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ABSTRACT This paper proposes a multi-radial-distance event classification method based on deep learning.
To the best of our knowledge, this is the first time that the ®-OTDR can tell how far the target event from the
sensing fiber is through deep learning approach. The temporal-spatial data matrix collected by the system is
filtered by three different band-pass filters to form RGB images as the input of the Inception_V3 network
trained by ImageNet dataset. The passband of three band-pass filters is selected by searching the maximum
Euclidean distance in the frequency domain. Three kinds of filters with different frequency bands enhance
the effective features of data samples in advance. The simulated annealing (SA) algorithm is applied to search
the maximum Euclidean distance. Field experiment includes five kinds of events with four different radial
distances, where there are 17 subclasses in total, has been carried out. The classification results show that
the classification accuracy reaches 86% and the method can tell both the event type and radial distance.

INDEX TERMS ®-OTDR, event recognition, deep learning, Euclidean distance, simulated annealing

algorithm.

I. INTRODUCTION

Distributed optical fiber sensing is a technology that col-
lects signals through multiple sensing units in a single
sensing optical fiber. Phase Sensitive Optical Time Domain
Reflectometer(®-OTDR) is a typical distributed optical fiber
sensor system that can detect and locate external mechanical
vibration for a long distance [1]. It is widely used in many
fields, such as long-distance cable breakage monitoring,
structural health monitoring, voice signal and human foot-
print detection, and city-wide behavior monitoring [2]-[5].
In the early researches, researchers have made great efforts to
optimize the performance parameters of the system, such as
spatial resolution, sensitivity, dynamic range, signal-to-noise
ratio and sensing dimensions [6]-[11]. Jiajing et al. [10]
proposed a distributed acoustic source localization tech-
nology based on an array signal processing method which
enlarges the positioning dimension and realizes 2D and 3D
sensing. Wu et al. [11] proposed a collaborative energy-based
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method of source localization to estimate the vertical
offset-distance of a specific vibration source. With the
improvement of sensing performance, event classification
ability has become one of the bottlenecks of application and
promotion. Sun et al. [12] extracted feature vectors from
morphological features of temporal-spatial signals got over
90% classification accuracy with 3 types of vibration events.
Wang et al. [13] proposed a method to extract the feature
vector of signal by wavelet energy spectrum analysis, and
to classify vibration events by relevance vector machine.
Xiong et al. [14] proposed a vibration event recognition
method based on nearest neighbor classification support
vector machine. These methods need to extract the fea-
tures of the signal artificially and find a specific recogni-
tion algorithm. However, in different application scenarios,
the environmental noise of the system, the light source quality
of the laser and other unpredictable factors will make the
effectiveness of some features in the signal lost, resulting in
the degradation of the recognition effect, so the generalization
ability of the above method is limited. Convolutional neural
network (CNN) does not need to artificially set algorithm

143473


https://orcid.org/0000-0003-3575-4948
https://orcid.org/0000-0001-8031-1287
https://orcid.org/0000-0002-4232-8229
https://orcid.org/0000-0003-4915-2083

IEEE Access

Y. Shi et al.: Recognition Method for Multi-Radial-Distance Event

for classification task, it can extract corresponding fea-
tures according to sample distribution and automatically fit
classification algorithm. Therefore, CNN is suitable for
vibration event recognition of the &-OTDR system.
Wu et al. [15] proposed a classification method based on
one-dimensional CNN network and support vector machine.
The average recognition accuracy of this method for five
typical acoustic signals in oil transportation monitoring appli-
cation is more than 98%. Wang et al. [16], [17] directly use
the temporal-spatial data matrix of the ®-OTDR as the input
of CNN, and propose a lightweight CNN network, which
can classify 5 events with an accuracy of 96%. Li et al. [18]
proposed a method of constructing event classification net-
work based on transfer learning. This method can train the
classification network quickly under relatively poor hardware
conditions and can achieve 96% classification accuracy in
eight types of events. The sensitivity of the sensing fiber
is superior, which is enough to detect the vibration events
that occur several meters away from the sensing fiber. How-
ever, in previous research, only the detection ability near
the sensing fiber (i.e. event occurs right above the buried
sensing fiber) was applied. Due to the non-flat frequency
transmission characteristics of soil, the detected signal of
the event away from the sensing fiber will distort. If the
distorted data are directly collected into the training data set
without considering the transmission differences in frequency
attenuation, it will make the classification accuracy of deep
network drop sharply.

This paper proposes a multi-radial-distance event recog-
nition method based on deep learning and considering the
frequency transmission differences for ®-OTDR distributed
optical fiber sensing system. While identifying different types
of vibration events, we make full use of the sensing capa-
bility of the sensing fibers to classify different types of
vibration events that occur at different radial distances of
the sensing fiber. The definition of radial direction and axial
direction is shown in Fig.1. To the best of our knowledge,
this is the first time that the ®-OTDR can tell how far the
target event from the sensing fiber is through deep learn-
ing approach. The temporal-spatial data matrix collected by
the system is filtered by three different bandpass filters to
enhance the event features and form RGB images as the
input of the Inception_V3 network pre-trained by ImageNet
dataset [19], [20]. The passband of three band-pass filters
is selected by searching the maximum Euclidean distance
between the frequency domain of each class of vibration
events. The Simulated Annealing (SA) algorithm is applied
to search the maximum Euclidean distance [21]. Field exper-
iment includes five kinds of events with four different radial
distances, where there are 17 subclasses in total, has been
carried out. The classification experiment results show that
the classification accuracy, which can tell both the event type
and radial distance, is improved from 33.57% to 86.82%,
and the discrimination of the data filtered by three differ-
ent frequency bands is better than that of single frequency
band.
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FIGURE 1. The top view of the sensing optical fiber.
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FIGURE 2. The distributed optical fiber sensing system.

Il. THE RECOGNITION AND PASSBAND SELECTING
METHODOLOGY

A. THE RECOGNITION METHODOLOGY

For the completeness of description, the principle of
®-OTDR is described below and the main structure of the
system is shown in Fig.2. A light pulse is injected
into the sensing fiber and the Rayleigh backscatter
traces (RBT) returned from the sensing fiber are recorded.
A temporal-spatial data matrix is then composed by these
RBTs. The row direction of the data matrix stands for the
distance along the sensing fiber and the column direction
stands for the pulse repetition sequence, which can be treated
as a temporal direction. Vibration along the sensing fiber
is detected and located by moving average and differential
methods. Due to the width of the probe pulse, a single
vibration creates a range of light intensity fluctuations in the
received RBTs. Therefore, peripheral spatial neighborhoods
(such as the 40-meter range on both sides) near the vibrations
in the temporal-spatial data matrix are extracted as event data
samples for subsequent event classification by CNN.

The recognition methodology is constructed in detail
in Fig.3, which includes five main stages: signal detecting,
data pre-processing, database preparation, offline training
and online testing. The data matrix contained the vibration
and its neighborhoods are filtered by three band-pass filters
with different frequency bands in temporal domain and then
be scaled to the input size of the CNN. The RGB images
with labels are constructed by concatenating the filtered data
matrix and then stored in a database. The Inception_V3 net-
work pre-trained by ImageNet is offline trained on the pre-
pared data set. The pre-trained network can make the training
process faster and less training samples are required. Then the
field data follows the above process will be online tested and
acquired their event types and radial distances.

In this study, not only the different types of vibration
events, but also the radial distances for different vibration
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FIGURE 3. Construction of the recognition methodology (The cPreparation
step: pre-train network. The 15t step: signal detecting. The 2"d step: data
pre-processing. The 3" step: database preparation. The 4P step: offline
training. The 5t step: online testing).
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FIGURE 4. Spectrum diagram of vibration signal ‘digging with a shovel’
with different distances.

events need to be identified. The spectra of different radial
distances with the same vibration event type, which is ‘Dig-
ging with a shovel’, is shown in Fig.4. As shown in Fig.4,
the effective frequency is under 310Hz and the four curves are
not obviously distinguished as they are with the same event
type. There are distinctive only in certain frequency bands.
In order to distinguish the radial distances of the vibration
with the same type of vibration event, three bandpass filters
with different frequency passbands are set up to tell the
relative difference among the signals with different radial
distances. A data matrix with depth of three is generated after
being filtered by these three filters, which can be regarded
as an RGB image. Three filters with different passbands can
highlight these differences between each frequency bands and
make full use of the whole effective frequency band.

B. THE PASSBAND SELECTION METHODOLOGY

Suitable filter band selection will help improve the discrim-
ination between the event sample with different radial dis-
tances and the final classification. In this paper, Euclidean
distance is applied to help select the best filter bands.
Euclidean distance refers to the distance between two points
in m-dimensional space. It is defined as:

dee,y) = 3" (=) (1)
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where x and y represent the two points in m-dimensional
space. Suppose the distance along the sensing fiber is L,
the pulse repetition rate is N, and the vibration location is
I € [1,L]. Then, the time domain signal of location / can
be expressed as a column vector,

T
R = [r{,ré,...,rllv] 2)

where r is the RBT.
The frequency domain of R after fast Fourier transform
can be expressed as,

Flz[f{,f{,...,flé] 3)

Then a frequency domain matrix includes all kinds of event
can be represented as,
fll,l fll,N
T Cl‘,l SR/ CI,N
where C is the number of classes. The matrix M, ch N contains
the frequency information of all the event subclasses. The
appropriate bandpass filter will selected by finding the maxi-
mum Euclidean distance among the spectra of all recorded
samples. The Euclidean distance of M, ICX n under 3 filter
bands is as follow,

cl-1 C! by—1

D(by. by b3 by =Y Y 1| Y, —f)?

i=1 j=i+1 \|n=b

b3 by
ol DR 2 e I W (AR A 2 B &)

n=by n=b3+1

where by < by < by < bg,b1,br,b3,by € (1, N/2) are
the limits of 3 passbands, [b1, by), [b2, b3], (b3, ba]. b1 and
b4 are determined by the selected effective frequency section,
for example, 30Hz and 310Hz in Fig.4. A larger Euclidean
distance means the discrimination between each event type is
more obvious.

In order to obtain the maximum Euclidean distance, sim-
ulated annealing (SA) algorithm is applied. SA is a gen-
eral optimization algorithm and an extension of local search
algorithm, which don’t need other auxiliary information to
evaluate the objective function. The main idea of SA algo-
rithm is to walk randomly in the search interval, and then
use the Metropolis sampling criterion to make the random
walk gradually converge to the optimal solution. Suppose
Dpiax and D are the current optimal target value and the new
target value, the Metropolis sampling criterion process can be
expressed as:

If D > Dpax, then D is the current optimal value. If not,
accept or discard D with a random probability. The probabil-
ity of D being accepted as the current optimal value is,

Dyax — D

0 = exp(— — ) (6)
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TABLE 1. The parameters required by SA algorithm and their definitions.

TABLE 2. Number allocation of training and validation sets in each
dataset.

Parameter Definition — m—

b.b The lowest frequency and the highest General Subclass Training Validation Total

15Dy . Type set set Number
frequency, known variable

b,,b, Unknown variable 1 _ 634 212 846

: IL i 236 80 316

B,,B, The solution of the maximum target value - IL i 202 68 270

T Initial temperature I iii 180 60 240

T Terminated temperature IL iv 174 60 234

K Cooling coefficient M. i 382 128 510

D, Initial target value 1 II. 'i.i‘ 300 102 402

M1 iii 342 116 458

b New target value I iv 272 92 364

Dy Current maximum target value Vi 236 30 316

L Number of iterations per temperature v IV.ii 314 106 420

I Current number of iterations per IV.iii 272 92 364

temperature IV.iv 192 64 256

V.i 306 104 410

v V.ii 264 90 354

Determine 7, K, by, by, T', | V. iii 246 84 330

V.iv 280 94 374

Dy, and L
¥

[ Dyax= ?0,L=L’ |

_.l Randomly generate b, b3 within the value range |<—

v
Calculate the Objective function increment
AD = D(by.b3) — Dyax

| Dpyax=D(by,b3),
(B2,B3) = (by,b3)

True

exp(—AD/T)
> rand?

T=KXT, False
L'=L

Output Dy x,
(B3, B3)

FIGURE 5. The steps of searching the maximum value of D with SA
algorithm.

where temperature 7 is a control parameter which controls
how quickly the random process moves to a local or global
optimal solution. The parameters required by SA algorithm
and their definitions are shown in the Table 1. The steps of
searching the maximum value of D with SA algorithm are
shown in the Fig.5.

Ill. DATA COLLECTION AND CLASSIFICATION
EXPERIMENTS

A. DISTRIBUTED OPTICAL FIBER SENSING SYSTEM AND
DATA COLLECTION

The composition of the distributed optical fiber sensing sys-
tem used to collect data is shown in Fig.2. An ultra-narrow
linewidth laser (NLL) with a frequency width of 3 kHz is
used as the light source, and then the continuous light emitted
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by the laser is cut into probe pulses through an acoustic optic
modulator (AOM). Erbium-based optical amplifier (EDFA) is
used to compensate the insertion and transmission loss. The
amplified probe pulse is injected into a kilometer-long sensor
optical fiber through a circulator.

The sensing optical fiber is a G652 single mode optical
fiber wrapped in a polyvinyl chloride coating externally with
two wires for support and protection. The RBTs are collected
directly by a photodetector (PD) after passing through the
circulator. A data acquisition card (DAC) with a sampling
frequency of 100MHz is then used to record changes in signal
strength over time. Data are then processed on a computer
(PC). Five different kinds of event at the same location of
the sensing optical fiber are tested and recorded: Background
(No. I), Jumping (No. II), Digging with a shovel (No. III),
Walking (No. IV), Brick fall (No. V). For the last four kinds
of event, four additional experiments were carried out with
1 m radial distance interval, which means the radial distance
is Om, 1m, 2m and 3m, separately. It should be noted that
the experiments were conducted by the different person at
different time, which ensures the robustness of the experi-
mental data. Limited by the experiment condition, the sensing
optical fibers are buried in the soil with a depth of about 5 cm.
The real soil condition and the experiment environment are
shown in Fig.7. In order to avoid the coherent fading effect
in the events classification, two different probe pulse widths,
100ns and 200ns, are applied. Therefore, the spatial resolu-
tions (SR) of the two data are 10m and 20m respectively.
The data acquired under different pulse width are equally
treated as the same event. The pulse repetition rate is 10kHz.
RBTs within 1 second and 20m on both two sides near the
vibration position (40m in total) are extracted as a sample.
The composition of each dataset is detailed in Table 2. The
ratio of training set and validation set is 1:3.

Details of the five kinds of event are as follow,
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FIGURE 6. The real experiment environment.
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FIGURE 7. The fitness evolution curve of through SA algorithm searches
the Euclidean distance between classes in frequency domain.

1) BACKGROUND
Environment noise collected by the system without artificial
external disturbance.

2) JUMPING

A person jumping at one location with a rate of about twice
a second. In the ‘Jumping’ event, it is divided into four
subclasses: right above the sensing optical fiber (No. IL. i),
1m radial distance (No. II. ii), 2m radial distance (No. II. iii)
and 3m radial distance away from the sensing optical
fiber (No. II. iv).

3) DIGGING WITH A SHOVEL

Using a small shovel to shovel the land at one location with
a rate of about twice a second. In the ‘Digging with a shovel’
event, it is also divided into four subclasses: right above
the sensing optical fiber (No. III. i), 1 m radial distance
(No. III. ii), 2 m radial distance (No. III. iii) and 3 m radial
distance from the sensing optical fiber (No. III. iv).

4) WALKING
A person walks around a fixed location with a rate of
about two steps per second. There are four subclasses in
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the “Walking’ event: right above the sensing optical fiber
(No.IV.1), 1 mradial distance (No. IV. ii), 2 m radial distance
(No. IV. iii) and 3 m radial distance away from the sensing
optical fiber (No. IV. iv).

5) BRICK FALL

An 8.55kg brick falls freely from 1m height at one location.
Four subclasses are included in the ‘Brick fall’ event: right
above the sensing optical fiber (No. V. i), 1 m radial distance
(No. V. ii), 2 m radial distance (No. V. iii) and 3 m radial
distance away from the sensing optical fiber (No. V. iv).

B. DATA PREPROCESSING

Each RBT collected by the DAC forms the row of the data
matrix. Each sample data matrix consists of RBT collected in
one second. In this way, the horizontal row of the data matrix
represents the spatial domain, and the vertical columns rep-
resents the temporal domain. Since only the AC component
carries the vibration information and the DC component with
large value reduces the visibility of the AC component, high
pass filter with cutoff frequency of 30Hz is set to remove
the DC component. Due to the low pass characteristics of
soil, the frequencies higher than 310Hz are rarely detected.
Therefor the value of by and b4 are set to 30Hz and 310Hz.
The initial temperature is T = 10'°, cooling coefficient
is K = 0.8, terminated temperature is 7/ = 10° and the
number of iterations per temperature is L = 100. In order
to avoid a super narrow passband, the minimum passband is
set to 10Hz. Therefor the feasible range of b, and b3 is from
39Hz to 309Hz, with an alter step of 1Hz. The fitness evo-
lution curve of through SA algorithm searches the Euclidean
distance between subclasses in frequency domain is shown
in Fig.7. Fig.7 shows that the maximum Euclidean distance
between classes in frequency domain is 1.247 x 10® and the
corresponding by and b3 are 118Hz and 177Hz. This process
only takes 4.01s to pass 2700 iterations. Thus, the three filters
are applied with 30Hz to 117Hz, 118Hz to 177Hz, and 177Hz
to 310Hz bandwidths. The data matrix passes through these
three filters separately in temporal domain. Three filtered data
matrices are concatenated to form a data matrix with a depth
of three, which shown as an RGB format. In order to match
the size of the input layer of Inception_V3, the RGB images
are resized to 299 x 299 x 3. Then the RGB images with
their subclasses regarded as labels are stored in the training
and validation data set. Some typical RGB images of each
subclass are shown in Fig.8.

C. EVENTS TYPE AND RADIAL DISTANCE CLASSIFICATION
The Inception_V3 network pre-trained by ImageNet dataset
has a strong feature extraction ability, which will greatly
save the training time. Since there are 17 event subclasses
in total, the output full connection layer is reconstructed to
17 neurons. The overall learning is 0.001, the train epoch
is 200, the selected optimizer is SGD, and the batch size is 16.
The details of training and validation set are shown in Table 2.
After training process, the classification accuracy of the
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FIGURE 8. Typical RGB images of each vibration event.
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FIGURE 9. Accuracy curve of training.

validation set for each subclass and general type are obtained
and shown in Table 3. The accuracy and loss curve of train-
ing and validation processes are shown in Fig.9 and Fig.10.
Fig.9 and Fig.10 show that the network is stably convergent
and well trained after 150 epochs. It can be seen that the aver-
age classification accuracy is 86.82% for the event within 3m
radial distance in Table 3. If only the samples within 2m radial
distance are considered, the average classification accuracy
can be improved to 88.80%. As the subclass represents the
radial distance, the network can tell both the event type and
how far away the event is.

In order to test the effectiveness of the proposed
method, two other methods are applied for comparison.
The first method uses a single-channel grayscale picture
(narrow-bandwidth data) generated from the original data
matrix by a narrow-bandwidth bandpass filter with bandwidth
from 190Hz to 210Hz, where there are the biggest differences
in frequency domain as shown in Fig.4. The second method
uses a single-channel grayscale picture (broad-bandwidth
data) generated by a broad-bandwidth from 30Hz to 310Hz,
which includes the whole frequencies. The broad-bandwidth
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TABLE 3. The accuracy of the verification set for each event.

Subclass General Class
General Class  Subclass Accuracy (%) Accuracy (%)
1 95.28% 95.28%
1L i 93.75%
1L ii 83.82% o
1 11 iii 73.33% 81.71%
1L iv 71.67%
I i 93.75%
111 ii 92.16% N
1 L iii 87.93% 91:55%
111, iv 92.39%
Iv.i 85.00%
IV.ii 92.45% N
v IV.iii 89.13% 81.28%
IV.iv 46.88%
V.i 95.19%
V.ii 72.22% N
v V. iii 80.95% 8521%
V.iv 90.43%

Total Average Validation Accuracy: 86.82%

method is usually used in previous research for event clas-
sification. The same network is applied for training, and
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TABLE 4. Validation accuracy of the three method.

Method Average Validation Accuracy (%)
Three-channel Method 86.82%
Narrow-bandwidth Method 80.75%
Broad-bandwidth Method 33.57%
TABLE 5. IGE and CGE for each method.
Method IGE (%) CGE (%)
Three-channel o o
Method 4.84% 8.33%
Narrow-bandwidth o o
Method 8.16% 11.09%
Broad-bandwidth o o
Method 11.46% 54.96%

other parameters including the size of training and valida-
tion set are kept the same. The average validation accu-
racy of these three methods is shown in Table 4. As the
radial distances distort the vibration waveform and
the small amplitude waveform will be drowned by noise,
the classification accuracy of broad-bandwidth method drops
rapidly to only 33.57% for multi-radial-distance event recog-
nition. The narrow-bandwidth method shows a better result
(80.75%) than the broad-bandwidth method as the narrow
frequency band contains the biggest difference and less noise.
The proposed three-channel method shows the best perfor-
mance (86.82% classification accuracy) as the relative change
between the three frequency bands gives more difference and
is not obviously affected by the backscattering light intensity
fluctuation, which is common in ®-OTDR system due to slow
change of system parameters.

In order to show the classification ability in event type and
radial distance separately, inner general class error(IGE) and
cross general class error(CGE) are applied. The IGE and CGE
are defined as,

IGE = FNinner - FNcross (7)
Nval
FN o5
CGE = —% ®)
val

where FNjer s the sample number with wrong subclass
predictions, FN s is the sample number with wrong gen-
eral class predictions and N, is the sample number of the
validation set. IGE shows the error in radial distance recog-
nition and CGE show the error in event type recognition.
The IGE and CGE for each method are shown in Table 5.
As can be seen from Table 5, both IGE and CGE for
the three-channel method are lowest. which shows that the
three-channel method is superior to the other two meth-
ods in both event type classification and radial distance
identification.
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IV. DISCUSSION

For different filed applications, the optimal filter frequency
bands need to be chosen again. The SA algorithm will help
to find the best filter frequency bands for a certain dataset in
a practical way. Once the training dataset is determined, the
SA algorithm only needs to be run once before network train-
ing process, which takes 4.10s for our dataset. If the network
is used for other event types, the optimal bands should be
searched again.

In the experiments, the vibration events are handled with
Im interval and the results shows the proposed method has
the ability to distinguish the 1m difference. For different
distances, such as 0.5m, 1.5m and 2.5m, the amplitude of
fiber detected vibration may change a little, but this method
can still work as the differences between each subclass can
still be detected and distinguished.

As the proposed method can tell both the event type and
radial distance. It can be used for early warning in special
areas or helps find fibers that are buried in unknown locations.
In future studies, the correlation of radial distance resolution,
accuracy of event recognition, and the soil environment in
which the optical fiber is buried will be investigated.

V. CONCLUSION

This paper has proposed a multi-radial-distance event recog-
nition method for ®-OTDR distributed optical fiber sensing
system based on deep learning. To the best of our knowledge,
this is the first time that the ®-OTDR can tell how far the
target event from the sensing fiber is through deep learning
approach. The temporal-spatial data matrix from ®-OTDR
is filtered by three filters of different frequency bands and
then stacked and scaled to form an RGB images, which can
be used as the input of CNN. The data matrix filtered by
three different bandpass filters offers the relative difference
between each bandwidth, which can help the network earlier
pay attention to the difference between each subclass with
different radial distances. The passband of three filters is
selected by searching the maximum Euclidean distance in
frequency domain by SA algorithm. Field experiment of five
kinds of events with four kinds of radial distance, where
there are 17 subclasses in total, has been carried out. The
classification results show that the classification accuracy of
the proposed method improves from 33.57% to 86.82%.
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