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Abstract
The existing spectrum index-based methods for detecting vegetation coverage suffer from an over-dependence on spectrum.
To address these issues, this paper proposes a graph cut-based variational level set segmentation algorithm that combines
multi-channel local wavelet texture (MCLWT) and color. First, the prior color is generated by automatic estimation based on
the mathematical morphology with a color histogram. Then, local wavelet texture features are extracted using a multi-scale
and orientation Gabor wavelet transformation followed by local median and entropy filtering. Next, in addition to the energy
of color, that of MCLWT is integrated into the variational level set model based on kernel density estimation. Consequently,
all energies are integrated into the graph cut-based variational level set model. Finally, the proposed energy functional is made
convex to obtain a global optimal solution, and a primal-dual algorithm with global relabeling is adopted to accelerate the
evolution of the level sets. A comparison of the segmentation results from our proposed algorithm and other state-of-the-art
algorithms showed that our algorithm effectively reduces the over-dependence on color and yields more accurate results in
detecting vegetation coverage.

Keywords Variational level set · Detecting vegetation coverage · Local wavelet texture · Graph cut

1 Introduction

Detection of vegetation coverage (DVC) is a highly impor-
tant aspect of machine vision-based agricultural automation
applications. DVC methods are generally based on visible
spectral indexes (VSIs), including the excess green index
(ExG) [1], excess red index (ExR) [2], color index of veg-
etation extraction (CIVE) [3], excess green minus excess
red index (ExGR) [4] and the vegetative index (VEG) [5].
The advantages of VSI-based methods are that they can
accurately segment vegetation, soil and sky and that vis-
ible spectral sensors are not very expensive. Other DVC
methods based on multi-spectral images have advantages
of wider coverage and better accuracy than VSIs, although
only at considerably higher cost. However, both the VSI-
based and multi-spectral-based methods share a common
deficiency: they have an over-dependence on spectrum or
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color while neglecting wider spatial information such as tex-
ture.

Therefore, combinations of spectral indexes and other
methods have been proposed to improve the accuracy
of DVC. Ponti [6] presented a combination of spectral
indexes and mean shift (MS) to segment balloon-captured
remote sensing images, including MS+CIVE, MS+ExG and
MS+VVI. To improve the robustness of DVC in the pres-
ence of illumination variations or plant canopy shadows, Bai
et al. [7] used particle swarm optimization (PSO) cluster-
ing and morphology modeling to segment vegetation from
soil in color images acquired by an off-the-shelf digital cam-
era affixed to an image acquisition device. Unsupervised
methods such as MS or PSO clustering help in determining
an appropriate threshold for spectral indexes from images,
although errors always occur when the spectra of the fore-
ground and background overlap.

In addition to spectrum information or color, other cues
such as texture and shape have been considered in DVC.
Feng et al. [8] used colors in the RGB color space and tex-
tures based on the gray-level co-occurrence matrix (GLCM)
as the input for a random forest to map urban vegetation
from UAV-captured remote sensing images. Aksoy et al. [9]
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exploited both spectral- and Gabor filter-based texture and
shape properties to detect hedgerows using decision-making
methods. Texture features based on GLCM have a problem
determining the scale and orientation of objects, while multi-
resolution analysis-based methods such as Gabor filters can
extract the textural features of vegetation at different scales
and orientations. Machine learning methods are also often
used [10], but thesemethods rely on the availability of numer-
ous good training samples, and they are prone to over-fitting
and other issues.

Image segmentation methods based on the variational
level set (VLS) model [11] have attracted a substantial
amount of attention [12,13]. Unger et al. [14] proposed a
variational level set segmentation model based on graph cut
and total variation (GCTV) that further exploited the primal-
dual and global relabeling (PDGRL) method to minimize
the primal-dual energy interval. However, GCTV uses only
prior color as an external energy and, consequently, suffers
from an over-reliance on it. The VLS segmentation model
has a different problem: a non-convex functional leads to a
local optimal solution. To eliminate the non-convex factors,
Chan et al. [15] proposed convexity transform algorithms for
certain non-convex minimization problems. These transform
algorithms are called algorithms for finding global minimiz-
ers (AFGM).

Hence, we propose an improved method based on GCTV
to perform DVC that improves the segmentation accuracy by
integrating more features, such as texture and automatically
generated prior color, and by convexity transforms of the
non-convex energy functionals. In ourmethod,multi-channel
textures are extracted by the Gabor wavelet transform com-
bined with local mean and entropy filters in a process called
multi-channel local wavelet texture (MCLWT). MCLWT
was shown to be effective in vegetation segmentation in our
previous work [16]. Prior color is obtained automatically by
mathematical morphology and color histogram. Then, these
features are integrated into the energy functional of GCTV
to evolve the level sets.

The rest of this paper is organized as follows: Sect. 2
discusses the VLS model based on GCTV and the con-
vexity transform method. Then, the proposed algorithm is
described in detail in Sect. 3. Section 4 presents the exper-
imental results and a discussion. Finally, Sect. 5 provides
conclusions.

2 Background

The graph cut divides all pixels in an image into three cate-
gories: source, sink and boundary pixels. Only when a pixel
is classified into the category to which it truly belongs is the
cut set minimized. The graph cut principle can be used to
model the energy functional of a level set [14,17].

Based on GCTV, Bresson et al. [17] also presented a VLS
model and defined a boundary weight function for the total
variation. In these methods, the source pixels indicate the
object, whose cost is denoted by c f . The sink pixels indicate
the background; their cost is denoted by cb. The boundary
pixels separate the object from the background; their cost
is denoted by ce. Using the graph cut principle, an image
segmentation problem can be viewed as one of classifying
all the pixels into the above three classes. Aminimal cut set is
obtained only when all pixels have been correctly classified.
Thus, the segmentationproblemcanbeviewedasminimizing
the following energy functional:

Egctv =
∫

�

ce |∇u| +
∫

�

cbudx +
∫

�

c f (1 − u) dx

s.t .u (x) ∈ {0, 1} , (1)

where � ⊂ R2 is an open set representing the image domain
and u is a characteristic function.

To obtain a minimum of the functional in Eq. (1), ce is set
to be inversely proportional to the boundary gradient and c f

and cb are estimations of the probability distribution of the
object color and the background color, respectively. These
estimations can be obtained automatically using the method
described in Sect. 3.1.

One problem in GCTV is that the functional in Eq. (1)
contains a binary functionu. In otherwords, it is a non-convex
problem that has only a local optimal solution. Therefore, the
problem must be transformed into a convex one. We use a
convexity transform method proposed by Chan et al. [15] to
solve this problem. We refer readers to [15] for details.

3 Method

Our method includes three major processes: feature extrac-
tion, model adaptation and post-processing, as shown in
Fig. 1. To improve segmentation accuracy by integrating
more features, three kinds of features—automatically esti-
mated prior color, the a* channel color from the L*a*b*
color space and multi-channel local wavelet texture
(MCLWT)—are extracted. To utilize the extracted features
as supplementary energies in the level set model, the features
are integrated as external energies into the graph cut-based
level set segmentationmodel. To achieve global optimization
more conveniently, the proposed energy functional is trans-
formed into a convexity functional using Chan’s convexity
transform method [15] as described above. We also adopt
PDGRL to speed up the level set evolution in our method.
Finally, in the post-processing stage, mathematical morphol-
ogy operations are used to erase tiny islands and fill in small
holes in the segmentation results.
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Fig. 1 Flowchart of the proposed method, including pre-processing, segmentation and post-processing

3.1 Automatic estimation of prior color

To obtain prior color, manual labeling is widely used in
[14,18]. However, manual labeling requires human inter-
action and its efficiency is low—especially for large data
sets. To address this problem, automatic estimation of prior
color (AEPC) is required. Here, we propose an approach
based on CIVE and mathematical morphology that can auto-
matically generate approximate probability distributions of
vegetation and non-vegetation. CIVE is used here to gen-
erate estimated segmentation results. Then, mathematical
morphology is applied to obtain the primary components of
the objects and background. These processes are described
below:

1. A given image f (x, y) is first segmented using CIVE to
obtain binary segmentation results. CIVE is computed as
follows:

fCIVE = 0.441R − 0.811G + 0.385B + 18.787, (2)

where R, G and B are the values of the color channels of
f (x, y) in the RGB color space. Then Otsu thresholding
is used to transform fCIVE into a binary value, fbw.

2. To obtain the AEPC for vegetation, we use the following
steps:

(a) A mathematical morphology shrink operator is
applied to the inverse of fbw, shrinking the areas of
vegetation to connected lines or points. The results
are denoted by fobj_shk .

(b) Next, a mathematical morphology thicken operator is
applied, making fobj_shk one pixel thicker.

(c) Finally, a mathematical morphology open operator is
imposed to reserve themost likely areas of vegetation
using a structuring element (SE), which is a line 10
pixels long at a 2-degree angle. The result is denoted
by fobj .

3. To obtain the AEPC for non-vegetation, we use the fol-
lowing steps:

(a) A shrink operator is applied to fbw.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2 An AEPC example: a the original image from DB1, b the seg-
mentation results by CIVE, c the shrink operator results on the inverse
of b, d the thicken operator results on c, e the prior color estimation
results of vegetation by the open operator on d, f the shrink operator
results on b, g the prior color estimation results of non-vegetation by
the dilate operator on f, and h a visualized image of AEPC

(b) Then, a mathematical morphology dilate operator is
used to find the likely areas of non-vegetation using
an SE line 8 pixels long at a 2-degree angle. The result
is denoted by fbkg .

4. Using fobj and fbkg as masks [14], color histograms of
the vegetation h f and non-vegetation hb are calculated.

5. The histograms are smoothed by a Gaussian filter and
then linearly interpolated at each pixel’s intensity value
from the original image, yielding the final prior color
histograms, H f and Hb, respectively.

Figure 2 shows an example of AEPC. The visualized image
of AEPC fAEPC in Fig. 2h is composed as follows:

fAEPC = [R,G, B] ,

R = fbkg, G = 0, B = fobj . (3)

3.2 Multi-channel local wavelet texture

Because vegetation usually has different textural features
than those of surrounding soil, water, etc., we introduce
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(a)

(b)

Fig. 3 Gabor filter bank with 2 frequencies and 4 orientations (θ =
0, π /4, π /2, 3π /4): a f0 = 0.2, b f0 = 0.5

a texture feature called multi-channel local wavelet tex-
ture (MCLWT) into the proposed model for vegetation
segmentation. A Gabor wavelet transform is insensitive to
illumination variation and geometric transformation. There-
fore, we use it here to transform the original image into
a multi-resolution frequency domain. The two-dimensional
Gabor wavelet transform w (·, ·) for an image f (x, y) with
a frequency of f0 and an orientation of θ can be written as
follows:

w f0,θ (u, v) =
∫∫

f (x, y) h∗
G (u − x, v − y) dxdy,

hG (x, y) = f 20
πσxσy

exp

(
−

(
f 20 x

2
r

σ 2
x

+ f 20 y
2
r

σ 2
y

))

· exp [ j2π f0xr ] ,

xr = x cos (θ) + y sin (θ) ,

yr = − x sin (θ) + y cos (θ) , (4)

where * denotes the complex conjugate, hG (·) is the Gabor
wavelet function, and σx and σy are the scaling parameters
along the wave and perpendicular to the wave, respectively.
Here, σx = σy = 1, and we use a bank of filters defined in a
specific frequency range and orientation. An example of this
filter bank with 2 frequencies ( f0 = 0.2, 0.5) and 4 orienta-
tions (θ = 0, π /4, π /2, 3π /4) is shown in Fig. 3, which yields
8 channels after the transform. Then, the local wavelet tex-
ture feature fMCLWT is extracted based on the Gabor wavelet
transform defined in Eq. (4):

fMCLWT = (
fmed, fetp

)
,

fmed = median

(
w f0,θ

(p,q)∈W
(p, q)

)
,

fetp = entropy

(
w f0,θ

(p,q)∈W
(p, q)

)
, (5)

where median (·) and entropy (·) are functions of the median
and entropy filters of a filtered windowW with a size of n in
w f0,θ , respectively. Using this feature extraction approach,
fMCLWT has 16 channels of MCLWT-based textures in total.

3.3 Integration of color and texture energies

First, the energy of prior color Ep can be produced by AEPC
and integrated directly into the proposed energy functional
using Eq. (1) as follows:

Ep =
∫

�

(
cb − c f

)
udxdy,

s.t . u (x, y) ∈ {0, 1} , (6)

where cb = Hb and c f = H f . The item
∫
�
c f dx at the right

of Eq. (1) is omitted because it is independent of u.
Second, the energy of the a* color channel in the CIE

L*a*b* color space, denoted by Ec, is added as a fidelity
term based on the idea of the C-V model and [19], which is
given by

Ec =
∫

�

(
H (φ)

(
c′
1 − fa∗ (x, y)

)2
+ (1 − H (φ))

(
c′
2 − fa∗ (x, y)

)2
)
dxdy,

c′
1 =

∫
�

fa∗ (x, y)dxdy

/
|�|,

c′
2 =

∫
�\�

fa∗ (x, y)dxdy

/
|�\�|,

(7)

where fa∗ is the a* color channel. Because H (φ) ∈ {0, 1},
it can be replaced by u. Then, Ec is transformed as follows:

Ec =
∫

�

(
(1 − u)

(
c′
1 − fa∗ (x, y)

)2
+ u

(
c′
2 − fa∗ (x, y)

)2
)
dxdy

=
∫

�

((
c′
2 − fa∗ (x, y)

)2
− (

c′
1 − fa∗ (x, y)

)2
)
udxdy. (8)

The item
∫
�

((
c′
1 − fa∗ (x, y)

)2) dxdy at the right ofEq. (8)

is omitted because it is independent of u.
Third, the texture energy based on MCLWT is integrated

into our model. There are several approaches for integrating
texture into a variational level set model, including mean
value-based approaches such as the C-V model [20], the
Gaussian mixed model (GMM)-based [21], kernel density
estimation (KDE)-based [22], and so on. However, because
the mean value-based approaches are not reliable enough
for textured objects, and GMM-based approaches are well
known for over-fitting, we adopt KDE to build the texture
energy based on MCLWT using the following steps:
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(a) For each channel of f iMCLWT, i = 1, 2, . . . ,C , KDE is
used to estimate each channel’s probability distribution
p j

(
f iMCLWT

)
, j = 1, 2, where C is the total num-

ber of channels of fMCLWT, and p1 and p2 denote the
probability distributions of the object and background,
respectively.

(b) Calculate the total texture probability distributions of the
object and background by

t f =
∑
i

p1
(
f iMCLWT

)
, tb =

∑
i

p2
(
f iMCLWT

)
, (9)

where t f is the MCLWT texture energy of the object,
and tb is the texture energy of the background.

Subsequently, the MCLWT texture energy is integrated into
the GCTVmodel. The proposed texture energy functional Et

is

Et =
∫

�

tbudxdy +
∫

�

t f (1 − u) dxdy

=
∫

�

(tb − t f )udxdy. (10)

The item
∫
�
t f dxdy at the right of Eq. (10) is omitted because

it is independent of u. Therefore, the final functional of our
model EMCLWT is given by

EMCLWT =
∫

�

ce |∇u| dxdy + λ1Ep + λ2Ec + λ3Et, (11)

where λ1, λ2 and λ3 are positive constants. The first term to
the right of Eq. (11) is the total variation; the others are the
fidelity terms of prior color, a* color and MCLWT texture
energies, respectively. Using Eq. (11), the color and texture
energies are integrated into theGCTV framework in a unified
manner.

3.4 Global optimization based on convexity
transform

To achieve global optimization, we adopt AFGM to elim-
inate the non-convex factors in the proposed functional
defined by Eq. (11). First, u ∈ {0, 1} is relaxed by u :
R2 → [0, 1]. Then, a globally optimal solution, uλ, can be
achieved. Finally, a binarized solution of the original prob-
lem is obtained using the threshold method. The details can
be found in [15].

For fast convergence, we use PDGRL [14] tominimize the
energy functional in Eq. (11). The PDGRL algorithm reduces
the energy interval between the original and its dual problem
using iterative and threshold methods, thereby increasing the
algorithm’s efficiency.

4 Experiments

Our experiments were performed on a PC with a 2.5 GHz
Intel Core 2 Q8300 processor and 4 GB of 800 MHz DDR2
RAM under MATLAB 2013b. We used two image databases
of vegetation, DB1 andDB2 from [6] and [7], respectively, to
perform segmentation accuracy comparisons. DB1 contains
12 images of bean fields, while DB2 contains 200 images of
ricefields. Theground truths for all the imagesweremanually
labeled by specialists. The default parameter settings were as
follows: n = 11, λ1 = λ2 = 1, and λ3 = 100.

4.1 Accuracy evaluation

We used the metric from [6], denoted as Acc1, to compare
the proposed segmentation algorithms on the DB1 images.
The Acc1 metric is defined as follows:

Acc1 = 1 −
∑r

i=1
Erri

/
2r

Erri = ei,1 + ei,2,

ei,1 = FPi
N − Ni

, ei,2 = FNi

Ni
, i = 1, . . . , r ,

(12)

where FP is the number of false positives, and FN is the
number of false negatives. FPi is the number of pixels of
region j �= i misclassified into region i, FNi represents the
pixels of region i misclassified into other regions, N is the
number of pixels in a given image, and Ni denotes the pixels
that belong to region i. For binary segmentation, here r = 2.

We use the metric called the Jaccard index (J) from [7] to
evaluate the segmentation performance on the DB2 images.
The Jaccard index is calculated as follows:

J = TP
/
(TP + FP + FN). (13)

where P is the number of true positive pixels.
In addition to the above measures, the metrics of sensi-

tivity (Sens), specificity (Spec), accuracy (Acc2), precision
(Prec) and F-measure (F)were calculated in our experiments
for further quantitative comparison. The formulas of these
metrics are given in Eqs. (14)–(18), respectively:

Sens = TP
/
TP + FN, (14)

Spec = TN
/
FP + TN, (15)

Acc2 = (TP + TN)
/
(TP + FP + TN + FN), (16)

Prec = TP
/
TP + FP, (17)
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F = 2 ∗ Prec ∗ Sens
/
(Prec + Sens). (18)

where TN is the number of true negative pixels.

4.2 Numerical tests

First, the proposed algorithmwas compared to 8 state-of-the-
art vegetation segmentation algorithms on the DB1 images.
These algorithms cover the major types of effective segmen-
tation techniques. Among these algorithms, the one proposed
by Cheng et al. [23] is clustering-based; the ones presented
by Kataoka et al. [3], Gée et al. [24] and VVI [6] are VSI-
based; and the mean shift combined with VVI (MS+VVI),
mean shift combined with ExG (MS+ExG) and mean shift
combined with CIVE (MS+CIVE) algorithms proposed in
[6] are hybrid methods that combine the preceding two types
of methods. The GCTV algorithm [14] is the most similar
to ours. Table 1 lists the accuracy scores of the compar-
ison results measured by Acc1 as defined in Eq. (12) for
the DB1 images, where μ and σ denote the mean and stan-
dard deviation of Acc1, respectively. As shown in Table 1,
CIVE has the lowest accuracy (66.1%). This result occurs
because CIVE simply uses each pixel’s color to perform seg-
mentation. The algorithms that combine clustering and VSI
such as MS+ExG and MS+CIVE use the mean values of
regional features tomerge or split areas based on the segmen-
tation results of the VSI algorithms. These hybrid algorithms
achieve higher accuracies than do theVSI-based ones, 85 and
86.4%, respectively. Using AEPC, GCTV achieves a high
accuracy of 88.9%. Our method integrates both color and
textures in the proposed level set segmentation model; con-
sequently, it achieves the highest accuracy (89.1%) and the
lowest standard deviation (5.7%).

A sample image from DB1 and the segmentation results
of ExG, CIVE, MS+ExG, MS+CIVE and our method are
shown in Fig. 4. These compared algorithms were claimed
to be superior to otherVSI-based algorithms in [6]. Figure 4a,

Table 1 Comparison data of the state-of-the-art algorithms using DB1

Algorithm μ (%) σ (%)

CIVE [3] 66.1 11.9

ExG [24] 78.5 8.6

MS [23] 76.5 10.7

VVI [6] 70.4 10.5

MS+VVI [6] 72.6 13.3

MS+ExG [6] 85 8.4

MS+CIVE [6] 86.4 7.2

GCTV [14] 88.9 6.1

Proposed 89.1 5.7

Bold values indicate the best indices

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4 Comparison of our algorithm with 4 other state-of-the-art algo-
rithms reported in [6]. The black pixels denote vegetation, and the white
pixels represent the background. a An original image from DB1, b
ground truth, c–g the segmentation results by ExG, CIVE, MS+ExG,
MS+CIVE and our algorithm, respectively

(a) (b) (c) (d) (e)

Fig. 5 Comparison of our algorithm and the hybrid algorithms on an
image of DB1 [6]: a two areas cropped from the original image are
marked by the two labeled white boxes in Fig. 4a. The first row refers
to box No. 1, and the second row refers to box No. 2. b Ground truth.
c–e the segmentation results of the areas by MS+ExG, MS+CIVE and
our method, respectively

b shows the original image and the ground truth, respectively.
From a visual comparison, the index methods (ExG and
CIVE) obtain the worst results because they contain numer-
ous FPs or FNs, as shown in Fig. 4c, d. The hybrid methods
(MS+ExG and MS+CIVE) perform better than the indexed
methods, as depicted in Fig. 4e, f, respectively, because they
consider regional color features during segmentation. Our
results are quite similar to those of the hybrid methods,
although some details are different, as demonstrated in Fig. 5.

Figure 5 shows two areas cropped from the original image
marked by the two labeled white boxes in Fig. 4a. The 1st
row of Fig. 5 refers to box No. 1 and the 2nd row to box No.
2. As shown, the hybrid methods segment more background
pixels as vegetation. Apparently, the background areas seg-
mented by our method are more precise compared to those
obtained the other two methods. Note that the ground truth
obtained by manual labeling tends to lose some details of the
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Table 2 Segmentation results of state-of-the-art algorithms on the DB2
images

Algorithm μ (%) σ (%)

ExG&Otsu [25] 76.2 7.7

ExGExR [25] 62.3 18.1

EASA [26] 80.2 7.8

GMM [27] 86.9 6.9

ColourHist [28] 82.1 6.4

ClusterMorph [7] 88.1 4.7

GCTV [14] 82.9 9.7

Proposed 92.7 4.3

Bold values indicate the best indices

vegetation and background, while our method catches these
subtle differences surprisingly well.

We also compared the segmentation qualities of the pro-
posed algorithm with GCTV [14] and those of six other
methods reported in [7] on the DB2 images. Among these
algorithms, ExG&Otsu and ExGExR are VSI-based meth-
ods; EASA, GMM and ColourHist are statistical methods;
and ClusterMorph is a hybrid method that uses clustering
and mathematical morphology. The performances of these
algorithms are compared using the means μ and standard
deviations σ of the metric defined by Eq. (13) in Table 2.

According to the experiments, the VSI-based methods
(ExG&Otsu and ExGExR) performed the worst, and their
means on the J metric were only 76.2 and 62.3%, respec-
tively. EASA, GMM and ColourHist use the probability
density function of color instead of the thresholding used
by the VSI-based methods, and they yielded better results:
μ > 80%. ClusterMorph obtained a high μ of 88.1 through
its use of particle swarm optimization clustering and mor-
phology modeling in the CIE L*a*b* color space, although
it also required an extra offline learning stage. Our algorithm
performs the best (μ = 92.7% and σ = 4.3%), which is
much better than GCTV.

Figure 6 depicts some segmentation examples from DB2
obtained by ClusterMorph and our algorithm. ClusterMorph
was chosen for comparison here because its performance is
superior to the other methods based on the results in Table
2. The 3 rows demonstrate 3 examples under different illu-
mination: the black pixels represent rice areas, and the white
pixels represent the background. As shown, ClusterMorph
produced more FPs than did our algorithm under these dif-
ferent illumination conditions—especially in shaded areas.

In addition to the preceding evaluation, Tables 3 and 4 list
the means and standard deviations of the other performance
metrics defined by Eqs. (14)–(18) obtained by our algorithm
on theDB1 andDB2 images, respectively. Among thesemet-
rics, the mean value of Spec is approximately 83%, while
those of the other metrics are all above 90%.

(a) (b) (c) (d)

Fig. 6 Examples of segmentation results by our algorithm and Clus-
terMorph from [7]. The black pixels represent rice, and the white
pixels represent the background: a The original images from DB2; b
the ground truth; c–d the results by ClusterMorph and our algorithm,
respectively

Table 3 Other performancemetrics of our algorithmon theDB1 images
(μ and σ denote the mean values and standard deviations, respectively)

Sens Spec Acc2 Prec J F

μ (%) 95.04 83.17 93.90 98.07 93.31 96.47

σ (%) 4.98 10.55 4.67 1.72 5.27 2.91

Table 4 Other performancemetrics of our algorithmon theDB2 images
(μ and σ denote the mean values and standard deviations, respectively)

Sens Spec Acc2 Prec F Acc1

μ (%) 99.08 82.95 94.65 93.49 96.14 91.15

σ (%) 2.52 9.24 3.08 4.04 2.50 3.84

5 Conclusion

The proposed method, which integrates both multi-channel
local wavelet texture and color, obtains a higher vegetation
segmentation accuracy compared to several other state-
of-the-art methods. By combining the prior color of the
estimated object and the background with local wavelet tex-
ture features, the proposed method uses both the colors of
pixels and regional texture features. In addition, it avoids the
strong dependence on prior color exhibited by GCTV-based
methods and substantially improves the accuracy of segmen-
tation results. Due to the regional texture fidelity term, the
segmentation results for areas with similar colors but differ-
ent textures are more accurate.
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