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Searching Discriminative Regions for Convolutional
Neural Networks in Fundus Image Classification
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Abstract— Deep convolutional neural networks (CNNs) have
been widely used for fundus image classification and have
achieved very impressive performance. However, the explain-
ability of CNNs is poor because of their black-box nature,
which limits their application in clinical practice. In this paper,
we propose a novel method to search for discriminative regions to
increase the confidence of CNNs in the classification of features in
specific category, thereby helping users understand which regions
in an image are important for a CNN to make a particular
prediction. In the proposed method, a set of superpixels is selected
in an evolutionary process, such that discriminative regions can
be found automatically. Many experiments are conducted to
verify the effectiveness of the proposed method. The average
drop and average increase obtained with the proposed method
are 0 and 77.8%, respectively, in fundus image classification,
indicating that the proposed method is very effective in iden-
tifying discriminative regions. Additionally, several interesting
findings are reported: 1) Some superpixels, which contain the
evidence used by humans to make a certain decision in practice,
can be identified as discriminative regions via the proposed
method; 2) The superpixels identified as discriminative regions
are distributed in different locations in an image rather than
focusing on regions with a specific instance; and 3) The number
of discriminative superpixels obtained via the proposed method
is relatively small. In other words, a CNN model can employ a
small portion of the pixels in an image to increase the confidence
for a specific category.
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I. INTRODUCTION

FUNDUS images are effective tools for observing the
progression of different eye diseases, such as diabetic

retinopathy (DR) and glaucoma. The interesting clinical fea-
tures of an eye, such as the optic disk and vessels, can also be
clearly observed in a fundus image [1]. The images in Fig. 1
are examples of different fundus images, where Fig. 1(a) is a
fundus image from a normal subject, Fig. 1(b) is a fundus
image from a subject with DR, and Fig. 1(c) is a fundus
image from a subject with glaucoma. The fundus images
from subjects with different diseases exhibit different visual
features. For example, there are lesions, with hard exudates
and soft exudates, in fundus images from subjects with DR.
In fundus images of subjects with glaucoma, the ratio of the
size of the optic disk to the size of the optic cup is generally
abnormal [2]. These visual features are evidence used by
ophthalmologists to make a diagnosis in clinical practice.

As the number of patients with eye diseases increases, there
is a desire to develop a computer-aided diagnosis system
that can automatically and accurately identify diseases on
the basis of fundus images [3], [4]. Numerous methods have
been proposed for developing computer-aided systems for
detecting eye diseases, including the use of classical image
processing techniques, e.g., fuzzy methods [5], to detect
related eye diseases. With the revival of deep learning [6],
especially deep convolutional neural networks (CNNs) [7],
many researchers have employed deep learning techniques to
develop computer-aided diagnosis systems. For example, Ting
et al. [8] developed a deep learning system for recognizing DR
and related eye diseases via fundus images. Raghaverndra et al.
[1] employed CNNs for the accurate diagnosis of glaucoma on
the basis of fundus images. Cen et al. [9] also employed deep
neural networks to automatically detect different diseases on
the basis of fundus images.

A. Techniques for Explainability

Although the precision achieved by CNNs for fundus image
classification is very impressive, explaining why CNNs make a
specific prediction given a particular fundus image is difficult
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Fig. 1. Examples of different fundus images. (a) Normal. (b) DR.
(c) Glaucoma.

because of the black-box nature of CNNs [10]. Notably,
explainability for CNNs is very important, especially when
CNNs are applied for high-impact and high-risk tasks, such
as medical diagnosis [11]. The research area of explainable
deep learning (also termed XAI) [12] has drawn widespread
attention. Many methods have been proposed to explain why
CNNs make a specific prediction, among which saliency map-
based methods [13] have been widely studied, with the purpose
of generating a saliency map to highlight the regions in
an image that are important for a CNN to make a specific
prediction [14].

Saliency map-based methods can be divided into class
activation map (CAM)-based methods [15] and perturbation-
based methods [16]. The CAM was proposed by Zhou et al.
[15], who defined a CAM as a discriminative region used
in CNNs to identify a specific category of feature and gen-
erated by mapping the predicted class score back to the
previous convolutional layer. Inspired by the original CAM
definition [15], several improved methods based on CAMs
have been proposed, such as Grad-CAM [17], Grad-CAM++

[18], Score-CAM [19], Ablation-CAM [20], Eigen-CAM [21],
Relevance-CAM [22] and Shap-CAM [23].

Unlike the mechanism for which backpropagation is used
to generate discriminative regions in CAM-based methods,
in perturbation-based methods, a part of the input for a CNN
model is first modified. The change in output is then observed.
The degree of the change in output indicates which parts
of the input are particularly important for a CNN to make
a prediction [16], [24]. Local interpretable model-agnostic
explanation (LIME) [25] is a representative perturbation-based
method that employs the occlusions of superpixels and linear
models to obtain saliency maps. Several improved methods
have been proposed on the basis of the framework of LIME.
Ribeiro et al. [26] improved LIME by maximizing the cov-
erage region of an explanation. Wang et al. [27] proposed a
method termed the multiobjective evolutionary computation-
based model-agnostic method (MO-LIME) to overcome the
limitations of LIME, such as the expensive sampling process
and the prefixed number of interpretable features.

There are also other forms of perturbation-based methods.
For example, Petsiuk et al. [28] estimated the importance of
pixels by dimming them in random combinations. Fong and
Vedaldi [14] formulated the problem of searching for discrim-
inative regions as an information maximization problem and
solved the problem by using a local search with a gradient
descent method. Dabkowski and Gal [29] proposed a fast
saliency detection method and trained a model to predict a
saliency map with a single feed-forwards pass. Chang et al.

[30] explained image classifiers via counterfactual generation.
They sampled plausible image in-fills by conditioning a gener-
ative model and then searched the image regions that changed
the decision of the classifier the most after in-fill addition.
Del Ser et al. [31] presented a framework for generating
counterfactual explanations on the basis of the argument that
trust can be achieved via counterfactual explanations on the
basis of the hypothetical input conditions under which the
output changes.

In addition to CAM-based methods and perturbation-based
methods, many other methods for assessing CNNs have been
proposed. Zeiler and Fergus [32] introduced a visualization
technique to provide insight into the functions of intermediate
layers and the operation of models. Kuo [33] proposed a
mathematical model, termed rectified correlations on a sphere,
for use with CNNs. Shang et al. [34] proposed a concatenated
rectified linear unit to improve CNNs. Wang et al. [35]
proposed a method with interactive visualization to explain
the behaviours of CNNs. Xuan et al. [36] proposed a visual
system for comparative studies of CNNs.

B. XAI in Fundus Image Classification

The above methods were developed primarily for explaining
CNNs in natural image classification. Some existing works
have explored whether existing methods, such as CAM-based
methods and perturbation-based methods, can provide valid
explanations for CNNs in fundus image classification. For
example, Cen et al. [9] employed CAM-based methods to
generate heatmaps and indicate important regions for CNNs
in fundus image classification. Additionally, Deperlioglu et al.
[37] employed CAM-based methods to identify important
regions for CNNs in glaucoma diagnosis. Chang et al. [38]
employed adversarial examples to explain the rationale of
the decisions made by a deep learning model in glaucoma
classification. Kamal et al. [39] used an adaptive neuro-fuzzy
inference system and a pixel density analysis method to
provide explanations for models in glaucoma prediction.

Although existing works have made some progress in the
area of explainable deep learning in fundus image classifi-
cation, the issue of understanding the behaviours of CNNs
remains largely an open problem. In this paper, we propose a
novel method to search for discriminative regions for CNNs
in fundus image classification based on genetic algorithms,
thereby helping users understand which regions in an image
are important for a CNN model to make a specific pre-
diction. The proposed method follows the general steps of
perturbation-based methods [25], where discriminative regions
are obtained by modifying the inputs of CNNs and observing
the changes in the outputs. To accelerate the process of
searching for discriminative regions, in the proposed method,
a set of superpixels is involved in an evolutionary process,
such that a combination of the superpixels (or discriminative
regions) that can increase the confidence of CNNs for a
specific category can be automatically identified.

Although the proposed method follows the general steps
of perturbation-based methods [25], there are fundamental
differences in the approach used to search for discrimina-
tive regions compared with the existing perturbation-based
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TABLE I
THE CHARACTERISTICS OF DIFFERENT METHODS

methods. To clarify the differences among different methods,
the characteristics of different methods, including CAM-based
methods [17], [18], [19], perturbation-based methods [14],
[27], [28], etc., according to different criteria are given,
as summarized in Table I, which includes the details for each
method in terms of methodology, structure (intrinsic or post
hoc), scope (local or global) and dependent criteria (model
specific or model agnostic) [40]. With respect to structure,
if XAI models can be integrated as a part of a network, they
are considered intrinsic. If XAI models are used to explain
the networks, they are post hoc. With respect to scope, if XAI
models can access model data and provide explanations, they
are local. If XAI models can access data and provide feedback
regarding network behaviours, they are global. Local models
access individual instances, whereas in global models, the
network architecture is treated as a black box. With respect to
the dependent criteria, some XAI models are designed to work
with specific AI systems (i.e., model specific), whereas other
models can be generalized across several networks (i.e., model
agnostic).

CAM-based methods [17], [18], [19] and perturbation-
based methods [14], [27], [28] share similar characteristics
in terms of structure, scope, and dependent criteria and are
post hoc, local, and model agnostic. The primary differences
among different approaches are the methods used for gener-
ating discriminative regions. CAM-based methods [17], [18],
[19] employ backpropagation to generate visual explanations.
Perturbation-based methods explore various ways to modify
the inputs for CNNs to obtain discriminative regions. For
example, Rise [28] estimated the importance of pixels by
dimming them in random combinations. Mask [14] obtained
discriminative regions via a local search with gradient descent
methods to solve an optimization problem. MO-LIME [27]
employed a multiobjective algorithm to search for discrimina-
tive regions. In the proposed method, the problem of searching
for discriminative regions is formulated as a combinatorial
optimization problem and solved via genetic algorithms.

Notably, in both the proposed method and MO-LIME [27],
superpixels in evolutionary algorithms are used to search for
discriminative regions. However, there are differences between
the proposed method and MO-LIME, such as the number of
objectives, the ways used to achieve the objectives and the
forms of individuals. Specifically, in MO-LIME, there are two
objectives: maximizing the probability of CNNs predicting a

local explanation as a specific class label and minimizing the
number of selected superpixels. In the proposed method, there
is only one objective, which is to maximize the increase in
the confidence of CNNs for a specific category. Experiments
show that although the minimization of the number of selected
superpixels is not employed as an objective in the proposed
method, the number of discriminative pixels obtained by the
proposed method is often relatively small, with the ratio to
the total number of pixels in an image generally being less
than 0.25.

Since the objectives for the evolutionary algorithms are
different, the methods used to achieve the objectives also vary.
In [27], nondominated sorting genetic algorithm II (NSGA-II)
[41] was employed to evolve local explanations, and a set of
nondominated solutions was returned. In the proposed method,
genetic algorithms [42], which consist of fitness evaluation,
selection, crossover and mutation, are employed to evolve
the discriminative regions, and the individual with the best
fitness value is returned. In addition, in MO-LIME, each
dimension of an individual is a real value within the range
of 0 to 1; this approach increases the search space and
reduces efficiency. In the proposed method, the individuals
are directly involved in the evolutionary process in the form
of binary vectors. In addition, the methods used for crossover
and mutation for the individuals in the proposed method are
different from those in MO-LIME. The average drop and
average increase obtained with the proposed method are 2.97%
and 84.5%, respectively, which are significantly better than
those (16.4% and 35.5%) obtained with MO-LIME. Notably,
the differences between the proposed method and MO-LIME
could lead to a significant improvement in the search for
discriminative regions and increase the confidence of CNNs
in the classification of features in a specific category.

Although the proposed method was originally designed to
search for discriminative regions in CNN-based fundus image
classification, it can also be applied to search for discriminative
regions in other CNN-based image classification tasks (see
Section III-C). We conducted a series of experiments to verify
the effectiveness of the proposed method, and in the process,
we obtained some interesting findings, which are summarized
as follows:

1) Some superpixels, which contain evidence used by
humans to make a certain decision in practice, can be iden-
tified as discriminative regions via the proposed method. For
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Fig. 2. The flowchart of the proposed method. A set of superpixels is first generated for a given image. A population with a specific number of individuals
is then randomly initialized for the superpixels. The fitness value of each individual is computed via the trained CNN model. Evolutionary operations, such
as selection, crossover and mutation, are employed to evolve the individuals. Once new individuals are generated, the fitness value of each new individual is
computed. The evolutionary process is repeated until the stopping criteria are met.

example, in the case of fundus image classification with DR,
the proposed method can search for some superpixels with
lesions, which are types of evidence used for the diagnosis of
DR in clinical practice, as discriminative regions.

2) The superpixels identified as discriminative regions are
distributed in different locations in an image rather than
focusing on regions with a specific instance. In other words,
even though some superpixels do not contain the evidence
used by humans to make a certain decision in practice, they
can be identified as discriminative regions with the proposed
method.

3) The number of discriminative pixels obtained with the
proposed method is relatively small (the ratio to the total
number of pixels in an image is less than 0.25), even though
the minimization of the number of selected superpixels is not
employed as an objective in the proposed method. In other
words, a CNN model can employ a small portion of the
pixels in an image to increase the confidence for a specific
category.

II. METHODS

The flowchart of the proposed method is shown in Fig. 2.
Given an image x and a trained CNN model f (·), a set
of superpixels is first generated for image x . A population
with N individuals is then randomly initialized for the super-
pixels. The fitness value of each individual is computed via
the CNN model f (·). T rounds of evolution are performed
for the individuals. Each round of evolution involves three
evolutionary operations: selection, crossover and mutation.
After new individuals are generated, the fitness value of each
new individual is computed, and a new round of evolution is
performed. Algorithm 1 summarizes the evolutionary process.
In Algorithm 1, the subscripts in V maskt,i indicate that
individual V mask is the i-th individual in the t-th generation.
For simplicity, in the following introduction, we omit the
subscript t or i .

Algorithm 1 Evolutionary Process

A. Coding & Decoding

Given an image x , the first step of the proposed method is
to generate superpixels for image x . Genetic algorithms are
then employed to identify a combination of superpixels that
can increase the confidence of a CNN for a specific category.
In this work, the linear iterative clustering algorithm, also
known as the SLIC algorithm [43], is utilized to generate
superpixels. In the evolutionary process, the superpixels are
encoded into a set of binary vectors with a length of S,
where S is the number of superpixels in image x . Each
binary vector is termed an individual and is used to determine
which superpixels are preserved and which are removed. Each
dimension in a binary vector corresponds to a superpixel. If the
value in the corresponding dimension for a superpixel is 1,
then this superpixel is preserved; otherwise, it is removed.
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Fig. 3. An example demonstrating the process of coding and decoding. (a) An
original image. (b) The image with superpixels. (c) The decoded result.

Fig. 3 is an example used to demonstrate the process of coding
and decoding, where Fig. 3(a) is a fundus image, Fig. 3(b)
is an image with superpixels, and Fig. 3(c) is a decoded
result based on a binary vector. In the following introduction,
we employ the symbols V mask to represent a binary vector
for the superpixels and mask to represent the corresponding
decoded result.

B. Initialization

Once the coding and decoding strategies are determined, the
individuals can be initialized. In this paper, an individual is a
binary vector with a length of S used for determining which
superpixels are preserved for CNNs to make a prediction.
We represent an individual as V maski , i = 1, 2, 3, . . . , N ,
where N is the number of individuals in a generation.
To initialize an individual V maski , the values in V maski
are randomly drawn from a standard uniform distribution in
the open interval (0, 1). Thresholding is then performed on
V maski , where the values greater than a threshold are set to
1 and the others are set to 0. During the thresholding process,
the threshold value influences the number of superpixels
preserved in the initialization step. Increasing the threshold
value results in fewer preserved superpixels. However, it has
minimal impact on the evolutionary algorithm when searching
for individuals with the best fitness values (see Section III-A).
In this paper, we set the threshold value to 0.9.

C. Fitness Evaluation

In the fitness evaluation step, an individual is decoded
for a corresponding image via the strategy introduced in the
coding and decoding section. The decoded image is then
input into a CNN to make a prediction. It is assumed that
Y c

= f (x), where Y c represents the predicted score for
category c when the original image x is used as an input for a
CNN. Additionally, Oc

= f (mask), where Oc represents the
predicted score for category c when the decoded image is used
as an input. The fitness value for an individual is then defined
as f i t = Oc

−Y c. Since the purpose of this work is to search
for discriminative regions that can increase the confidence of
a CNN for a specific category of features in classification,
a large fitness value indicates a high-quality individual.

D. Selection

During selection, two individuals, V maski and V mask j , are
randomly selected from the current generation. If the fitness

Fig. 4. An example of the crossover process. The first step in crossover is to
identify the locations where the values of V maski and V mask j are different.
In the given example, the values of V maski and V mask j at locations a, b,
and c are different and are labelled in red. The second step is to randomly
select a location from the locations where the values of V maski and V mask j
are different for crossover. In the given example, location b is selected; thus,
the bits associated with location b in V maski and V mask j are interchanged
to generate new individuals.

TABLE II
IMPLEMENTATION DETAILS

value of V maski is greater than or equal to the fitness value of
V mask j , then individual V maski will be selected for the next
generation. Otherwise, V mask j will be selected. This process
is repeated N times to ensure that the number of individuals
in the next generation is equal to N .

E. Crossover

Given two individuals V maski and V mask j , to ensure
the crossover between V maski and V mask j to generate new
individuals, in the proposed method, the location for crossover
is randomly selected from the locations where the values of
V maski and V mask j are different. Fig. 4 shows an example
of the crossover process, where the values at locations a, b,
and c in V maski and V mask j are different. The location
for crossover is randomly selected from a, b, or c. In Fig. 4,
location b is selected for crossover; thus, the bits associated
with location b in V maski and V mask j are interchanged with
a probability of pc.

F. Mutation

The purpose of mutation is also to generate new individuals.
In this work, M(M ≤ S) locations for a given individual are
randomly selected for mutation. The probability of mutation at
each selected location is pm . Since the value of an individual
V maski is either zero or one, the mutation process at a
location involves changing the value to either zero or one
depending on the original value at the location. If the original
value at a location is zero, it could be changed to one after
mutation. If the original value is one, it could be changed
to zero after mutation. In summary, Table II provides the
implementation details for each step.

III. EXPERIMENTS

A total of 6132 fundus images were collected from Joint
Shantou International Eye Center, Shantou University and the
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TABLE III
THE STRUCTURE OF THE CNN APPLIED IN THIS WORK

Chinese University of Hong Kong for the experiments. The
images were classified into three categories: DR images, glau-
coma images and normal images. There were 2152 DR images,
1303 glaucoma images, and 2677 normal images selected.
These images were transformed to a size of 512 × 512 and
divided into a training set, a validation set and a test set at a
ratio of 8 : 1 : 1.

Table III summarizes the network structure applied in this
work. Note that each layer in the network is followed by a
ReLU layer, which is not shown in Table III. The experiments
presented in this paper were conducted via MATLAB. The
toolbox MatConvNet [44] was employed to train the CNNs.
The loss function for the CNNs was Softmax loss. CNN
training was performed over 41 epochs, with learning rates of
0.002 (1 to 11 epochs), 0.0002 (12 to 27 epochs) and 0.00002
(28 to 41 epochs). Once training was completed, the accuracy
obtained with the trained CNN for the test set was 0.89.

The parameters of genetic algorithms include the size of
the population N , the probability of crossover pc, the prob-
ability of mutation pm , the number of locations for mutation
M , the number of superpixels S and the maximum number
of iterations T , among others. These parameters affect the
performance of the proposed method. For example, if the
number of superpixels S is too large (e.g., equal to the number
of pixels in an image), the complexity of the discriminative
regions will be very high. If the number of superpixels S is
too small (e.g., equal to 1), the combinations of superpixels
will be limited, and the genetic algorithms may be unable
to identify the optimal combination of superpixels. Similarly,
if the size of the population is small, the algorithm may
converge to a local optimum. If the size of the population is
very large, the search area will be large, and the computational
load will be high. To consider the effects of other parameters
on the performance of genetic algorithms, we refer readers
to [45] for a comprehensive introduction. The parameters in
this paper were set on the basis of an empirical study. Table IV
summarizes the value for each parameter.

A. Qualitative Analysis

Fig. 5 shows some examples to demonstrate the discrim-
inative regions obtained by the proposed method, where the

TABLE IV
PARAMETERS SETTING

images in the first row are original fundus images, the images
in the second row are images with superpixels, the images in
the third row show the initial regions, and the images in the
fourth row show the regions with the best fitness values. The
images in the first two columns in Fig. 5 fall within the DR
category, those in the third to fourth columns are examples that
fall within the glaucoma category, and the those in the last two
columns are normal examples. The proposed method is used to
identify some superpixels with lesions, such as hard exudates
and soft exudates, which are used as evidence for the diagnosis
of DR in clinical practice, as discriminative regions. For glau-
coma images, the proposed method is used to identify some
superpixels located in optic disks as discriminative regions.
In clinical practice, the ratio of the size of the optic disk to
the size of the optic cup is commonly used for glaucoma
diagnosis. Note that some superpixels that do not contain
evidence used for making a diagnosis in clinical practice
may be identified as discriminative regions by the proposed
method. For example, the discriminative regions obtained with
the proposed method for DR images are distributed among
different locations rather than solely focusing on the regions
with lesions.

Fig. 6 shows the performance curves for the examples given
in Fig. 5. The horizontal axis in Fig. 6(a) represents the number
of iterations, and the vertical axis represents the fitness value
of the best individual in each iteration. The horizontal axis in
Fig. 6(b) represents the number of iterations, and the vertical
axis represents the pixel ratio for the best individual in each
iteration. The pixel ratio is defined as the ratio between the
number of preserved pixels (or discriminative pixels) in mask
obtained via the proposed method and the total number of
pixels in an image. The fitness value improves as the number
of iterations increases and tends to stabilize when the number
of iterations is greater than a certain value. The curves for
the pixel ratios exhibit fluctuations. This phenomenon occurs
because crossover and mutation are used to generate new
individuals, and the individual with the best fitness value in
the current generation may differ from the one with the same
best fitness value in the previous generation. In other words,
different individuals may possess the same best fitness value.
Fig. 7 shows four examples, which are the discriminative
regions for the DR image shown in the first column in
Fig. 5. These four discriminative regions are associated with
different combinations of superpixels, even though they share
the same best fitness value. This phenomenon indicates that
the discriminative regions that can increase the confidence
of CNNs for a specific category obtained via the proposed
method are not unique.
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Fig. 5. Examples to demonstrate the discriminative regions obtained with the proposed method. The images in the first row are original images. The images
in the second row are the images with superpixels. The images in the third row are the initial regions, and the images in the fourth row are the regions with
the best fitness values.

Fig. 6. The performance curves for each example in Fig. 5. (a) The horizontal axis represents the number of iterations. The vertical axis represents the
fitness value of the best individual in each iteration. (b) The horizontal axis represents the number of iterations. The vertical axis represents the pixel ratio
for the best individual in each iteration.

Fig. 7. Different discriminative regions with the same best fitness value for
the DR image shown in the first column in Fig.5.

Notably, the pixel ratio for each image is influenced by the
threshold value in the initialization step. Specifically, if the

threshold value is small (resulting in more superpixels being
preserved during initialization), the pixel ratio will be large.
Conversely, if the threshold value is large (resulting in fewer
superpixels being preserved during initialization), the pixel
ratio will be small. Fig. 8 shows an example, where the
curves are the performance curves for the DR image shown
in the first column in Fig. 5 when the threshold value is
set to 0.9, 0.5 and 0.1. A large threshold value results in a
small pixel ratio. However, regardless of the threshold value,
the best fitness values for the individuals tend to be the
same.
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Fig. 8. The effect of the threshold value on performance. (a) Fitness values.
(b) Pixel ratios.

TABLE V
THE PERFORMANCE OF THE PROPOSED METHOD IN SEARCHES

FOR DISCRIMINATIVE REGIONS

B. Quantitative Analysis

The average drop and average increase metrics used in [18]
were employed to assess the quality of the proposed method.
The average drop is defined as 1

K
∑K

k=1
max(0,Y c

k −Oc
k )

Y c
k

. The
average increase (also defined as an increase in confidence)
is defined as

∑K
k=1

I(Y c
k <Oc

k )

K , where Y c
k is the predicted score

for class c in image k and Oc
k is the predicted score for class

c with the discriminative regions as inputs. I represents an
indicator function that returns a value of 1 if the input is
true and 0 otherwise. K represents the number of images in
the test set. We also employed the average pixel ratios from
the test set to assess the quality of the proposed method.
Table V summarizes the results obtained with the proposed
method in searches for discriminative regions of the CNN in
fundus image classification. The average drop obtained with
the proposed method is 0, which indicates that the proposed
method can identify a discriminative region that does not
decrease the confidence of the CNN for a specific category
of feature for all the images in the test set. The pixel ratio
obtained with the proposed method is 0.1265, which indicates
that the CNN model can utilize a small portion of the pixels
in an image to increase the confidence of classification for
features in a specific category.

C. Comparison With Other Methods

Since most existing methods for explaining CNNs were
evaluated with the ImageNet (ILSVRC2012) database [46],
we randomly selected 200 images from the validation set in
ImageNet to perform comparisons with other methods. The
CNN model applied in this experiment was VGG-F, which was
trained and can be downloaded from.1 Note that the maximum
number of iterations T was set to 1000 in this experiment to
ensure that the algorithm tends to be as stable as possible for
different images. Fig. 9 shows some examples to demonstrate
the discriminative regions obtained with the proposed method
applied to the ImageNet database, where the images in the

1https://www.vlfeat.org/matconvnet/

Fig. 9. Examples to demonstrate the discriminative regions obtained via the
proposed method. The images in the first column are the original images. The
images in the second column are the images with superpixels. The images in
the third column show the initial regions. The images in the fourth column
show the regions with the best fitness values.

first column are original images, the images in the second
column are images with superpixels, the images in the third
column show the initial regions, and the images in the fourth
column show the regions with the best fitness values. The
discriminative regions obtained with the proposed method are
distributed in different locations in the images, which confirms
the conclusion that CNNs employ different regional informa-
tion from the images to increase the confidence for a specific
category rather than solely focusing on the regions associated
with a particular instance. Fig. 10 shows the performance
curves for the examples given in Fig. 9. Similar to the cases
shown in Fig. 6 for fundus images, the fitness values for natural
images also improve and tend to stabilize as the number of
iterations increases. In addition, the number of discriminative
pixels obtained via the proposed method is relatively small,
generally accounting for less than 25.

Table VI summarizes the results obtained via different
methods. In Table VI, the average drop and average increase
for GradCAM [17], GradCAM++ [18], ScoreCAM [19],
Rise [28] and Mask [14] are from [19]. Since the average drop
and average increase were not provided in [27], we employed
VGG-F and applied MO-LIME [27] to the same images
input into the proposed model to calculate the average drop
and average increase. In MO-LIME, a set of nondominated
individuals is returned for each image, and the individual
associated with the maximum increase in confidence for a spe-
cific category after 1000 iterations is selected for comparison.
For the given metrics in Table VI, a lower average drop is
better, and a higher average increase is better. The average
drop and average increase obtained for the proposed method
are significantly better than those obtained for other methods,
such as CAM-based methods [17], [18], [19] and perturbation-
based methods [14], [27], [28].
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Fig. 10. The performance curves for the examples shown in Fig. 9. (a) The
horizontal axis represents the number of iterations. The vertical axis represents
the fitness value of the best individual in each iteration. (b) The horizontal
axis represents the number of iterations. The vertical axis represents the pixel
ratio for the best individual in each iteration.

TABLE VI
COMPARISON WITH DIFFERENT METHODS

As mentioned in Table I, the methods summarized in
Table VI are all post hoc, local and model agnostic. The
methods used for generating the discriminative regions differ
among different methods. In the proposed method, the problem
of searching for discriminative regions is formulated as a com-
binatorial optimization problem and is solved via evolutionary
algorithms. The average drop and average increase obtained
for the proposed method are significantly better than those
for other methods, indicating that employing evolutionary
algorithms to solve the combinatorial optimization problem is
very effective in searching for discriminative regions that can
increase the confidence of CNNs for classifying features in a
specific category. In addition, although both MO-LIME [27]
and the proposed method employ evolutionary algorithms to
evolve discriminative regions, there are differences between
these methods, such as the number of objectives, the methods

used to achieve the objectives and the forms of the individuals.
The average drop and average increase obtained for the pro-
posed method are also significantly better than those obtained
for MO-LIME, which indicates that the changes to the pro-
posed method yield a significant improvement in the search
for discriminative regions. Note that the computational cost
of the proposed method primarily arises from the evaluation
of individuals. When VGG-F is used as the analysis model,
it takes approximately 26 s to perform 50 iterations with a
population size of 20.

IV. DISCUSSION AND CONCLUSION

In this paper, we propose a method to search for discrimi-
native regions and increase the confidence of CNNs for the
classification of features in a specific category via genetic
algorithms. In the proposed method, a set of superpixels is
first generated for an image. Individuals are then initialized
randomly for the superpixels. Genetic algorithms are employed
to evolve individuals such that discriminative regions can be
automatically identified. Many experiments are performed, and
the results verify that the proposed method is highly effective
in searching for discriminative regions that can increase the
confidence of CNNs for the classification of features in a
specific category.

In the proposed method, the discriminative regions identified
are distributed in different locations in an image rather than
focusing on regions associated with a particular instance,
which may result in the causal relationship between the
discriminative regions and the output of CNNs not being
apparent. To enhance the clarity of this relationship, common
features can be extracted from the discriminative regions for
images classified in the same category by CNNs on the basis
of the proposed method. Note that there are common features
among the images classified in the same category by humans.
For example, in the case of fundus images classified as DR,
a common feature is the presence of related lesions.

CNNs may also identify unique features (which may not
necessarily align with those used by humans) for images
classified in the same category. The findings presented in this
paper, including the observation that the discriminative regions
for the same image are not unique and the relatively small pixel
ratio for each image, lend some support to this supposition.
How can we extract common features for CNN classification
via the proposed method to better explain the behaviours of
CNNs? This question issue will be explored in our future work.
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