 . 9208 E − 01 (1 . 08 E − 03) 

10 2 . 3487 E + 00 (3 . 54 E − 02) − 4 . 5111 E − 01 (3 . 61 E − 03) + 4 . 5967 E − 01 (4 . 82 E − 03) 

“+ ” means the IGD value of the algorithm on this problem is significantly better than that of d-NSGA-II. 

“−” means the IGD value of the algorithm on this problem is significantly worse than that of d-NSGA-II. 

“≈” means there is no significant difference between the compared results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

binary crossover (SBX) and polynomial mutation are used for all the compared algorithms. The crossover probability p c is

set to 1 and the distribution index ηc is set to 30; the mutation probability p m 

is set to 1/ l , where l is the number of

decision variables and its distribution index ηm 

is set to 20 for all the compared algorithms. The approximation size on

MaOPs with different number of objectives are given in Table 5 . Each test instance is run 30 times and the maximum

number of generations is set to 10 0 0. In addition, the reference vectors adopted in d-NSGA-II is the same as the ones used

in NSGA-III [13] . 

Inverted Generational Distance (IGD) [6] is used to evaluate the performance of all the compared algorithms for DTLZ

test suite. HV [49] is used for WFG test suite as the true PFs of test problems are unknown 

2 . 

5.3. Comparison between NSGA-II and NSGA-III 

The experimental results obtained by NSGA-II and d-NSGA-II on DTLZ1-4, in terms of IGD, are presented in Table 6 . It

can be observed that d-NSGA-II performs significantly better than NSGA-II on all the test problems. Similarly, d-NSGA-II

performs significantly better than NSGA-II on 27 out of 36 WFG problems, as shown in Table 7 . 

In addition, d-NSGA-II performs significantly better than NSGA-III on 10 out of 16 DTLZ test problems. There are no

significant differences on 3 test problems between d-NSGA-II and NSGA-III. For WFG test suite, d-NSGA-II outperforms NSGA-

III on 13 test problems; NSGA-III is better on 7 test problems; and there are no significant difference between the two

algorithms on 16 test problems. 

From Table 7 , it can be observed that d-NSGA-II (or NSGA-III) is significantly worse than NSGA-II on 8- and 10-objective

WFG2 and all WFG3 instances. The explanation is that WFG2 instances have the discontinuous PFs and WFG3 instances

have the degenerate PFs. NSGA-II is more robust to problems with these irregular PFs due to the use of crowding distance

estimation for maintaining diversity. On the contrary, the uniformly generated reference vectors are used in d-NSGA-II (or

NSGA-III) for maintaining diversity. The potential assumption is that PFs of MOPs are regular; otherwise, a large number of

reference vectors may lead to the same Pareto optimal solutions on the boundary of PFs, which causes the waste of many

reference vectors. 

A possible explanation of causing d-NSGA-II worse than NSGA-III on some instances, is that instead of selecting N so-

lutions with the best (lowest) DIR value, a more greedy method, that selects the first N solutions covering most reference

vectors, is used in d-NSGA-II, to avoid high computational burden. By using this greedy strategy, the selection of the so-

lution set with the best diversity in every generation is not guaranteed. To understand the evolving diversity in the three

compared algorithms, DIR values in the run with median values during the optimization process for 3-, 5- and 10-objective
2 The reference points of HV are set as (3 , 5 , . . . , 2 m + 1) T , where m is the number of objectives. 
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Table 7 

Mean and standard deviations of HV values obtained by NSGA-II, NSGA-III and d-NSGA-II on WFG1 to WFG9 

problems over 30 runs. Wilcoxon’s rank sum test at a 0.05 significance level is performed to HV values. 

Problem m NSGA-II NSGA-III d-NSGA-II 

3 7 . 8943 E + 01 (3 . 42 E + 00) − 7 . 9095 E + 01 (2 . 72 E + 00) − 8 . 7132 E + 01 (3 . 59 E + 00) 

WFG1 5 4 . 6833 E + 03 (2 . 79 E + 02) ≈ 5 . 2317 E + 03 (3 . 65 E + 02) − 5 . 5116 E + 03 (3 . 07 E + 02) 

8 1 . 2866 E + 07 (1 . 14 E + 06) − 2 . 2777 E + 07 (1 . 18 E + 06) + 1 . 6467 E + 07 (1 . 58 E + 06) 

10 4 . 7414 E + 09 (4 . 17 E + 08) − 1 . 1155 E + 10 (4 . 15 E + 08) + 8 . 4155 E + 09 (1 . 07 E + 09) 

3 9 . 5701 E + 01 (6 . 50 E + 00) ≈ 9 . 4294 E + 01 (7 . 64 E + 00) ≈ 9 . 4250 E + 01 (7 . 53 E + 00) 

WFG2 5 1 . 0223 E + 04 (3 . 18 E + 01) ≈ 9 . 7714 E + 03 (8 . 23 E + 02) − 9 . 9542 E + 03 (6 . 94 E + 02) 

8 3 . 4136 E + 07 (5 . 47 E + 04) + 3 . 1500 E + 07 (3 . 09 E + 06) ≈ 3 . 2627 E + 07 (2 . 49 E + 06) 

10 1 . 3616 E + 10 (4 . 08 E + 07) + 1 . 3336 E + 10 (7 . 80 E + 08) + 1 . 3224 E + 10 (8 . 62 E + 08) 

3 7 . 5251 E + 01 (1 . 86 E − 01) + 7 . 4116 E + 01 (3 . 91 E − 01) ≈ 7 . 4253 E + 01 (2 . 87 E − 01) 

WFG3 5 7 . 0211 E + 03 (6 . 82 E + 01) + 6 . 6939 E + 03 (7 . 58 E + 01) − 6 . 6687 E + 03 (9 . 74 E + 01) 

8 2 . 2369 E + 07 (5 . 83 E + 05) + 2 . 0531 E + 07 (1 . 05 E + 06) + 1 . 8652 E + 07 (5 . 59 E + 05) 

10 9 . 0532 E + 09 (1 . 17 E + 08) + 8 . 3463 E + 09 (6 . 04 E + 08) + 7 . 4787 E + 09 (2 . 19 E + 08) 

3 7 . 3745 E + 01 (4 . 52 E − 01) − 7 . 6577 E + 01 (1 . 16 E − 01) ≈ 7 . 6603 E + 01 (1 . 40 E − 01) 

WFG4 5 7 . 1556 E + 03 (1 . 93 E + 02) − 8 . 8259 E + 03 (4 . 22 E + 01) ≈ 8 . 7943 E + 03 (3 . 98 E + 01) 

8 1 . 8072 E + 07 (7 . 57 E + 05) − 3 . 0686 E + 07 (1 . 35 E + 05) + 3 . 0474 E + 07 (2 . 96 E + 05) 

10 6 . 8055 E + 09 (2 . 56 E + 08) − 1 . 2382 E + 10 (9 . 89 E + 07) ≈ 1 . 2373 E + 10 (7 . 55 E + 07) 

3 7 . 1093 E + 01 (4 . 29 E − 01) − 7 . 3275 E + 01 (3 . 16 E − 01) − 7 . 3536 E + 01 (1 . 85 E − 01) 

WFG5 5 7 . 2214 E + 03 (1 . 45 E + 02) − 8 . 5604 E + 03 (2 . 47 E + 01) ≈ 8 . 5638 E + 03 (2 . 64 E + 01) 

8 1 . 7629 E + 07 (7 . 69 E + 05) − 2 . 9990 E + 07 (1 . 09 E + 05) ≈ 2 . 9994 E + 07 (8 . 42 E + 04) 

10 6 . 7719 E + 09 (2 . 52 E + 08) − 1 . 2183 E + 10 (4 . 57 E + 07) − 1 . 2215 E + 10 (3 . 95 E + 07) 

3 7 . 1443 E + 01 (4 . 58 E − 01) − 7 . 3739 E + 01 (3 . 29 E − 01) ≈ 7 . 3939 E + 01 (4 . 36 E − 01) 

WFG6 5 6 . 9775 E + 03 (2 . 63 E + 02) − 8 . 6045 E + 03 (7 . 27 E + 01) ≈ 8 . 6009 E + 03 (5 . 56 E + 01) 

8 1 . 9022 E + 07 (9 . 04 E + 05) − 3 . 0483 E + 07 (2 . 53 E + 05) ≈ 3 . 0494 E + 07 (2 . 43 E + 05) 

10 7 . 3291 E + 09 (3 . 62 E + 08) − 1 . 2476 E + 10 (1 . 19 E + 08) ≈ 1 . 2441 E + 10 (1 . 10 E + 08) 

3 7 . 4403 E + 01 (3 . 70 E − 01) − 7 . 6959 E + 01 (3 . 40 E − 02) − 7 . 7006 E + 01 (3 . 34 E − 02) 

WFG7 5 6 . 8240 E + 03 (2 . 56 E + 02) − 9 . 0015 E + 03 (2 . 24 E + 01) ≈ 9 . 0020 E + 03 (1 . 70 E + 01) 

8 1 . 7241 E + 07 (9 . 65 E + 05) − 3 . 1812 E + 07 (8 . 80 E + 04) ≈ 3 . 1779 E + 07 (1 . 18 E + 05) 

10 6 . 9431 E + 09 (2 . 13 E + 08) − 1 . 2985 E + 10 (4 . 57 E + 07) + 1 . 2948 E + 10 (6 . 58 E + 07) 

3 6 . 7201 E + 01 (2 . 81 E − 01) − 6 . 9980 E + 01 (2 . 63 E − 01) − 7 . 0550 E + 01 (1 . 37 E − 01) 

WFG8 5 6 . 1418 E + 03 (1 . 11 E + 02) − 7 . 9085 E + 03 (3 . 63 E + 01) − 7 . 9120 E + 03 (3 . 31 E + 01) 

8 1 . 8416 E + 07 (6 . 02 E + 05) − 2 . 6083 E + 07 (4 . 07 E + 05) − 2 . 7173 E + 07 (6 . 52 E + 05) 

10 7 . 4764 E + 09 (2 . 47 E + 08) − 1 . 0886 E + 10 (1 . 09 E + 08) − 1 . 1464 E + 10 (3 . 25 E + 08) 

3 6 . 8051 E + 01 (1 . 78 E + 00) − 7 . 0129 E + 01 (2 . 33 E + 00) ≈ 6 . 8312 E + 01 (1 . 44 E + 00) 

WFG9 5 6 . 3367 E + 03 (1 . 71 E + 02) − 7 . 6851 E + 03 (1 . 90 E + 02) + 7 . 6329 E + 03 (1 . 53 E + 02) 

8 1 . 5583 E + 07 (1 . 35 E + 06) − 2 . 5714 E + 07 (6 . 89 E + 05) − 2 . 6120 E + 07 (6 . 98 E + 05) 

10 6 . 5287 E + 09 (2 . 60 E + 08) − 1 . 0337 E + 10 (2 . 64 E + 08) − 1 . 0607 E + 10 (2 . 57 E + 08) 

“+ ” means the HV value of the algorithm on this problem is significantly better than that of d-NSGA-II. 

“−” means the HV value of the algorithm on this problem is significantly worse than that of d-NSGA-II. 

“≈” means there is no significant difference between the compared algorithms. 

Fig. 12. DIR values of solution sets obtained by NSGA-II, NSGA-III and d-NSGA-II during the optimization process on 3-, 5- and 10-objective DTLZ4. 

 

 

 

 

DTLZ4 and WFG5 are plotted in Figs. 12 and 13 . It is clear to see in these figures that d-NSGA-II and NSGA-III maintain

much better diversity, in terms of DIR, than NSGA-II. The final DIR values obtained by d-NSGA-II is either better or similar

to that obtained by NSGA-III and the decrease of DIR values (better diversity) obtained by d-NSGA-II is much faster than

that obtained by NSGA-III, which indicates d-NSGA-II is able to obtain better diversity during the optimization process, due

to the use of DIR as an online diversity indicator. 
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Fig. 13. DIR values of solution sets obtained by NSGA-II, NSGA-III and d-NSGA-II during the optimization process on 3-, 5- and 10-objective WFG5. 

Fig. 14. Computational time used by d-NSGA-II and NSGA-III on a 10-objective optimization problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4. Computational complexity of d-NSGA-II and NSGA-III 

In d-NSGA-II, fast nondominated sorting requires O ( mN 

2 ) computations and DIR-based selection requires O ( mMN ) com-

putations. Therefore, the computational complexity of d-NSGA-II is max { O ( mMN ), O ( mN 

2 )}, where m is the number of objec-

tives; N is the approximation size and M is the number of reference vectors ( M = N in the experiments). The computational

cost of d-NSGA-II is less than that of NSGA-III ( max 
{

O (N log m −2 N ) , O (mN 

2 ) 
}

) [13] , when m is a large number for many-

objective optimization. The time spent by both algorithms on 10-objective optimization problems is plotted in Fig 14 , 3 which

shows that d-NSGA-II is more efficient than NSGA-III. 

5.5. Applications on real-world optimization problems 

In this section, NSGA-II, NSGA-III and d-NSGA-II are implemented and compared on the following two practical engineer-

ing optimization problems. 

1. Crash-worthiness design of vehicles (CWDV) can be formulated as the structural optimization on the frontal structure

of vehicle for crash-worthiness [36] . Thickness of five reinforced members around the frontal structure are chosen as

the design variables, while mass of vehicle, deceleration during the full frontal crash and toe board intrusion in the

offset-frontal crash are considered as three objectives. More detailed mathematical formulation can be found in [36] . 

2. Car side-impact problem (CSIP) aims at finding a design that balances between the weight and the safety performance.

It is firstly formulated for the minimization of the weight of the car subject to some safety restrictions on safety perfor-

mance [12] . In [12] , it is reformulated as a 9-objective optimization problem by treating some constraints as objectives.

More details of the mathematical formulation can be found in [12] . 

5.5.1. Experimental setups 

For CWDV, both the approximation size and the number of reference vectors are set to 120; and the maximum number

of iterations is set to 200. For CSIP, both the approximation size and the number of reference vectors are set to 210; and the
3 The hardware configurations are: AMD A10-5800K APU with Radeon(tm) HD Graphics 3.80 GHz (processor), 6.00GB (5.45GB available, RAM). Two 

algorithms are all implemented by Java. 
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Table 8 

Mean and standard deviations of IGD or HV values obtained by NSGA-II, NSGA-III and d-NSGA-II over 30 runs on CWDV and 

CSIP. Wilcoxon’s rank sum test at a 0.05 significance level is performed. 

Problem Indicator NSGA-II NSGA-III d-NSGA-II 

Crash-worthiness Design IGD 3 . 536 E − 02 (7 . 9 E − 03) ≈ 3 . 603 E − 02 (3 . 7 E − 03) ≈ 3 . 528 E − 02 (4 . 7 E − 03) 

HV 1 . 029 E + 00 (3 . 1 E − 03) ≈ 1 . 023 E + 00 (3 . 5 E − 03) − 1 . 027 E + 00 (2 . 5 E − 03) 

Car Side-Impact Problem IGD 1 . 989 E − 01 (7 . 1 E − 03) − 2 . 018 E − 01 (6 . 7 E − 03) − 1 . 800 E − 01 (3 . 4 E − 03) 

HV 2 . 109 E − 01 (1 . 0 E − 02) − 1 . 995 E − 01 (7 . 9 E − 03) − 2 . 454 E − 01 (8 . 5 E − 03) 

“−” means the HV or IGD value of the algorithm on this problem is significantly worse than that of d-NSGA-II. 

“≈” means there is no significant difference between the compared algorithms. 
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Fig. 15. PF approximations obtained by d-NSGA-II, NSGA-II and NSGA-III in the run with the median IGD values on CWDV. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maximum number of iterations is set to 20 0 0. All the algorithms are run for 30 times for each problem. Other parameters

in each algorithm are set the same as that in Section. 5.2 . 

As the real PFs for both CWDV and CSIP are unknown, a reference PF (denoted as P ∗) is constructed by obtaining all the

nondominated solutions of all 30 runs obtained by all algorithms for each instance to compute IGD. To calculate HV, the

objective values of all the solutions are firstly normalized by their maximal and minimal objective values obtained from P ∗;

and then, HV values are obtained by using reference point (1 . 1 , 1 . 1 , . . . ) T . 

5.5.2. Experimental results 

Mean and standard deviations of IGD or HV values obtained by NSGA-II, NSGA-III and d-NSGA-II over 30 runs on CWDV

and CSIP are presented in Table 8 . For CWDV, d-NSGA-II has the best performance in terms of IGD and NSGA-II has the best

performance in terms of HV, without any statistical significance. This indicates the performance of d-NSGA-II and NSGA-II

are very similar to each other and both of them perform slightly better than NSGA-III on CWDV. These observations can be

further verified in Fig. 15 , where PF approximations obtained by three algorithms in the run with the median IGD values

are presented. 

With respect to CSIP, d-NSGA-II performs significantly better than NSGA-II and NSGA-III in terms of both IGD and HV

values. To better visualize the results, PF approximations obtained by d-NSGA-II, NSGA-II and NSGA-III are projected into

a bi-objective space for pairwise comparisons, as shown in Fig. 16 . It can be observed in Fig. 16 (a) that the convergence

of d-NSGA-II is better than NSGA-II although the range of solutions obtained by NSGA-II seems larger. In addition, it can

be observed in Fig. 16 (b) that d-NSGA-II performs better than NSGA-III in terms of both convergence and diversity. All the

above experimental results verify the effectiveness of d-NSGA-II, which uses DIR as an online diversity indicator, on real-

world optimization problems. 

6. Conclusion 

In this paper, a unary diversity indicator based on reference vectors (DIR) is proposed based on the following two mo-

tivations. 1) A reference vector can be considered as a representative of a subregion in the objective space. The number of

reference vectors a solution covers can be used to roughly estimate the coverage of such solution in an approximation. 2)

Both the overall coverage and uniformity of an approximation can be measured by the standard deviation of the coverage

of all the solutions in an approximation. 

Different from other diversity metrics, DIR does not require a substitution of PF and can work well for high dimensional

PF approximations. In addition, DIR is a unary metric with relatively low computational cost, which makes it possible to be

used as an online indicator for many-objective optimizers. Experimental results show the effectiveness of DIR to measure

the diversity of both artificial approximations and the ones obtained by seven MOEAs. Furthermore, DIR is integrated into

NSGA-II as an online indicator and the results show that it can significantly enhance the performance of NSGA-II on MaOPs

by maintaining satisfactory diversity. 
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Fig. 16. PF approximations obtained by d-NSGA-II, NSGA-II and NSGA-III in the run with the median IGD values are projected into a bi-objective space for 

pairwise comparisons on CSIP. 
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