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Fig. 1. An overview of our method

Abstract—This paper presents a SLAM (Simultaneous Lo-
calization and Mapping) method which builds 2D grid maps
and generates the OctoMap based on Rao-Blackwellized particle
filters. This work combines wheeled odometry and laser scan
with particle filter algorithm to get the pose of the robot, and
at the same time fuses the data of depth camera to generate
OctoMap, OctoMap is an integrated open source framework
based on octree, which is well known for its memory efficiency for
the representation of 3D environments. The traditional 3D point
cloud map cannot be applied in robot navigation. But OctoMap
is a 3D occupancy grid mapping, which can be applied to 3D path
planning of flying robots and other robots that are equipped with
manipulators. In short, the experimental results demonstrate that
the proposed methods can make a robot to synchronize building
2D and 3D maps very efficiently.

Keywords—SLAM; rao-blackwellized particle filters; gmap-
ping; 2D grid map; octoMap

I. INTRODUCTION

Localizing the position of a robot and building the map of
an unknown environment are the two major tasks of mobile
robots[1]. Many researches focus on locating the position of
a robot as well as representing the unknown environment.

SLAM is about how to localize the position of a robot and
to generate a 2D or 3D map of an environment, which is one
of the most popular topics in robotics. There are two types of
classical and matured SLAM methods, including the visual-
based and the laser-based. ORB-SLAM[2] and LSD-SLAM[3]
are two popular visual-based SLAM methods, which construct
a 3D environment by image information. The advantage of
visual-based SLAM is that the data lies in a camera has more
information about object characteristics about the environment.
But it needs to overcome the scale-drift issue. The laser-
based SLAM can be used in large-scale scene, since the laser
scanner can reach a long distance and get enough point cloud,
totally it can work well at different environments. But the laser
scanner can only get distance information, and cannot obtain
the characteristics of objects in the environment.

Another problem in SLAM is mapping. 2D and 3D maps
have different levels of abstraction about the environment[4].
The 2D occupancy grid map is very popular, and it is widely
used in the robot navigation field. However, since 2D occu-
pancy grid maps cannot provide enough space information
about complicated environments, it limits the robot to perform
complex tasks in three-dimensional space. Hence, building 3D
maps becomes a hot filed for mobile robots. The representative
work includes 3D sparse map by RGBD-SLAM[5,6]. The
OctoMap[7] is a 3D occupancy grid map, which can distinct
the free and the occupied space. It is essential for robot
navigation.

This paper uses the Rao-Blackwellized Particle Fil-
ters(RBPF)[8] to complete SLAM in an indoor scenery, and
merges data of laser scanner and Microsofts Kinect to build
2D and 3D maps. The main flow chart of this work is shown
in Figure 1. The estimation of the pose of a robot involves
two steps, which are prediction step and correction step. The
RBPF combines the information of the encoder odometry and
scan-scan matching to build an initial 2D map and OctoMap,
then uses the particle filters algorithm to relocate the pose of
the robot to update the 2D map and OctoMap.

The rest of the paper is organized as follows. Section II
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introduces the related work. Section III presents the proposed
algorithm and the implemented method. Section IV includes
experiments to verify the idea and compare the proposed
algorithm. The section V concludes the work.

II. RELATED WORK

In the field of mobile robots, SLAM is a very basic and
critical problem, and is also one of the most popular research
directions in the field of robotics[9]. SLAM can actually be
treated as a combined solution of localization and mapping.
Localization is responsible for determining the current position
of a robot in an environment, while mapping consists of
collecting sensory data and storing it in a specified form for
further processing. As we know, the 2D grid map is more
popular in navigation, but 3D map has more information about
the environment, and has gradually become a research focus
in the field of robotics. In particular, OctoMap is vital for
collision-free path planning and safe navigation. There are a
lot of related works about 2D mapping and the building of
OctoMap.

In paper[10], they proposed a method to convert a sensor-
based occupancy grid to a 3D Gazebo[11] OctoMap, which
creates realistic landscapes in Gazebo simulation, mainly used
to simulate 3D environment by OctoMap. Li build a 3D map
by mobile robot equipped with one kinect[4], the main method
was iterative closest point, and combined with incremental
registration to get well OctoMap, the result perform the fine
registration. The paper[12] proposed that based on octree and
probabilistic occupancy estimation, the mapping technique of
ORB-SLAM can be extended to build 3D reconstruction by
Kinect. In the paper[13], K. Kamarudin et al. proposed a
method to merge the Kinect and laser scanner to improve
the performance of 2D SLAM. The results show that the
method is able to detect multi-sized objects and produce
more accurate map which shows the benefit of merge sensor
data. These papers indicate that OctoMap and the research
of data fusion are more and more important for robots in
unknown environment. This work is about merging sensor data
and synchronize building 2D map and OctoMap with robot
equipped with laser scanner and Kinect.

III. METHOD

A. The Preparation of Work

The robot operating system(ROS)[14] is a fast growing
intelligent robotic application development framework with
supporting the vast majority of sensors and efficient imple-
mentation for different methods of SLAM. It is a conve-
nient operating system, which can help researchers to realize
the simulation of a real world environment quickly by the
gazebo and rviz[10]. In this paper, laser scanner and odometer
mounted on a mobile robot are used as the main sensors to
build 2D maps. Microsoft Kinect is another sensor to build
3D OctoMap. The main sensors are ’rplidar’ and ’Microsoft’s
Kinect’ as shown in Figure 2.

Fig. 2. Microsoft’s Kinect sensor and 3600 rplidar

Fig. 3. An octree storing free and occupied positions and an example of
OctoMap for the corridor.

B. OctoMap

Octomap is an efficient probabilistic open source framework
for 3D grid maps based on octree, which is a way to store
data effectively about 3D space occupancy. The main goal
of OctoMap is to build an updatable, flexible, compact and
complate 3D model. The advantage of the structure of Oc-
toMap is that it is fast to query for obstacles and to compute
the distance between a robot and an obstacle. An example of
voxel structure and an example of 3D OctoMap for a corridor
are shown in Figure 3.

IV. SYSTEM ARCHITECTURE

A. The Theory of RBPF

Considering the SLAM problem, given a mobile robot with
unknown pose in an unknown environment, the robot needs to
locate itself and update a consistent environment map at the
same time. When the initial position of the robot is specified,
the robot can construct local maps with the observation of
the environmental characteristic. There is a Bayes network
graph[9] depicting the basic SLAM problem as shown in figure
4. z1,t is the observation sequence, which represents the obser-
vation information from the laser scanner. u1,t represents the
input sequence of the odometry, the robot state x1,t represents
the position of the robot at time t. In the process of the robot’s
localization, the robot uses the laser scanner information to
update its posture status, and uses the observation information
for the state correction. At each pose xt, it observes nearby
landmarks in the map m = {m1,m2,m3 . . .}.

The grid mapping with RBPF has shown to be an effective
method to solve the SLAM problem. The main idea about the
algorithm in this paper is to use particle filters to estimate the
path posterior for robot positioning. This particle filter works
in analogy to Monte-Carlo Localization[15]. In addition, the
map landmark locations are estimated by using Extend Kalman
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Fig. 4. The SLAM problem depicted as bayes network graph

Filters (EKF) to update the mean µ[k]
i,t and the covariance

∑[k]
i,t

of landmarks in the map, it’s mainly to construct environment
maps. The formula of RBPF is defined as follows:

p(x1:t,m|z1:t, u1:t−1) =

p(m|x1:t, z1:t) ∗ p(x1:t|z1:t, u1:t−1)

In this formula, the left p(x1:t,m|z1:t, u1:t−1) is to estimate
the joint posterior about the map m and the trajectory x1:t
of the robot. p(x1:t|z1:t, u1:t−1) is the probabilistic model
of localization and the p(m|x1:t, z1:t) is mapping proba-
bilistic model. As a result of x1:t and z1:t are known in
advance, p(m|x1:t, z1:t) can be estimated with known poses,
which is described in the following part B. The posterior
p(x1:t|z1:t, u1:t−1) is computed by the particle filter. The
sampling importance resampling filter algorithm is used for
localization to estimate posterior, which can be summarized
by the following part C. Totally, each particle contains an
estimated pose of the robot, and obtains the robot accurate
positioning, and each particle builds a local map for global
map.

B. Map Update with Known Poses

Whether it’s a 2D grid map or an OctoMap, it’s both oc-
cupancy grid map. The algorithm of occupancy grid mapping
is defined as follows base on the given data to compute the
posterior over maps:
p(m|z1:t, x1:t, c1:t) =

∏N
n−1 p(mn|z1:t, x1:t, c1:t)

Formally, c1:t are the correspondences of measurements and
landmarks in the map, m represents the map, z1:t is a series
of measurement, and x1:t is the path of the robot. Given the
robot path, landmarks are conditionally independent, and the
particles are sampled from the motion model, each particle
has many landmarks c1:t in local maps. Then the maps are
updated and used in the global map.

The occupancy grid map is used to divide the space into
finite grid cells. m =

∑
imi, each mi has a binary oc-

cupancy probability value, ‘1’ represents occupied and ‘0’
represents idle. The notation p(mi) refers to a probabil-
ity that a grid cell is occupied. This approach divides the
problem of estimating the map into a collection of separate
problems: p(mi|z1:t, x1:t), the whole map is approximated
as p(m|z1:t, x1:t) =

∏
p(mi|z1:t, x1:t), therefore, the esti-

mation of the occupancy probability of each grid cell is a

Fig. 5. Particles are composed of a path estimate and a set of features

static binary estimation problem. The probability by the log-
odds representation of occupancy for each grid cell: lt,i =

log p(mi|z1:t,x1:t)
1−p(mi|z1:t,x1:t)

. The more certain it is occupied for the
larger value of grid cell, otherwise, it is a free state. lt,i gives
the probability about a grid cell is occupied or idle statue
with the sensor measurement zt at location xt. Especially
about the robot navigates on a flat surface, the 2D occupancy
map is widely used. Certainly occupancy grid techniques can
generalize to 3D representations[9].

C. The Process of Localization

In the step of localization, each particle carries along with
a local map about the environment, there are following four
steps about the process:

(a) Sampling from the motion model: the pose of a robot is
predicted by sampling from a proposal distribution π, and is
denoted as x[k]t for the k-th particle at time t. Normally, The
motion probability model of the odometry generally adopts
the proposed distribution. Drawing a sample according to
the motion posterior: x[k]t ∼ p(xt|x[k]t−1, ut). The bracketed
notation [k] indicates the index of the particle. the pose xt is
associated with the k-th particle. µ[k]

t and
∑[k]
t are the mean

and variance values of k-th landmark location. A set of M
particles is shown in Figure 5.

(b) Importance weighting: the importance weight for the
k-th particle wkt , which represents the proportion between
the target distribution p(x

(k)
1:t )|z1:t, u1:t−1) and the proposal

distribution π mentioned above is defined as follows:
wkt =

p(x
(k)
1:t |z1:t,u1:t−1)

π(x
(k)
1:t |z1:t,u1:t−1)

As we know, there are many improved methods about the
importance weighting[16].

(c) Resampling: the relatively low importance weight parti-
cles will be replaced by other high weight particles or elim-
inated. It is a very important step. Only a limited number of
important particles will be used to approximate the continuous
distribution. Some resampling algorithms and analyses are
presented in [17].

(d) The last step is map estimating, the estimation
p(m|x1:t, z1:t) is to compute the corresponding local map for
each particle pose, which is used to update the global map by
adding the transform local grid maps based on the sample of
trajectory x1:t and the history of observations z1:t.
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Fig. 6. A complex laboratory scene

D. Loop Closure

In loop closure, a robot moves through an unknown terrain.
It encounters landmarks seen previously at some points. It is
particularly important to maintain the correlation in a SLAM
algorithm. RBPF maintains the correlation through its diversity
persevation in the particle sets. Thus, the loops are terminated
based on the number of particles. And the sample set with
better diversity results in a better performance of loop closing.

V. RESULTS AND COMPARISON

A. Robot Platform and the Test Environment

We adopt the TurtleBot mobile robot as the experimental
platform, which equips with a Rplidar sensor, a Kinect sen-
sor, and inertial measurement unit and a laptop with Linux
operating system. The ROS Indigo is used.

B. Experimental Results

The resulting 2D grid maps and OctoMap present occu-
pancy grids which can be visualized in RVIZ(ROS visualiza-
tion tools). Generally, a 2D grid map has three possible pixel
values of black for occupied space, white for free space and
gray for vaguely defined space with uncertain situation. The
resolution of OctoMap is 0.05m, as shown in Figure 7. The
color tends to be red with a higher distance to the ground,
which represents an infeasible area in 3D environments.

Figure 6 is a complex indoor laboratory environment, and
Figure 7 shows the 2D grid maps and OctoMap in RVIZ
of Figure 6, where there are a variety of chairs, tables,
experimental equipments, cubicles and so on. However, this
method still has very good results, and can see the location
distribution of the original environment in this map. This
method can also be scaled to a larger space, as shown in Figure
8 with a corridor environment.

C. Error Example Comparisons

When the system works for a long time, the processing
speed of the system may gradually decline. There are two

Fig. 7. 2D grid map and OctoMap in RVIZ

Fig. 8. Left is the 2D grid map and OctoMap of a corridor, right is the real
corridor

main reasons, the first one is that the map becomes larger and
larger. Another is that the local map of each particle needs
to be constantly matched with the global map. Occasionally,
the robot may lose location information in the map, resulting
a mapping error. In that case, the robot may hit a wall, as
shown in Figure 9. In this case, we can change the number
of particles sampled from the state of the robot in different
environments to improve its efficiency.
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Fig. 9. An error map causes the robot hits the wall

VI. CONCLUSIONS

This paper combines laser scanner with depth camera to
build 2D grid map and OctoMap simultaneously. SLAM with
laser scanner has high precise localizing information, while the
depth camera can get more characteristics of objects compared
with the laser scanner in the 3D environment. Moreover,
while 2D grid maps can be used in path planning of mobile
robot on the floor, while the OctoMap can be used in the
collision detection of the robot arm, and path planning in
3D environment. In our future work, we plan to combine the
two maps for path planning and the collision detection for
manipulators equipped on mobile robots.

ACKNOWLEDGMENT

This work was supported in part by the National Nat-
ural Science Foundation of China under Grant (61175073,
61300159, 61332002, 51375287) , the Guangdong Key Lab-
oratory of Digital signal and Image Processing, the Science
and Technology Planning Project of Guangdong Province
(2013B011304002) and the Project of Educational Commis-
sion of Guangdong Province, China 2015KGJHZ014).

REFERENCES

[1] B. L. E. A. Balasuriya, B. A. H. Chathuranga, B. H. Jayasundara, N.
R. A. C. Napagoda, S. P. Kumarawadu, D. P. Chandima, and A. G. B.
P. Jayasekara, “Outdoor robot navigation using gmapping based slam
algorithm,” Moratuwa Engineering Research Conference, pp. 403-408,
2016.

[2] R. Mur-Artal, J. M. M. Montiel, and J. D. Tards, “ORBSLAM: A versa-
tile and accurate monocular slam system,” Moratuwa IEEE Transactions
on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015.

[3] J. Engel, T. Schops, and D. Cremers, “LSD-SLAM: Largescale direct
monocular slam,” Computer Vision-ECCV 2014, pp. 834-849, 2014.

[4] J. W. Li, D. F. Zheng, Z. H. Guan, C. Y. Chen, X. W. Jiang, and
X. H. Zhang, “Indoor 3d scene reconstruction for mobile robots using
microsoft kinect sensor” Chinese Control Conference, pp. 6324-6328,
2016.

[5] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J.
Shotton, S. Hodges, D. Freeman, and A. Davison, “Kinectfusion: real-
time 3d reconstruction and interaction using a moving depth camera,”
ACM Symposium on User Interface Software and Technology, pp. 559-
568, 2011.

[6] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgbd cameras,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2100-2106, 2014.

[7] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W.
Burgard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013, [Online]. Available:
http://octomap.github.com.

[8] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with rao-blackwellized particle filters,” IEEE Transactions on
Robotics, pp. 34-46, 2007.

[9] S. Thrun, “Probabilistic robotics,” MIT Press, 2006.
[10] K. K. D. K. U. Weerasinghe, L. C. J. Silva, B. M. S. S. Basnayake, S.

D. M. Sandanayaka, S. P. Kumarawadu, D. P. Chandima, and A. G. B. P.
Jayasekara, “Mapping and path planning for long distance autonomous
navigation using multisensory data,” Electrical Engineering Conference,
pp. 1-6, 2016.

[11] open source, “Gazebo online tutorial,” 2013. [Online]. Available:
http://gazebosim.org/.

[12] Q. Lv, H. Lin, G. Wang, H. Wei, and Y. Wang, “ORB-SLAMbased
tracing and 3d reconstruction for robot using kinect 2.0,” Control and
Decision Conference, pp. 3319-3324, 2017.

[13] K. Kamarudin, S. M. Mamduh, A. S. A. Yeon, R. Visvanathan, A. Y. M.
Shakaff, A. Zakaria, L. M. Kamarudin, and N. A. Rahim, “Improving
performance of 2d slam methods by complementing kinect with laser
scanner,” IEEE International Symposium on Robotics and Intelligent
Sensors, pp. 278-283, 2016.

[14] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A. Y. Ng, “ROS: an open-source robot operating system,”
2009.

[15] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localization:
Efficient position estimation for mobile robots,” Proceedings of the
Sixteenth National Conference on Artificial Intelligence, pp. 343-349,
1999.

[16] M. Montemerlo, S. Thrun, D. Roller, and B. Wegbreit, “Fastslam 2.0:
an improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” International Joint Conference
on Artificial Intelligence, pp. 1151-1156, 2003.

[17] M. Bolic, P. M. Djuric, and S. Hong, “Resampling algorithms for particle
filters: A computational complexity perspective,” EURASIP Journal on
Advances in Signal Processing, vol. 2004, no. 15, pp. 1-11, 2004.

378


