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Abstract  

There are a number of government directives and regulations as well as many public schemes 
on the recycling of batteries, in spite of this; the quantity of batteries that are actually 
recycled is still very low. Current production capacity cannot meet projected demand of 
Lithium-ion batteries. To counter this, the reclamation and repurposing of metals like 
cadmium, Lithium and Zinc from used or spent batteries is the only viable scheme. This is 
both environmentally friendly and economically feasible. An alternative is the selective 
chemical leaching in the presence of Sulfuric acid and Sodium metabisulfite. In this paper, 
the effect of these chemicals as well as the solid-to-liquid ratio and time of retention is 
comprehensively studied. Experiments are designed for the recovery of Zinc and cadmium 
from the spend Lithium-ion batteries mix. To maximize the recovery of Zinc and cadmium, 
the combined genetic programming and simulated annealing approach is proposed. Genetic 
programming is used for the formulation of functional relationship between recovered metals 
Zinc and cadmium and the inputs (Solid/Liquid ratio, concentration of Sulfuric acid, mass of 
Sodium metabisulfite and retention time). The optimal input conditions determined using the 
simulated annealing algorithm includes Solid/Liquid ratio of 11.7%, 0.86 M Sulfuric acid, 

0.56 g/g of Sodium metabisulfite and 45 minutes of retention time. Three dimensions surface 
analysis reveals that a lower value of Solid/Liquid ratio favours a better yield. The optimal 
conditions are validated using experiments. This confirms the efficacy of simulated annealing 
aided genetic programming techniques as well as the optimal conditions of the metal 
extraction.  

Keywords: Spent battery mix; Metal recovery; Recycling; Genetic programming; 
Bioleaching 
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1. Introduction 

Cleaner energy storage systems such as Lithium ion batteries have propelled society to 

become more mobile and portable (Nemecek, 1994). Despite their considerable advantages, 

they still pose significant environmental and health hazards. Most of these hazards arise from 

improper disposal and storage of end-of-life batteries. Global production and consumption of 

batteries has increased disproportionately to present waste management measures, causing 

both short and long term issues.  

Battery packs are extremely flexible in their design and use, being composed of individual 

smaller and usually identical cells (Battery pack, 2018). They have longer life span of 2-3 

years, and their usage in electric vehicles have resulted in decreased environmental impact 

when compared to traditional internal combustion (IC) engine-run vehicles when compared 

using a life cycle assessment (Notter et al., 2010). Regulations have also been passed limiting 

the amount of dangerous chemicals in batteries, especially mercury (U.S. Environmental 

Protection Agency, 1997). The end product has become more environmentally friendly than 

before while being more efficient and resistant to failure. Lithium ion batteries have a very 

small environmental cost to bear (Boyden, 2014). Other battery chemistries like Ni-Cd pose 

more significant environmental threats and rising production levels imply higher rates of their 

consumption. Materials like Cadmium and Cobalt have very adverse effects on both health 

and the environment (World Health Organisation, 2010; Leyssens et al., 2017). There are 

several regulations in place limiting the use of these materials in most products. Their 

disposal and repurposing after they have reached their end-of-life is severely lacking (Official 

Journal of the European Union, 2006). 

In some countries, upwards of 250,000 tonnes of batteries were deemed as waste in 2014 

(Eurostat, 2018). In 2016, worldwide consumption of lithium for battery use was 77,821 
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metric tons of lithium carbonate equivalent (Statista, 2018a). Demand for the metal is 

projected to reach 422,614 metric tons of lithium carbonate equivalent (Statista, 2018b) by 

the year 2025. Producers are not currently capable of meeting this demand. In some 

countries, <2% of all lithium batteries are recycled while the rest are put to landfill (Boyden, 

2014). This represents a high threat to public health (Rall & Pope, 1995) and the environment 

via the leakage of dangerous chemicals (Andresen & Küpper, 2012). It also represents a 

waste of reusable resources. There is a 30% decrease in overall cost by using recycled 

materials (Rabah et al., 2008). 

Rising production demands can be alleviated by using materials from spent batteries that 

have undergone a set of recovery and extraction processes. Each process must start with the 

sorting of various batteries based on their chemical or energy contents (Tonteri et al., 2000). 

This can be done manually or through some degree of automation (Bernardes et al., 2004). 

The mix so obtained must undergo extraction to obtain metals like Li, Cd, Ni etc. which are 

used in further production. These extraction procedures are usually hydrometallurgical for 

lower value metals, but can also by pyrometallurgical, physical, chemical or biochemical in 

nature (Li et al., 2009). The set of production treatments depends on the battery chemistry in 

question (Wang, 2014). One must factor in transport and energy requirements to see the 

economic feasibility of recycling spent batteries (Niu et al., 2014).  

Metal extraction via hydro and pyrometallurgical methods involves a heavy energy intake, as 

well as high security and pollution risks (Rocchetti, 2013). An alternative to this is chemical 

and biochemical methods of metal extraction. Bioleaching is one biochemical technique 

which uses bacteria (like Acidithiobacillus ferrooxidans for iron pyrites (Zhang et al., 2008) 

and Penicillium citrinum for low grade manganese ores (Acharya et al., 2002)) to react with 

the metal to yield soluble products. These soluble products then undergo further filtration to 

extract metal. This technique provides high yields but requires significant improvements 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

4 

 

before it can be considered commercially viable (Olson et al., 2003). Metal solubilisation via 

H2SO4 can be performed in a single step leaching process with yields of up to 81% for 

Cadmium, 96% of Cobalt, 94% of Manganese, 68% of Nickel and 99% of Zinc from a mix 

generated from spent batteries.  

Previous research focussed on the use of response surface methodology (RSM) for modelling 

and optimizing the metal yields (Tanong et al., 2017). RSM is based on assumption of model 

structure followed by an estimation of coefficients in the model using optimization methods. 

This method works satisfactorily if the information about the system behavior is known. 

Actual engineering problems are often complex, multidimensional, and incomplete 

information. RSM is no longer suitable. Predictive modelling methods based on Artificial 

intelligence (AI) seems a better alternative. Among AI methods, evolutionary approach of 

genetic programming (GP) has the ability to automate the model structure and coefficients 

estimation resulting in the evolution of the best model (Woodward et al., 1999). The GP 

model has a free non-linear form that has the best fits. It can adapt to the system behaviour. A 

number of diverse applications for GP techniques have been found, which shows its 

effectiveness and efficacy to model the systems of any given complexity.  

This study aims to propose a combination of GP and simulated annealing (SA) approach to 

maximize the recovery of Zinc and Cadmium. The specific works are listed as follows. 

Firstly, the effect of concentration of H2SO4,
 mass of Na2S2O5 as well as the solid-to-liquid 

ratio and time of retention is comprehensively studied. Secondly, experiments are firstly 

designed for the recovery of Zinc and cadmium from the spend Lithium-ion batteries mix. 

Thirdly, GP is used for the formulation of functional relationship between recovered metals 

Zinc and cadmium and the inputs (Solid/Liquid ratio, concentration of Sulfuric acid, mass of 

Sodium metabisulfite and retention time). A comparative study between GP, the Box-

Behnken model and analysis of variance (ANOVA) analysis has also been performed. Then, 
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the optimal input conditions are determined and validated using experiments. Finally, 

conclusions are then drawn upon the efficacy of the proposed approach, as well upon metal 

extraction.  

2. Research Problem Undertaken  

This section discusses the research problem statement for the combined GP and SA approach 

for the study of chemical metal extraction from a spent battery mix. A disproportionate 

amount of spent batteries is not recycled, in spite of various public programmes for the same. 

Recycling spent batteries to recycle valuable metals is one way to reduce rising demands on 

production. Recycling batteries consists of sorting, metal extraction and reprocessing. 

Existing pyrometallurgical and hydrometallurgical extraction techniques require a high 

energy input while posing significant security and pollution risks. One alternative to the same 

would be to use chemical extraction using H2SO4 and Na2S2O5 catalysed chemical leaching. 

The various parameters such as Solid/Liquid ratio, concentration of H2SO4,
 mass of Na2S2O5 

and retention time affecting the yield are interdependent to some degree and the appropriate 

amount of each is unknown that can result in maximization of Zn and Cd. The main problem 

undertaken in this study is to determine the optimum amount of Solid/Liquid ratio, 

concentration of H2SO4,
 mass of Na2S2O5 and retention time resulting in maximum recovery 

of Zn and Cd from the spend Li-ion batteries mix. Depiction of the research problem 

statement is displayed as shown in Figure 1. 
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Figure 1. Depiction of the research problem statement 

 

 

3. Design of Experiment 

Samples of spent batteries were collected, manually disassembled and sorted according to the 

following concentrations (Tanong et al., 2017): 0.28% Li-ion, 0.80% lithium iron sulphide, 

1.60% Ni-MH, 15% Zn-C, 14.3% Ni-Cd and 68% alkaline battery. The mix then underwent 

screening for alien particles including non-metallic components and other contaminants. 

Metallic composition of the resultant was then determined using inductively coupled plasma-

atomic emission (ICP-AE) spectroscopy (Melville, 2014). The battery mix so obtained was 

then put through a series of experiments, each with different parameters.  

Table 1: Box-Behnken optimised parameters  

 Solid/Liquid ratio concentration of mass of Na2S2O5 Retention 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

(X1) H2SO4 (X2) (X3) time(X4) 

LOW 10% 0.5 0.45 15 

MIDDLE 15% 1.0 0.60 30 

HIGH 20% 1.5 0.75 45 

 

The mix was added to an Erlenmeyer flask. The primary aim was to study the effects of 

H2SO4 and Na2S2O5, as well as to study their interactions.  These experiments involved the 

parameters:  Solid/Liquid ratio (x1), concentration of H2SO4 (x2), mass of Na2S2O5 (x3) and 

the Retention time of the mixture (x4). It was originally designed to be performed using a 

fractional Box-Behnken design, the discreteness of the parameter values. These values are 

listed in the Table 1. Based on the given range, the random data was generated to simulate 

data points, and additive white Gaussian noise was added. This was done in MATLAB 2016a 

as follows:  

 output_with_noise = awgn (output_without_noise, snr, 'measured')  (1) 

The code required to generate the data set is provided in Appendix A. It must be noted that 

for the data generated, snr value was always set to 2. This prevented too much distortion from 

the original data while also adding enough noise to simulate experimental error. Noise was 

added to the data to prevent it from overfit scenarios, as well as to simulate experimental 

error. The data set after the addition of noise with corresponding output is given in Appendix 

B. 

Additive white Gaussian noise is usually added to data sets to simulate error functions. 

Gaussian noise is a statistical noise whose probability density function is normally 

distributed. This function is given by:  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

8 

 

 ����� = ��√
� ����������   (2) 

where z is the grey level,  � represents the mean and � the mean. White Gaussian noise is a 

special case of the more general Gaussian noise, where values at any pair of times are 

identically distributed and statistically independent (Salam, 1998). The necessity of adding 

noise arises due to data biasing, which is a common pitfall in predictive models and inversion 

algorithms.   

The ANOVA and Linear Regression analysis was then applied to the original dataset 

(Appendix A). This was done to fully compare the efficacies of all three methods in 

modelling the extraction of metal from a spent battery mix. 

 

4. Genetic programming Approach 

Genetic programming (Gandomi et al., 2015), an AI approach stem from the principle of 

Darwinian evolution i.e. “Survival of the fittest”. The procedure involves randomly 

initialising candidate solutions, which are probabilistically chosen to reproduce basing on 

their fitness on the output data. Each generation has a fixed population size, where each 

member is one model.  During the initialisation, the initial input and output sets (terminal 

set), the function space with which to compose model expressions (Figure 2), population and 

generation size and the number of genes (inheritable model information) need to be specified. 

Each model is usually represented as a tree as shown, but there have been techniques that use 

other approaches (Brameier & Banzhaf, 2011).   
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Figure 2. Internal representation of models in GP 

Each model has a probability of being chosen for the so-called mating pool depending on 

their fitness ratio. This criterion of selection favours models that fit data better while also 

maintaining genetic diversity. Reproduction requires the model information from two 

candidate solutions, while mutation modifies the data of one model alone. Generally, 

mutation rates are kept very low.  

The main advantage of using genetic programming is the lack of needing to specify specific 

model equations unlike other techniques (Huang et al., 2018; Garg et al., 2018). GP is able to 

generate free form equations depending on the functions available to it in the function space 

due to the nature of model reproduction. This allows for the modelling of highly non-linear 

models. Another consequence of the technique is also its data agnostic nature i.e. the 

approach is completely independent of the type of data, provided it is supplied in computable 

form. This opens it up to many problems, where the problem is reduced to finding a suitable 

representation for the data.  

In this study, the model was trained on the data shown in Appendix B. The model was trained 

on 80% of the data, tested on 17% while the remaining 3% was used to validate it. Maximum 
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tree depth was 9, while the population was limited to 100 for 65 generations. Best node count 

is depended on the data used, where it was 46 for the Cd dataset and 110 for the Zn. The 

crossover, mutation and direct reproduction probabilities were set to values of 0.85, 0.1 and 

0.05 respectively. Performance evaluation was done using the common functions: Root Mean 

Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). If the research 

problems are complex, other criteria such as performance index can be considered (Gandomi 

& Roke, 2015).  

 

N

YieldActualYieldGP
RMSE

N

i
ii∑

=

−
= 1

2
__

 (3) 

 ∑ ×
−

=
i i

i

YieldActual

YieldActualYieldGP

n
MAPE i 100

_

__1
(%)  (4) 

where ��_����� is the value predicted of ith data sample by the GP model, ���� �_�����! is 

the actual value of ith data sample and N is the number of the training samples  

5. Results and Discussions 

5.1 Statistical modelling using linear regression and GP 

The experimental output is dependent on the four correlated parameters: Solid/Liquid ratio 

(x1), concentration of H2SO4 (x2), Mass of Na2S2O5 (x3) and the Retention time of the mixture 

(x4). The correlation matrix is given in Table 2. From Table 2, it can be seen that each 

parameter has some degree of correlation with each other. The linear modelling was unlikely 

to be successful. Multiple linear regression models were formulated from the data, and the 

results justify the findings of the correlation matrix. R Square (R2) values (Table 3) for both 

outputs were found to be lower, indicating that a linear regression model is not accurate in 

prediction of outputs (Zn and Cd). 
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Table 2: Correlation matrix for input parameters and outputs 

 

Table 3: Results of Regression for Zn and Cd 

 

 

 

 

 

 

 

Solid/Liquid 

ratio 

H2SO4 

conc. 

Na2S2O5 

mass 

Retention 

time 

Y predicted 

for Zn 

Y predicted 

for Cd 

Solid/Liquid 

ratio 
1 

     

H2SO4 conc. 0.02453313 1 
    

Na2S2O5 

mass 
-0.045804544 

-

0.1331755

64 

1 
   

Retention 

time 
0.075367466 

-

0.0207201

13 

0.0769006

59 
1 

  

Y predicted - 

Zn 
-0.252469158 

0.1539803

31 

-

0.1277014

56 

0.0214738

18 
1 

 

Y predicted - 

Cd 
-0.281479146 

-

0.1343630

65 

0.1188554

52 

0.1580023

48 
0.158251496 1 

Regression Statistics 

Metrics Zn Cd 

Multiple R 0.326388131 0.364153608 

R2 0.106529212 0.13260785 

Adjusted R Square 0.068100361 0.095300661 

Standard Error 7.761167586 7.384879928 

Observations 98 98 
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In this perspective, the two GP models were constructed for the Zn and Cd yield respectively. 

Settings of GP was kept based on trial-and-error approach. The maximum number of genes 

was set to 6, and the node functions used were: TIMES, PLUS, MINUS, RDIVIDE, PLOG, 

SINE, COSINE, TAN, PLOG (loge|x|), PSQROOT (√|x|) and EXP. Tree depth was limited to 

9. There were no limits on the number of nodes. 80% of the data was used for training, 17% 

for the testing and 3% for validation of the model. The best GP models are selected based on 

the minimum training error among all the runs. 

The results as shown in Figure 3 and Table 4 shows that the GP models (Equations A1 and 

A2 given in Appendix C) performed better than other models such as linear regression and 

theoretical. This implies that the GP based metal yield models manages to closely capture 

dynamic involved in bioleaching process for active yields of metals.  
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(a) 

(b) 

Figure 3. Comparative Analysis of Theoretical, Linear regression and GP for (a) Cd and (b) Zn 
yields in % 

 

Table 4: Performances of GP for Zn and Cd 

 

 

 

 

Performance metrics Zn Cd 

best training RMSE 8.69e-01 9.17e+00 

best training MAPE 5.37e-01 1.65e+01 

best test RMSE 1.42e+01 9.48e+00 

best test MAPE 1.47e+01 1.55e+01 
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5.2 Effects of the inputs on Zn and Cd yield (%) (3-D analysis) 

This section discusses the details on two dimensions (2-D) and three dimensions (3-D) 

analysis for evaluating the effect of inputs (Solid/Liquid ratio, concentration of H2SO4,
 mass 

of Na2S2O5 and retention time) on the metals yields (%). 2-D analysis is performed by 

varying one given input while keeping other inputs at its mean value. 3-D analysis is 

performed by varying two inputs, while keeping others at its mean value.  

Figure 4. 3-D analysis investigating the effect of inputs on the yield of Cadmium. (a) Effect of the 
concentration of H2SO4 (x1) and Na2S2O5 (x2) on yield of Cadmium, (b)Contour map of (a), (c) 
Effect of concentration of Na2S2O5 (x2) and Solid/Liquid ratio (x3) on yield of Cadmium, (d) Contour 
map of (c), (e)Effect of the concentration of H2SO4 (x1) and Solid/Liquid ratio (x3) on yield of 
Cadmium, (f) Contour map of (e). 

                  (a)                                                  (c)                                                         (e) 

                  (b)                                                  (d)                                                        (f) 
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The above graphs indicate how variations in the input parameters affect the yield of metal. 

Common to both graphs is the trend of Solid/Liquid ratio; a lower value favours a better 

yield. This is especially evident in graph (e) for Zinc, where the highest value was observed 

at a lower value of S/L ratio. In graph (a) for Cadmium, a peak is observed in the same range, 

further confirming the trend. In the Cd graphs (c) and (e), peaks are seen near the optimal 

conditions for H2SO4 (1-1.5 M) and Na2S2O5 (0.45 g/g).  

 

                   (a)                                                     (c)                                                    (e) 

                     (b)                                                        (d)                                                            (f) 

Figure 5. 3-D analysis investigating the effect of inputs on the yield of Zinc. (a) Effect of the concentration 
of H2SO4 (x1) and Na2S2O5 (x2) on yield of Zinc, (b)Contour map of (a), (c) Effect of concentration of 
Na2S2O5 (x2) and Solid/Liquid ratio (x3) on yield of Zinc, (d) Contour map of (c), (e)Effect of the 
concentration of H2SO4 (x1) and Solid/Liquid ratio (x3) on yield of Zinc, (f) Contour map of (e). 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 

 

5.3 Optimization for maximum yield (%) of Zn and Cd  

For obtaining the maximum yield of Zn and Cd, the SA approach was used on the formulated 

GP models. SA is a heuristic minimalizing technique with roots in the annealing of metals. 

Optimising algorithms usually generate a random solution and compare it with the points in 

its neighbourhood. This can lead to the algorithm being fixed at local maxima/minima, which 

is undesirable. SA counters this by introducing the possibility of randomly moving to a 

‘worse’ solution instead of a ‘better’ one. Details about this algorithm is given in 

(Kirkpatrick, 1983). It is essentially defined as follows:  

1. Start at a high temperature value, with inputs defined. (Temperature is a controlling 

parameter which is iteratively scaled down) 

2. Compute the cost of random input. 

3. Compute the cost of random neighbour.  

4. If cost of neighbour is lower, switch current point to neighbouring point. If the cost of 

neighbour is higher, switch basing on probability defined as:  

 ��"#���ℎ�%&� = 	�()*+,-./01)23�()*+(233-,++-45-36+23-	  (5) 

5. Scale temperature down, and rerun through steps 2-4 until arbitrary accuracy is 

reached. 

This algorithm will act as a minimiser. Step 4 is modified to switch when cost of neighbour is 

higher, otherwise switch probabilistically as defined. This acts as a suitable maximising 

algorithm. Despite the stochastic nature of the algorithm, it is very effective. 

In the run, the GP generated model for Zinc was used as the cost function to be optimised, 

temperature was set to 1.00*106, alpha value as 0.88. SA algorithm was run 10 times, with 

1000 iterations before the algorithm terminated each time. The optimal conditions obtained 
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through this method are: Solid/Liquid ratio set to 11.7%, 0.86 M H2SO4,
 0.56 g/g of Na2S2O5 

and 45 minutes of retention time. The obtained conditions comply well with experimental 

runs as mentioned in (Tanong et al., 2017). The computation of optimal points using SA 

aided GP programming is very effective in this case. The resilience of the algorithm to noise 

is also very good. The optimal conditions for the leaching of metals have been found and 

verified. This enables the further experimentation and development of this process. This also 

makes similar optimisation of other processes needed for battery recycling possible. This 

study focusses on the deterministic optimization. Uncertainty is inevitable in the chemical 

removal process (Zhang and Lam, 2015). Risk and reliability analysis can be investigated 

(Zhang et al., 2017a; 2017b). Intelligent disassembly problem (Yun et al., 2018) can be also 

solved using the present framework. 

 

6. CONCLUSIONS 

The present work proposes the comprehensive study to optimise the chemical metal leaching 

of valuable metals from a mix of spent batteries. The optimisation of the chemical metal 

leaching process has been carried out using combined using Combined genetic programming 

and simulated annealing Approach. Experiments were conducted to validate this approach. 

The optimal conditions obtained are: Solid/Liquid ratio = 11.7%, molarity of H2SO4 = 0.86 

M, g/g of Na2S2O5 = 0.56 g/g and 45 minutes of retention time for maximization of Zn and 

Cd from spend batteries. The obtained conditions comply well with experimental runs. This 

enables the further experimentation and development of this process. This also makes similar 

optimization of other processes needed for battery recycling possible. This technique for 

metal leaching can be recommended to help facilitate the recycling of batteries on a large 

scale. In this study, we chose an option to maximize the recovery of Zn and Cd. Researchers 
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can also choose other metals. Since this study has only four input variables, the established 

GP models are acceptable. In the follow-up research, new models can be considered to 

accommodate higher dimensional problems. Future works shall emphasize on the 

incorporation of risk and reliability analysis on the chemical removal process having 

uncertainty and compare the performance to those conducted in the present study. The current 

framework can also be applied to solve intelligent disassembly problem of battery packs for 

electric vehicles.  
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APPENDICES  

APPENDIX A 

%{ 
    this program generates data for experiment number 2. 
    experiment 2 focuses on the effect of these parameters:  
        1. solid/liquid ratio 
        2. concentration of H2SO4 
        3. mass of N2S2O5 
        4.Retention time  
%} 

  
sl_ratio = rand(100,1)*0.2   
conc_h2so4 = 0.5 + (1.5 - 0.5).*rand(100,1) 
mass_na2s2o5 = 0.45 + (0.75 - 0.45).*rand (100,1) 
retention_time = ceil (rand (100,1)*30 + 15) 

 
 

% these functions return the yield of the respective metal as percentage value. 

 

function [ y ] = CdRemovalYield ( x1, x2, x3, x4 )  
% gives the yield percentage of Cadmium basing on the factors in the second experiment  
 y = 36.9 - 25.4*x1 + 33.7*x2 - 5.27*x3 - 0.40*x4 
 

function [ y ] = CoRemovalYield ( x1, x2, x3, x4 ) 
% gives the Cobalt removal yield from the second experiment  
y = 37.7 - 21.1*x1 + 30.0*x2 - 2.05*x3 + 0.83*x4 

 
function [ y ]= MnRemovalYield( x1, x2, x3, x4 ) 
% gives the yield percentage of Manganese basing on the factors of the second experiment  
y = 68.2 - 15.7*x1 + 24.1*x2 - 0.47*x3 -0.50*x4 ... 
    -0.56*(x1.*x3) - 0.04*(x1.*x4) -0.76*(x2.*x3) -1.02*(x2.*x4)... 
    -2.19*(x3.*x4) - 1.08*(x1.*x1) - 10.3*(x2.*x2) ; 

 

function [ y ] = NiRemovalYield( x1, x2, x3, x4 ) 
% gives the yield percentage of Nickel basing on the factors of the second experiment  
y = 13.9 - 22.3*x1 + 28.3*x2 - 3.55*x3 + 2.21*x4 ... 
    -4.38*(x1.*x4) -6.06*(x2.*x3) + 12.3*(x1.*x1) + 10.2*(x2.*x2) ... 
    + 5.15*(x3.*x3) + 6.18*(x4.*x4) ; 

 
function [ y ] = ZnRemovalYield( x1, x2, x3, x4 ) 
% gives the yield percentage of Zinc basing on the factors of the second experiment 

y = 57.4 - 18.8*x1 + 29.8*x2 - 4,05*x3 - 0.90*x4 ... 
    - 3.94*(x1.*x3) + 1.70*(x2.*x3) - 0.46*(x2.*x4) - 2.38*(x3.*x4) ... 
    - 8.47*(x2.*x2); 
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APPENDIX B 

The following table lists the noised input parameters and corresponding outputs. 

Input parameters with noise Recomputed output parameters 
Solid/Liqui

d ratio 
H2SO4 
conc. 

Na2S2O5 
mass 

Retentio
n time Cd Yield 

Co 
Yield 

Mn 
Yield Ni Yield 

Zn 
Yield 

0.129 1.486 0.109 20 75.121 95.929 33.851 2579.407 95.252 
0.109 1.900 0.418 23 86.775 110.649 -3.002 3405.929 107.987 
0.218 0.843 0.749 18 48.626 71.795 22.662 2062.070 74.422 
0.080 1.695 1.154 28 74.707 107.735 -57.142 4977.523 102.406 
0.357 1.071 0.371 23 52.748 80.607 20.272 3330.526 78.585 
0.081 1.963 1.194 24 85.112 112.361 -50.761 3700.174 110.383 
0.169 1.376 0.808 28 63.494 96.974 -25.123 4948.675 91.204 
0.085 2.240 1.306 19 95.730 116.184 -41.032 2378.939 118.539 
0.067 1.375 0.697 30 65.865 101.010 -23.244 5684.370 93.119 
0.092 1.238 0.342 37 59.695 102.920 -12.783 8586.772 88.575 
0.101 1.751 0.048 23 83.875 107.077 22.054 3401.768 103.668 
0.114 0.861 0.629 39 44.110 92.210 -28.897 9506.463 76.919 
0.124 0.315 1.000 18 31.901 57.428 17.745 2053.255 60.459 
0.161 0.198 0.476 27 26.162 61.667 22.396 4561.330 56.264 
0.234 1.056 0.236 16 58.880 77.222 44.435 1649.550 80.454 
0.174 1.968 0.470 22 87.527 110.367 -5.973 3122.400 108.778 
0.134 1.764 0.130 16 85.868 100.814 34.857 1699.091 103.456 
0.072 0.231 0.340 21 32.667 59.847 40.693 2783.539 58.933 
0.093 0.246 0.614 20 31.590 58.457 29.621 2526.390 58.980 
0.133 1.517 0.692 24 71.402 98.907 -7.827 3669.964 96.107 
0.095 0.701 0.527 21 46.915 73.060 28.125 2797.058 72.490 
0.031 0.964 0.881 20 55.953 80.757 12.030 2559.198 81.541 
0.057 1.742 0.619 33 77.683 114.866 -43.004 6880.838 104.227 
0.265 0.467 1.557 43 20.507 78.622 -117.629 11498.739 62.340 
0.060 1.231 0.821 44 54.953 108.216 -76.310 12107.570 88.970 
0.018 1.038 1.449 22 54.988 83.751 -24.128 3088.408 83.995 
0.092 2.153 0.310 30 93.469 124.598 -31.094 5731.669 115.814 
0.048 0.626 0.987 27 40.787 75.865 -11.646 4591.578 71.164 
0.184 0.407 0.560 31 30.590 70.607 6.294 6004.229 62.066 
0.040 0.690 0.951 23 44.943 74.711 2.710 3350.798 73.224 
0.069 0.446 0.769 18 38.944 63.004 27.607 2062.010 65.410 
0.110 1.199 0.487 29 60.337 94.412 -1.159 5303.610 87.054 
0.119 0.304 0.012 21 35.646 61.704 54.993 2781.701 60.214 
0.031 3.258 0.107 16 138.969 147.868 -28.367 1826.607 149.926 
0.275 2.300 0.659 44 86.357 136.071 -126.013 12127.200 116.774 
0.119 1.245 1.227 28 58.175 93.270 -46.409 4949.050 88.270 
0.096 1.375 0.543 44 60.361 112.350 -56.685 12108.474 92.588 
0.224 0.001 0.846 38 11.586 62.810 -25.645 8980.915 49.218 
0.150 1.116 0.972 16 59.187 79.312 18.151 1656.906 83.846 
0.110 1.250 0.033 36 61.668 102.702 13.739 8134.095 88.593 
0.028 1.714 0.842 37 74.725 117.524 -74.178 8621.401 103.962 
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0.106 0.593 0.238 35 38.914 81.794 19.931 7662.146 69.057 
0.099 2.304 1.246 32 92.661 128.735 -114.048 6502.443 120.198 
0.124 0.803 0.606 22 48.814 76.187 19.950 3065.237 74.992 
0.061 1.664 1.275 39 69.115 116.097 -118.172 9554.430 101.849 
0.075 1.789 0.446 22 84.129 107.131 3.591 3122.648 105.301 
0.091 0.591 0.914 27 38.915 74.069 -7.398 4584.248 69.323 
0.028 1.928 0.437 42 82.067 128.919 -68.711 11089.308 110.332 
0.145 1.215 0.508 41 55.074 104.069 -37.912 10509.233 86.871 
0.254 0.267 0.022 28 28.127 63.544 46.534 4892.996 56.582 
0.029 0.927 0.751 25 53.445 84.108 3.059 3958.895 80.479 
0.218 2.904 0.554 34 112.694 147.293 -112.972 7354.361 135.831 
0.146 0.308 0.160 43 25.525 79.220 21.842 11514.216 59.832 
0.236 0.835 0.333 43 40.064 92.756 -12.944 11515.057 73.826 
0.118 1.324 0.726 33 61.511 100.846 -34.652 6847.061 90.651 
0.104 0.973 0.230 25 55.838 84.976 29.937 3953.409 80.443 
0.187 0.273 0.949 41 19.938 74.020 -47.166 10463.898 58.012 
0.072 0.662 0.414 29 43.590 79.254 17.647 5285.578 71.766 
0.012 0.789 1.354 43 38.854 94.036 -104.504 11560.116 76.692 
0.342 2.163 0.085 16 94.252 108.473 19.973 1708.727 111.420 
0.192 0.279 0.589 31 25.930 66.549 6.054 5998.885 58.112 
0.088 1.828 0.115 37 80.880 121.174 -20.765 8624.208 106.237 
0.124 1.715 0.103 21 82.604 103.752 25.037 2848.876 102.174 
0.007 1.022 0.394 26 58.705 89.000 18.916 4284.668 83.739 
0.163 0.004 0.898 21 19.757 49.965 13.179 2768.457 50.450 
0.208 1.089 1.179 25 52.089 84.303 -27.792 3942.826 81.932 
0.004 0.560 0.891 28 39.791 75.843 -7.024 4937.326 70.026 
0.255 0.696 0.422 32 38.861 78.900 6.835 6394.624 69.351 
0.274 0.749 0.925 17 43.505 66.599 18.904 1835.763 70.564 
0.031 0.039 0.865 32 20.068 63.004 -9.772 6409.579 53.982 
0.172 0.744 0.660 24 44.515 74.949 11.874 3628.693 72.329 
0.127 1.089 0.901 23 56.436 84.942 -3.568 3356.498 83.473 
0.059 0.262 0.878 23 30.412 61.612 10.351 3334.358 60.103 
0.023 0.793 0.001 20 55.059 77.624 54.240 2556.489 76.619 
0.164 0.895 1.015 44 39.934 95.517 -82.561 12070.332 76.976 
0.126 0.923 0.288 44 45.701 98.674 -12.120 12081.383 78.550 
0.191 2.017 0.210 40 82.923 126.957 -49.582 10048.589 109.923 
0.219 3.432 0.817 37 127.909 165.091 -191.090 8717.180 151.572 
0.064 2.295 0.479 21 101.675 121.633 -14.550 2889.876 120.574 
0.191 0.801 0.519 26 45.913 78.219 13.280 4249.760 73.681 
0.031 1.863 1.020 21 85.122 108.276 -22.422 2860.472 108.336 
0.037 0.168 1.151 16 29.146 52.871 19.555 1634.550 57.703 
0.067 2.621 0.490 25 110.947 134.666 -47.926 4058.834 130.251 
0.165 1.635 0.860 36 68.874 111.383 -70.176 8139.116 99.019 
0.004 1.603 0.495 34 74.625 112.923 -29.991 7298.754 101.105 
0.022 0.243 0.727 32 27.905 69.600 -2.270 6415.985 60.231 
0.128 0.845 0.866 29 45.939 82.625 -16.490 5283.943 76.157 
0.038 0.910 0.263 24 55.627 83.589 32.559 3653.979 79.813 
0.010 0.298 0.654 31 30.839 70.817 4.484 6027.783 62.093 
0.270 0.449 0.913 38 25.143 75.126 -41.082 8984.998 61.691 
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(A2) 

 (A1) 

0.177 0.450 0.755 38 28.382 77.449 -26.031 9001.798 63.472 
0.208 0.117 1.406 33 14.965 61.342 -55.705 6790.325 52.989 
0.159 0.934 0.190 38 48.125 93.507 7.661 9025.803 78.238 
0.136 0.134 0.228 35 22.764 67.436 29.002 7641.358 54.839 
0.227 1.906 0.303 19 86.151 105.224 13.240 2350.387 105.918 
0.252 1.330 1.009 31 57.608 95.950 -50.035 6031.528 88.303 
0.246 1.289 1.118 26 57.786 90.456 -34.638 4263.425 87.176 
0.087 0.989 0.533 18 58.018 79.387 31.692 2081.643 81.241 
0.266 1.821 1.000 20 78.217 101.247 -19.481 2577.601 102.646 
0.017 0.175 0.647 21 30.563 58.700 27.442 2788.232 58.299 

 

APPENDIX C 

The model equations for Zinc yield in % is:  

789 = 	97.867 + �132.4566� ∗ F G��GH�∗IJ KL��M.NOPPOQ�RSTUVWT�
X.XYXZ�
�[[\] + �−9.4264� ∗ T�_3� + �_3�[ + �0.45898� ∗ abUVWJcdefJ�GH�ST�X.gghiHX�[RS�jkU�G���lRGH m ∗

FJtan JT�_4� ∗ �_1�[ ∗ �cos�_1��RR − bIjkU�GH�KLKP \ ∗ JT�_4� + �_1�[ ∗ T��t&�_3�[Rm]u + �−0.00097061� ∗ FJT�_3� + �_4�[ + T��t&�_2�[R −

bI�_3� ∗ fJGgGHR + JGgG�Rl\ ∗ �tan�_3��m] + �8.3473� ∗
v
wwx

yz{�yz{�KP��|}{f�KP�~�KP��KO�∗�K�� l���Iyz{IJKPKOR~T|}{T��.LN��MM�[[\\
��WFf ���T���T��P.�M�����[[T5�)/�KP�[∗Tyz{T���P.�PP�QP�[[lSb����IJ KL��M.NOPPOQ�RSTUVWT�
X.XYXZ�
�[[\m]�

���+ �0.18178� ∗

v
wwx G�yz{�yz{�|}{�KP���|}{f�KP�~�KP��KO�∗�K�� l���Iyz{IJKPKOR~T|}{T��.LN��MM�[[\\�

���  

and that for Cadmium yield in % is:  

7�� =
41.7032 + �−4.3431� ∗
Isin bIfJ"�� ��T�−23.617098�[R ∗ �_2�l − JT�"��tt��_4�[ − TsinT�5.202223�[[R\ − JT�"��tt��_4�[ − TsinT�5.202223�[[Rm\ + �0.0024014� ∗
FT"�� ���_2�[ + bITcosT"�� ���_4�[[ + f GgjkUT�������Gg�[l\ − �_4�m] + �4.5706� ∗ fJTcosTexpTcosT"�� ���_4�[[[[ ∗ �sin�_4��R − �sin�_1��l +
�−2.9824� ∗ Isin ITsinT�"��tt��_2�[[ ∗ f GgjkUT�������Gg�[l\\ + �3.5601� ∗
IT"�� ���sin�_4��[ − fTcosTexpTcosT"�� ���_4�[[[[ − Jexp J�"��tt�T�"��tt��_3�[RRl\ + �0.0054371� ∗ bIsin ITsinT�"��tt��_2�[[ ∗
f GgjkUT�������Gg�[l\\ − f�sin�_4�� ∗ JT"�� ���_4�[ + T"�� ���_2�[Rlm 
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Problem of Maximum Extraction of Cadmium and Zinc from spent battery mix is undertaken 

Combined Genetic Programming and Simulated Annealing approach is proposed  

Genetic programming models fits the cadmium and zinc output very well 

Simulated annealing optimizes the Genetic programming model to obtain the optimum inputs 

 


