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Summary

The mechanisms in proton‐exchange membrane fuel cells (PEMFCs) cannot be

explicitly represented by a mathematical function because the PEMFC system

is multi‐dimensional and complex and represents uncertainty in operation var-

iables, which cannot be modeled by experiments or by trial‐and‐error

approach. Therefore, this work proposes to study the coupled and interactive

influence of stack current (SC), stack temperature (ST), oxygen excess ratio

(OER), hydrogen excess ratio (HER), and inlet air humidity (IAH) for optimiz-

ing the power output of PEMFC. The data obtained from the experiments have

been inserted into architecture of automated neural‐network search, which

automates the selection of error function, activation function, uncertainties

in inputs and number of hidden neurons in formulation of a robust and accu-

rate model for power density as a function of five operational variables. Among

the operational variables, the correlation coefficient between the SC and the

output power is the highest, followed by OER, and the ST. However, for

HER and IAH, the power output follows negative nonlinear relation. The opti-

mization converged at 130th iteration results in maximum power output of

3410 W for an optimum value of SC (51A), ST (59°C), OER (3:2), HER

(1:10), and IAH (0.8).
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1 | INTRODUCTION

The shortage of the natural resources, such as oil and
coal, has become one of the most urgent problems in
the world due to increase of usage. Mass consumption
of the natural resources has been resulted in global
warming. Today, researchers are working towards devel-
oping new ways of replacing the use of natural resource.
Hydrogen fuel cell has been considered as substitute for
fossil fuel for the future, because of its high efficiency
and environmental protection characteristics. Advantages
of hydrogen fuel cell are zero emission levels, high power
output, structural safety, and multiple uses.1 Among
hydrogen fuel cells, the polymer electrolyte membrane
fuel cell (PEMFC) is the most promising in virtue of its
high power/volume and power/mass densities, safety,
and more. Illustration of the main structure and function-
ing of a PEMFC is shown in Figure 1. The cathode and
anode are the two electrodes of the fuel cell. An electro-
lyte (membrane) has been placed between the two elec-
trodes which allows only the proton to pass through.
Two bipolar plates have been included on both sides of
the fuel cell, which act as current collectors and flow dis-
tributors of O2 and H2 (which are the main reactants dur-
ing the operation of PEMFC). H2 flows towards the anode
and separates into an electron and a proton (H+) under
the chemical action of catalyst (as represented by equa-
tion numbers 1 and 2). The H+ flows through the electro-
lyte and reacts with O2 in the cathode side to form water,
FIGURE 1 Illustration of the main structure and functioning of

polymer electrolyte membrane (PEM) fuel cell [Colour figure can

be viewed at wileyonlinelibrary.com]
while releasing energy and generating heat. Whereby the
electron flows through an external circuit to produce elec-
tricity.2

2H2–4e− ¼¼ 4H (1)

O2 þ 2e− þ 4Hþ ¼¼ 2H2O (2)

There are many fields in which the fuel cells have
been applied. The automobile industry is one key area.
Ballard has developed a few forms of PEM fuel cells
which have been used in vehicle production since
2000s.3 However, the cost of the utilizing PEM fuel cells
is high; this requires that the fuel cell should be used as
efficiently as possible.4 Furthermore, the production and
storage problem of H2 should be solved for the opera-
tion.3,5-7 Researches in modeling of PEM fuel cell have
begun in 1990s. In the 21st century, researches in further-
ing the optimization of PEM fuel cells are still ongoing
and the effect of uncontrollable factors on output power
should be addressed first. In different researches, operat-
ing parameters, viz, temperature, pressure, and current
density, have been usually thought to be the main factors
that influence the output power of PEMFC.8-11 Recently,
a research has used a new methodology: moment‐based
uncertainty evaluation technique, a framework which is
accurate and reliable to study the influence of some
uncontrollable factors, viz, SC, stack temperature (ST),
oxygen excess ratio (OER), inlet air humidity (IAH), and
hydrogen excess ratio (HER).3,12-22 To some extent, these
uncontrollable factors have a bad influence on the output
power and operation of the fuel cell.2 However, the rela-
tion between the output power and these parameters can-
not be explicitly represented by a mathematical function,
because the PEMFC system is multi‐dimensional and
complex, which cannot be modeled by experiments or
by trial‐and‐error approach.

Therefore, this work proposes to study the coupled and
interactive influence of SC, ST, OER, HER, and IAH for
optimizing the power output of PEMFC. The data
obtained from experiments have been inserted into archi-
tecture of automated neural‐network search (ANS), which
automates the selection of error function, activation func-
tion, uncertainties in inputs, and number of hidden neu-
rons in formulation of a robust and accurate model for
power density as a function of five operational variables.
2‐D and 3‐D surface plots are then shown to illustrate
the individual and interactive relationships between the
power output and five operational parameters. Simulation
design profile is obtained to illustrate the robustness of the
formulated model for parameters beyond the given input
range. In the last, the optimization is performed on the

http://wileyonlinelibrary.com
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power output of PEMFC for obtaining the optimum values
of five operational parameters.
TABLE 1 Ten ANS models as per their training and testing

performances

Model
Net.
Name

Training
Pref.

Testing
Pref.

Validation
Pref.

1 MLP 5‐8‐1 0.996393 0.960111 0.999356

2 MLP 5‐6‐1 0.998248 0.971375 0.999117

3 MLP 5‐4‐1 0.998155 0.983045 0.999775

4 MLP 5‐3‐1 0.996994 0.974117 0.999283

5 MLP 5‐7‐1 1.000000 0.998225 0.999796

6 MLP 5‐8‐1 0.993665 0.981217 0.999692

7 MLP 5‐7‐1 0.999993 0.999872 0.999625

8 MLP 5‐6‐1 0.996660 0.983334 0.999848

9 MLP 5‐6‐1 0.999561 0.999057 0.999138

10 MLP 5‐4‐1 0.997848 0.978292 0.999073
2 | RESEARCH PROBLEM

In the experiments, the hydrogen mass flow rate was set
as an input parameter and the output power was set as
an output parameter. Consequently, these experiments
have shown that the hydrogen mass flow rate was at a
low level when the output power was maximum.5 The
mass flow rate of hydrogen can be related to the output
power by Equation 3.

WH2 ¼ MH2nλan (3)

WH2 denotes hydrogen mass flow rate, λan indicates
the hydrogen stoichiometric ratio, 1st indicates the SC, F
indicates the Faraday constant, MH2 indicates the hydro-
gen molecular mass, and n indicates the cell numbers. On
the other hand, the PEMFC output power was considered
as a function of different operational parameters like: SC,
ST, OER, HER, and IAH. These five parameters were the
main factors that influence the output power of a
PEMFC. Some researchers have found the influence of
each parameter on the output power. The air was used
as reactant and coolant in the operation of PEMFC to
limit the output power. The increase of operating temper-
ature increased the reaction speed, which led to a higher
output power.23 However, higher operating temperature
led to the diminishment of the catalyst dispersion and
FIGURE 2 Schematic of proposed methodology to investigate the ef

figure can be viewed at wileyonlinelibrary.com]
the electrochemical surface of the catalysts and also the
membrane lifetime issues and failure.24 In that case, the
operating temperature should be controlled at an appro-
priate range.25 With the increase of current density, the
oxygen and hydrogen consumption will be increased
which leads to the increase of reactants mass flow
rates.26,27 During the operation of PEM fuel cell, ohmic
losses were a main factor that leads to the diminishment
of the output power. Humidity was an important param-
eter to decrease the membrane electrical resistance and
therefore the ohmic losses, so an appropriate range of
fect of uncontrollable parameters on the power of PEMFC [Colour

http://wileyonlinelibrary.com


FIGURE 3 Goodness of fit for experimental vs simulated results

of the selected ANS model [Colour figure can be viewed at

wileyonlinelibrary.com]
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humidity was required during the operation of PEM fuel
cell.28 Therefore, PEMFC power output is a function of
five operational parameters such as SC, ST, OER, HER,
and IAH. However, the mechanism and the relation in‐
between the output power and input parameters cannot
be explicitly represented by a mathematical function
because the PEMFC system is multi‐dimensional and
complex and represents uncertainty in operation vari-
ables, which cannot be modeled by experiments or by
trial‐and‐error approach. The present work performs
study of coupled and interactive influence of SC, ST,
OER, HER, and IAH for optimizing the power output of
PEMFC.
3 | PROPOSED ANS

The schematic of proposed methodology to study the
effect of uncontrollable parameters on the power output
of PEMFC is shown in Figure 2.
3.1 | Automated neural network search
(ANS)

Automated neural‐network search approach is powerful
variation of artificial neural networks (ANN), where the
uncertainties in the selection of activation function, error
function, uncertainties in inputs, and number of hidden
neurons are done automatically. A computational model
created by Warren McCulloch and Walter Pitts29 for neural
networks (according to mathematics and algorithms, called
threshold logic) has been used. The network depends on the
complications of the system to attain the purpose of dealing
out information by regulating the weight of the intercon-
nections among the large number of nodes (neurons)
inside. Each node in ANS represents a specific function
called activation function. The networks consisted of three
layers, viz, the input layer, the hidden layer comprising cer-
tain number of neurons, and the output layer. Input con-
sists of five parameters, viz, SC, ST, OER, HER, and IAH,
while the only output parameter is the power of fuel cell.
Although those parameters are not directly related or non-
linear with the output power, the neural network is very
good at searching an obscure relationship between them.
The definition of weight is the connection between two
nodes, each representing a weighted value of the
FIGURE 4 Profiles for simulation

results of predicted values of the power

output of the selected ANN model under

permissible conditions [Colour figure can

be viewed at wileyonlinelibrary.com]
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connection signal. The weights and the functions used to
compute the activation can be modified by a learning pro-
cess which is governed by a learning rule. ANS is trained
by learning to obtain the network weight and structure
and shows a strong self‐learning ability and adaptivity.
3.2 | Parameter settings of ANS

During the training process, multiple preliminary tests
are implemented to change the parameter value to
improve the accuracy of the results. Seventy percent of
the data has been used for training purpose, and 30% of
the data has been divided in two halves (15% for valida-
tion and 15% for testing of the ANS model). Since the
maximum hidden units must not exceed the number of
FIGURE 5 2‐D graphs illustrating the response of (A) stack current,

ratio, and (E) inlet air humidity, to the output in the ANS model [Colo
training data for radial basis function networks,30 the
maximum hidden units of radial basis function networks
have been set as 11 accordingly.

Table 1 shows the training performance and testing per-
formance of the models with various network settings.
Among 10 models, the model No.7 (MLP 5‐7‐1) with the
best performance according to training and testing perfor-
mances is selected for further analysis (bolded and
underlined). Figure 3 represents the goodness of fit perfor-
mance of the selected ANS model. The target represents
the actual value obtained from the experimental data, and
the output values are obtained from the estimated value
of the ANS model. A complete matching of all data points
(of experimental line and simulated) on fitness line can be
observed in Figure 3. It shows that the expected result sim-
ulated by ANS model is almost the same as the original
(B) stack temperature, (C) oxygen excess ratio, (D) hydrogen excess

ur figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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data, which depicts the high degree of accuracy of the
selected ANS model (model No.7 [MLP 5‐7‐1]).

Simulation results of the power output of the selected
model under permissible conditions are illustrated in
Figure 4. By individually observing the effects of each
input parameters, it can be stated that, with increase in
input stack current (SC), output power density has been
FIGURE 6 Interaction simulations of (A) SC and ST; (B) SC and OE

IAH; (G) ST and OER; (H) OER and HER; (I) OER and IAH; and (J) H

can be viewed at wileyonlinelibrary.com]
increased linearly. Similarly, with increase in ST, power
density has been increased but became constant after cer-
tain value. Oxygen excess ratio showed almost the linear
relation with power density of fuel cell. However, HER
and air humidity showed almost negligible effect of the
power density of the PEMFC. For observing the combined
effect of these input parameters on power density, it was
R; (C) SC and HER; (D) SC and IAH; (E) ST and HER; (F) ST and

ER and IAH, with the output power of the PEMFC [Colour figure

http://wileyonlinelibrary.com


FIGURE 6 Continued.
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assumed that all the five inputs follow the normal distribu-
tion. Their minimum and maximum values are shown in
Figure 4. It is observed that, in the range of 200 to
2000 W, output power simulated by the model follows an
approximate normal distribution. Therefore, it can be
revealed that even when the data are outside the given
input range, the simulation results will show similarity
with the actual results. This validates the robustness of
model for both interpolation and extrapolation cases.

To further investigate the response of single opera-
tional variable on the power output of PEMFC obtained
from ANS model, 2‐D surface plots are illustrated in
Figure 5. Figure 5 shows the extent to which the single
variable affects the output when averaging the rest of
the variables. Figure 5A,B,C shows that the three vari-
ables, vz, SC, ST, and OER, are positively correlated with
the output power. Among them, the correlation coeffi-
cient between the SC and the output power is the highest,
followed by OER, and the ST. Figure 5D shows a strong
negative correlation between the HER and the output
power. Figure 5E shows that when the IAH is less than
0.72, it is negatively related to the output power, but
when IAH is greater than 0.72, it is positively correlated
with the output power.

For studying the interaction between combination of
two input variables, 3‐D surface plots have been repre-
sented in Figure 6. Figure 6A,B,C,D shows the 3‐D graphs
showing the correlation between SC and ST; SC and OER;
SC and HER; and SC and IAH, respectively, with respect
to output power. It has been observed that the interactions
between the SC and the ST, SC, and OER, and SC andHER,
are small, and they all are positively correlated with the out-
put power. The interaction between SC and IAH on output
power is larger. When the value of the SC is between 34 and
40 A, the output power first decreases with the increase of
inlet air flow rate and then increases. When the SC
exceeded 46 A, IAH has little effect on the output power.
The interaction of ST and HER, ST and IAH, and ST and
OER, with output power of PEMFC, has been represented
in Figure 6E,F,G respectably. It has been observed that
the interactions between the ST with HER, and ST with
OER, are small to the output power, and they all are posi-
tively correlated with the output power. The interaction
between ST with IAH on output power is larger. When
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the value of the ST is between 54°C and 60°C, the output
power first decreases with the increase of inlet air flow rate
and then increases. When the ST exceeded 60°C, IAH has
little effect on the output power. Similarly, the interaction
among OER and HER, OER and IAH, and HER and IAH
with the output power of the PEMFC has been represented
in Figure 6H,I,J, respectably. It has been observed that the
interaction relationship between the two sets of variables
(viz, OER and HER, OER and IAH) is small (Figure 6H,I).
When the two variables have been changed, the change of
the output power is small. However, when the value of
HER is 1.20 to 1.45, the output power increases first and
then decreases with the increase of IAH (Figure 6J). When
the value of IAH is increased from 0.63 to 092, the output
power increases, and it is decreased with further increase
in HER. The two variables show a greater impact on the
value of the output power. The maximum output power
has been obtained when the value of the HER is 1.31 and
the value of the IAH is 0.78.

By observing the overall interactions of all five input
factors, it has been observed that, when the interaction
between the two variables is small, the curved surface
trend of the 3D graph is closer to the superposition of
their response graph. But, if the interaction between the
two variables is large, the curved surface trend of the
3D graph would be different from the overlay of their
response graph. Further, for maximizing the power out-
put from PEMFC, NSGA II combined with iterative and
search algorithm is used. The model parameters have
been modified (iterations have been made) many times,
so that the results of the model get approximated to the
maximum output expected. The optimization converged
at 130th iteration results in maximum power output of
3410 W for an optimum value of SC (51A), ST (59°C),
OER (3.2), HER (1.10), and IAH (0.8).
4 | CONCLUSIONS

The present work undertakes research problem on study
of coupled and interactive influence of five operational
parameters for optimizing the power output of PEMFC
under uncertain operational variables conditions. In this
context, the present work proposes an ANS approach.
From the results and discussions, the following conclu-
sions have been drawn:

1. The correlation coefficient between the SC and the out-
put power is the highest, followed by OER, and the ST.

2. A strong negative correlation between the HER and
the output power, but, IAH is positively correlated
with the output power.

3. Output power simulated by the model follows an
approximate normal distribution. Therefore, it can be
revealed that even when the data are outside the given
input range, the simulation results will show similarity
with the actual results. This validates the robustness of
model for both interpolation and extrapolation cases.

4. When the interaction between the two variables is
small, the curved surface trend of the 3D graph is
closer to the superposition of their response graph.
But, if the interaction between the two variables is
large, the curved surface trend of the 3D graph would
be different from the overlay of their response graph.

5. The optimization converged at 130th iteration results
in maximum power output of 3410 W for an opti-
mum value of SC (51A), ST (59°C), OER (3.2), HER
(1.10), and IAH (0.8).

Therefore, from above all the points, it can be depicted
that the reliability of the proposed ANS model is high
and can be used efficiently to investigate the effect of
unfavorable factors on the output power of PEMFCs.
Future work shall consider the hybridization of ANN
with finite element simulation31 and uncertainty analysis
for real‐time diagnosis of fuel cell.32-34
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