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ABSTRACT 
MEMS layout optimization is a typical multi-objective 
constrained optimization problem. This paper proposes an 
improved MOEA called cMOEA/D to solve this problem. The 
cMOEA/D is based on MOEA/D but also uses the frequency of 
individual update of sub-problems to locate the promising sub-
problems. By dynamically allocating computing resources to 
more promising sub-problems, we can effectively improve the 
performance of the algorithm to find more non-dominated 
solutions in MEMS layout optimization. In addition, we 
compared two mechanisms of constraint handling, Stochastic 
Ranking (SR) and Constraint-domination principle (CDP). The 
experimental results show that CDP works better than SR and the 
proposed algorithm outperforms the state-of-art algorithms such 
as NSGA-II and MOEA/D, in terms of convergence and diversity.  

Categories and Subject Descriptors 
G.1.6 [Optimization]: Constrained optimization  

General Terms 
Algorithms 

Keywords 
Multi-objective constrained optimization; MEMS layout design 

1. INTRODUCTION 
Multi-objective evolutionary algorithms have been successfully 
applied in a large variety of optimization problems in both science 
and engineering, where multiple and conflicting design objectives 
exist [1] [2]. Without loss of generality, a multi-objective 

constrained optimization problem with n design variables, and m 
design objectives can be defined as follows:  
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Where 1 2( , , , ) n
nx x x x R   is n-dimensional design 

variables, 1 2( ) ( ( ), ( ), , ( )) m
mF x f x f x f x R   is m-dimensional 

objective vector. ( ) 0ig x   define q inequality 

constraints, ( ) 0jh x   defines p equality constraints. 

NSGA-II [3] and MOEA/D [4] are the two typical multi-objective 
evolutionary algorithms. They represent the two categories of 
fitness assignment methods, namely fitness assignment based on 
domination relationship, and fitness assignment using aggregation 
function based on decomposition. In fitness assignment based on 
domination relationship, the fitness is decided by non-dominated 
sorting and crowding distance. Representative algorithms using 
this type of fitness assignment method include MOGA [5], PAES-
II [6], SPEA-II [7] and NSGA-II [3]. In fitness assignment based 
on decomposition, comparison and sorting of individuals are 
made via aggregation function with weights allocated specifically 
to all individuals. Different weight vectors associated with the 
aggregation function lead to different directions towards the 
Pareto front. To obtain as many solutions as possible in the entire 
Pareto front, the weight vector may be adjusted during the 
evolutionary search process. Typical algorithms of this category 
include IMMOGLS [8], UGA [9], cMOGA [10], MOGLS [11], 
and MOEA/D [4]. 

In multi-objective constrained optimization, traditional constraint 
handling method is adopting penalty function to penalize the 
constraint violation. However, it is then necessary to find proper 
penalty factor to balance objective function and penalty function, 
which is usually difficult and application-dependent in practice. 
Stochastic Ranking (SR) [12] and Constraint-domination principle 
(CDP) [13] are two very promising penalty function methods that 
can well balance the objective function and penalty function 
without using a penalty factor. Because both SR and CDP do not 
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use penalty factor, so there is no need for the user to have prior 
knowledge about the relative importance of the objective 
optimization and constraint satisfaction. In SR, usually a small 
proportion of infeasible solutions are compared with their 
objective values, while in CDP, all solutions are compared only 
by their constraint violation levels.  

The remainder of the paper is organized as follows: Section 2 
explains the framework of the proposed algorithm, Section 3 
introduces the MEMS layout optimization problem, Section 4 
gives the experimental results of the MEMS layout optimization 
problem, and Section 5 concludes the paper. 

2. THE ALGORITHM 
Like other variants of MOEA/D [4], the algorithm proposed in 
this paper, namely cMOEA/D decomposes a multi-objective 
constrained optimization problem into N single objective 
constrained optimization sub-problems. In addition, the 
cMOEA/D identifies the promising sub-problems using the 
statistic information of frequency of updating their neighboring 
solutions, and allocates more computational resources to the 
promising sub-problems accordingly. In particular, the probability 
of the sub-problems to be selected is calculated as follows:  
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Where ,i gn  represents the number of solutions the i-th sub-

problem replaces its neighbors in the g-th generation, 

gtotal represents the total number of solutions that all the sub-

problems of the g-th generation replace their neighbors, G is the 
current generation, and SG is the number of generations counted 
in the calculation of the statistics.  is a small constant used to 
avoid zero in the denominator. In this paper,  is set to 0.002. In 
order to ensure the integrity of cMOEA/D, we give all the 
pseudo-code which may have a lot in common with MOEA/D.  

At each generation, cMOEA/D uses a decomposition method 
named Tchebycheff to maintain: 

1. a population of N points 1, Nx x ,where ix is the current 

solution to the ith subproblem; 

2. 1, , NF F and 1, , NV V , where iF is the F-value of ix , iV is the 

degree of constraint violation of individual 
ix . 

3. 
1( , , )mZ z z  , where iz is the best value found so far for 

objective if . 

4. an external population (EP) , which is used to store feasible 
non-dominated solutions found during the search. 

5. a matrix ,i gn , where ,i gn is used as a container to store the 

number of subproblem updated by each subproblem in every 
generation. 

The pseudo-code of CMOEA-D is given in Algorithm 1:  

Algorithm1. Pseudo-code of cMOEA/D                                                

1:    generate a weight vector i , 1,2, ,i N   uniformly 

2:    generate an initial population { , 1, , }iP x i N    

3:    Calculate the T closest weight vectors for each weight vector, 

set 1( ) { , }Ti iB i    where 1 , Ti i  are the T closest 

weight vectors to the weight vector i  

4:    Evaluate  
ix , 1 2

( ) ( ( ), ( ), , ( ))
i i i i

m
F x f x f x f x  ,

1
( ) min( ( ), 0)

pi i

jj
V x g x


  ， 1,2, ,i N  . ( )

i
V x denotes 

the degree of constraint violation of individual ix .  

5:    Initialize 1( , , )mZ z z  by 

setting 1 2
( ), ( ), , ( )}min{ N

i i ii f x f x f xz   ; 

6:    Set gen = 1; 

7:    while stopping criterion is not satisfied do 

8:        for i = 1 to N do 

9:            select subproblem according to (2), generate an 
offspring y according to Algorithm2 

10:           Evaluate y,
1 2

( ) ( ( ), ( ), , ( ))
m

F y f y f y f y  , 

1
( ) min( ( ), 0)

p

jj
V g yy


  ; 

11:           update Z , for each 1, ,j m  , if ( )i iz f y , then set 

( )i iz f y  

12:           update neighboring solutions according to Algorithm3; 

13:           set ,i gn  according to Algorithm3 

13:       end for 

14:    end while 

 

Algorithm 2. Pseudo-code of generate offspring                                           

1:    randomly generate a number named rand from (0, 1); 

2:    if rand <  

3:      ( )P B i  

4:    else 

5:      {1, };P N   

6:    end if 

7:    Set 1r i and randomly select two indexes 2r and 3r from P , 

and then generate an offspring Solution y from 
31 2,  and rr rx x x by a DE operator; 

8:    Perform a mutation operator on y  with probability mp  to    

       produce a new solution y  

9:    Repair y ; 
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Algorithm 3. Pseudo-code of update scheme.                                             

1:    update neighboring solutions jx , j P of an offspring y as    

       follows: 

2:    Set 0c   

3:    if rc n or P  is empty then  

4:        set ,i gn C  then break; 

5:    else 

6:       Randomly pick an index j from P; 

7:       randomly generate a number named r from (0, 1) 

 8:       if ( ( ) ( ) 0)or( )j
fV y V x r p   then 

9:          if ( , ) ( , )te j te j jg y Z g x Z  then 

10:               , ( ) ( ), ( ) ( )and 1j j jx y F x F y V x V y c c      

11:         end if 

12:      else 

13:         if ( ) ( )jV y V x then 

14:            , ( ) ( ), ( ) ( )and 1j j jx y F x F y V x V y c c      

15:         end if 

16:      end if 

17:      Remove j from P and go to step3; 

18:   end if 

3. MEMS MODEL 

3.1 Introduction to the MEMS Model 
A case study in the area of MEMS design (taken from [14] [15] 
[16] [17]) was carried out to verify the effectiveness of the above 
design optimization methodology following a MOEA/D 
computational approach. The design problem is a comb-drive 
micro-resonator (see the layout in Fig. 1), with fourteen mixed-
type design variables ( 0, , , , , , , , , , , , ,b b t t sy sy sa sa cy c c cL w L w L w L w w L w x V N  

), and twenty four design constraints, both linear and nonlinear. 
More detailed description of the design problem in terms of 
analytical equations is given below. 

 
Figure 1. MEMS model (adapted from [14]). 

     bL and bw  are the length and the width of the flexure beam 

(respectively), tL and tw are the length and the width of the truss 

beam (respectively), syL and syw  are the length and the width of 

the shuttle yoke (respectively), saL and saw  are the length and the 

width of the shuttle axle (respectively), cyw is the width of the 

comb yoke, cL and cw  are the length and the width of the comb 

fingers (respectively), 0x is the comb finger overlap, V is the 

voltage amplitude, and cN  is the number of rotor comb fingers. 

The equations which are necessary to build the parametric layout 
are given as follows, Eqns. 4-18, 
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where 1L and 2L  are the lengths of the lower and the upper comb 

yokes, sA  , bA  , cA  , tA are the layout areas of the shuttle yokes, 

the flexure beams, the comb finger sidewalls and the truss beams, 
respectively,  xB is the damping coefficient,  xK and yK  are the 

folded flexure spring constants, exF is the lateral component of the 

external electrostatic force generated by the comb drives, xm is 

the effective masses, Q is the quality factor and dispx  is the 

displacement amplitude. Further details about these analytical 
equations and derivations of them are given in [16] [17]. 

3.2 Design Criteria 
Several design constrains must be defined to constrain the layout 
synthesis of the micro resonator. There are 24 linear and nonlinear 
constraints defined as given in the following Eqns. 19-31. 

1,2 2

3,4

5,6 0

(x) 0 700( m)                                                               (19)

(x) 0 2 2 700( m)                                          (20)

(x) 0 2( 2 ) 2

sy b t

ca c cy sa sy

g L

g L L w

g w L x w L w

  

    

       

μ
μ

7,8 0

9,10 0

11

700( m)             (21)

(x) 4 ( ) 200( m)                                          (22)

(x) 4 200( m)                                                   (23)

(x) ( / 2

c disp

disp

t a

g L x x

g x x

g L w

    

   

 

μ
μ

μ

12

13,14

) ( /2+ + )( m)                                 (24)

(x) ( /2+ ) / 2 ( m)                                   (25)

(x) 2 / 2 / 2 200( m)                             

sa sy disp

sa disp t a b

sy ba sa

L w x

g L x L w w

g L w w



   

    

μ
μ
μ

15,16

5
17,18

19,20

   (26)

(x) 2 100( m)                                                          (27)

(x) 5 10                                                                         (28)

(x) 0

dispg x

g Q

g

  

  

 

μ

21,22

23,24

/ 0.1                                                              (29)

(x) 0 / 1/ 3                                                             (30)

(x) 4 / 2 / 2 200( m

disp b

ey y

sa disp a

x L

g K K

g L x w



  

     μ )                                (31)

 

1177



 In this section, the multi-objective optimization problem (MOP), 
briefly described in the previous section that is related to the 
layout synthesis of MEMS components with respect to dynamic 
response (i.e. voltage) and the size of the device, is formulated. 
Optimum design parameters, i.e. geometrical features of the 
flexure beams, comb drives and the shuttle mass, are investigated 
to simultaneously minimize the power consumption or in other 
words the voltage and the area of the problem is given below, 

1

2

0

min

Minmize (x) :   

Minmize (x) : =( + + + )                                            (32)

subject to: (x),for 1,2, ,24

x { , , , , , , , , , , , , , }

x {2,2,2,2,2,10,

total s t b c

i

b b t t sy sy sa sa cy c c c

f V

f A A A A A

g i

L w L w L w L w w L w x V N








max

2,10,10,8,2,4,0,3};

x {400,20,400,20,400,400,400,400,400,400,20,400,50,50}

Where (x)ig  are the constraints given in the previous section and 

x is the vector of design variables. The autonomous optimization 
methodology to solve this nonlinear constrained optimization 
problem is given in the following sections.  

 

4. EXPERIMENTAL STUDIES AND 
DISCUSSIONS 
4.1 Experimental Settings 
In order to evaluate the performance of CMOEA/D, experimental 
results on MEMS layout optimization problem are compared with 
those obtained by two state-of-the-art algorithms NSGA-II and 
MOEA/D. Ten independent runs with the three algorithms are 
made, and the following parameters are used: 

The parameter settings of the compared algorithms are listed in 
Table 1 as follows. The population size for NSGA-II, MOEA/D 
and cMOEA/D is 200, crossover probability is 1.0, probability 
parameter pf = 0, mutation probability is 1/14 and maximum 
generation is 500. 

Table 1. The parameter setting of NSGA-II, MOEA/D and 
cMOEA/D 

 
Population 

size 
Crossover 

rates 
Mutation 

rates 

Maximum 
Generatio

n 

NSGA-II 200 1.0 1/14 500 

MOEA/D 200 1.0 1/14 500 

cMOEA/D 200 1.0 1/14 500 

For cMOEA/D and MOEA/D, neighbor size T=20，neighbor 
selection probability 0.9  , 10rn   

For cMOEA/D, SG=5. 

4.2 Performance Metric 
Performance of a multi-objective evolutionary algorithm can be 
evaluated in two aspects – convergence and distribution. 
Convergence describes the closeness of the obtained Pareto front 
to the true Pareto front. Distribution on the other hand depicts 

how the solutions in the obtained Pareto are distributed. For the 
MEMS layout optimization problem, because we do not know the 
true Pareto front in advance, we select two metrics – Coverage 
(C) [18] and Hypervolume (HV) [18]. Detailed definitions of 
them are as follows: 

Coverage Metric 

C can manifest domination relationship between two approximate 
Pareto fronts. Assume that A and B are two Pareto fronts obtained 
with two different multi-objective evolutionary algorithms, C can 
be defined as:  

 | :
( , )                            (33)

u B v A v u
C A B

B

  




Here, |B| represents the number of items (solutions) in B. 
v u means v dominates u or 

v equals u .Normally ( , ) 1 ( , )C A B C B A  . ( , ) 1C A B  means 
that all solutions in B are dominated by some solutions from A.  
On the other hand, ( , ) 0C A B  indicates that no individual in B is 

dominated by any solution from A. When ( , ) ( , )C A B C B A , A is 
considered superior to B.  

Hypervolume（HV）Metric 

HV simultaneously considers the distribution of the obtained 
Pareto front P and its vicinity to the true Pareto front. HV is 
defined as the volume enclosed by P and the reference 

vector 1 2( , , , )mr r r r  . HV can be defined as:  

( ) ( )                                                           (34)i PHV P vol i   

Here, ( ) vol i represents the volume enclosed by solution i P and 

the reference vector r . In this experiment, (55,50)r  . 

4.3 Experimental Result 
SR and CDP are two mechanisms of constraint handling. 
Moreover, when pf = 0 the two mechanisms are equivalent [19]. 
Figure 1 shows different pf values in cMOEA/D when solving 
MEMS layout optimization problem. 

 

Figure 1. Box-plot of HV-metric using different pf values in 10 
independent running of cMOEA/D 
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Table 2. HV-metric values of the solutions found by 
cMOEA/D using different pf value. 

HV-metric cMOEA/D 

Parameter Pf Best Mean 

0 2025.9 2015.8 

0.01 2017.3 2014.3 

0.02 2017.1 2006.0 

0.05 2016.7 2011.4 

0.1 2006.4 2001.0 

0.2 1931.0 1918.9 

 

From figure 1 and table 2, we can know that CDP (the Pf value 
equals zero) works better than SR in cMOEA/D. 

In the following experiments, we use CDP to deal with constraints. 
Figure 2 is the nondominated solutions with the maxmam H-
metric in 10 runs of NSGA-II, MOEAD and CMOEAD where 
their constraint handling is CDP. 

 Figure 2. Plots of the nondominated solutions with the 
maxmam HV-metric in 10 run of NSGA-II, MOEA/D and 

cMOEA/D 

 

Figure 3. the boxplot about HV-metric in 10 runs of NSGA-II, 
MOEA/D and cMOEA/D 

Table 3. HV-metric values of solutions found by cMOEA/D, 
MOEA/D and NSGA-II 

HV-
metric

cMOEA/D MOEA/D NSGA-II 

Instance Best Mean Best Mean Best Mean 

MEMS 
2025

.9
2015.

8
2017.

2 
1992.

2 
1846.

3 
1816.

4 
Figure 3 and table 3 describes the H-metric information in 10 runs 
of NSGA-II、MOEAD and CMOEAD. 

Table 4. Average set coverage among cMOEA/D (A), 
MOEA/D （B） and NSGA-II（N） 

C-metric 

C(A,B) C(B,A) C(A,N) 

0.82 0.015 1 

C(N,A) C(B,N) C(N,B) 

0 1 0 

 

Table4 presents the best of the C-metric values of the final 
approximations obtained by the three algorithms. The 
experimental results show that the proposed algorithm 
(cMOEA/D) outperforms the state-of-art algorithms such as 
NSGA-II and MOEA/D, in terms of convergence and diversity. 

5. CONCLUTION 
This paper proposes an improved MOEA called cMOEA/D to 
solve MEMS layout optimization problem. The cMOEA/D uses 
the frequency of individual update of sub-problems to locate the 
promising sub-problems. By dynamically allocating computing 
resources to more promising sub-problems, we can effectively 
improve the performance of the algorithm to find more non-
dominated solutions in MEMS layout optimization. In addition, 
we compared two mechanisms of constraint handling, Stochastic 
Ranking (SR) and Constraint-domination principle (CDP). The 
experimental results show that CDP works better than SR and the 
proposed algorithm outperforms the state-of-art algorithms such 
as NSGA-II and MOEA/D, in terms of convergence and diversity. 

The future work includes combinations of cMOEA/D with other 
mechanisms of constraint handling to further improve the 
performance of the algorithm, and test it in new applications. 
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