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A B S T R A C T

In many real-world engineering optimizations, a large number of objective and constraint function values
often need to be obtained through simulation software or physical experiments, which incurs significant
computational costs and/or time expenses. These problems are known as expensive constraint multi-objective
optimization problems (ECMOPs). This paper combines the push and pull search (PPS) framework and proposes
a surrogate-assisted evolutionary algorithm to solve ECMOPs through Bayesian active learning, naming it the
surrogate-assisted PPS (SA-PPS). Specifically, during the push search stage, candidate solutions are selected
based on two indicators: hypervolume improvement and objective uncertainty. These aim to quickly guide the
population towards the unconstrained Pareto front while ensuring diversity. During the pull search stage, the
population is partitioned into many subregions through reference vectors, and different selection strategies are
assigned to each subregion based on its state, aiming to guide the population towards the constrained Pareto
front while ensuring diversity. Furthermore, we introduce a batch data selection strategy that utilizes Bayesian
active learning to enable the surrogate model to focus on regions of interest in the pull search stage. Extensive
experimental results have shown that the proposed SA-PPS algorithm exhibits superior convergence and
diversity compared to 9 state-of-the-art algorithms across a variety of benchmark problems and a real-world
optimization problem.
1. Introduction

In engineering practice, constrained multi-objective optimization
problems (CMOPs) are commonly encountered. Without loss of gener-
ality, a CMOP can be defined as follows:

min 𝐹 (𝐱) = (𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑚(𝐱))𝑇

s.t. 𝑔𝑖(𝐱) ≤ 0, 𝑖 ∈ {1, 2,… , 𝑝}

ℎ𝑗 (𝐱) = 0, 𝑗 ∈ {1, 2,… , 𝑞}

𝐱 ∈ R𝐷

(1)

where 𝐱 is a 𝐷-dimensional decision vector, and 𝐹 (𝐱) represents an
𝑚-dimensional objective vector. The expression 𝑔𝑖(𝐱) ≤ 0 signifies the
𝑖th inequality constraint, while ℎ𝑗 (𝐱) = 0 denotes the 𝑗th equality
constraint. To comprehensively handle both equality and inequality
constraints, it is common practice to measure the feasibility of a so-
lution using an overall constraint violation value, which is defined as
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follows:

𝐶𝑉 (𝐱) =
𝑝
∑

𝑖=1
max(𝑔𝑖(𝐱), 0) +

𝑞
∑

𝑗=1
max (|ℎ𝑗 (𝐱)| − 𝛿, 0) (2)

where 𝛿 denotes an extremely small positive number. When 𝐶𝑉 (𝐱) = 0,
the individual 𝐱 is regarded as a feasible solution; otherwise, it is
considered as an infeasible solution.

In practical engineering optimizations, many CMOPs frequently en-
tail computationally expensive or time-consuming evaluations of both
objective and constraint functions. Consequently, identifying Pareto
optimal solutions within a smaller number of function evaluations
becomes imperative. Such problems are referred to as expensive CMOPs
(ECMOPs).

Traditional evolutionary algorithms typically require a large num-
ber of evaluations of objective and constraint functions to achieve
satisfactory results [1]. However, when dealing with ECMOPs, the high
cost of function evaluations limits their widespread application. To
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Fig. 1. Illustrations for the four main challenges of ECMOPs, which are: (a) feasibility difficulty, (b) convergence difficulty, (c) diversity difficulty, and (d) the challenge of
searching for constrained Pareto solutions with limited evaluation budgets.
address this issue, surrogate models can be employed to approximate
these expensive objective and constraint functions. By leveraging these
models to guide the search process, satisfactory results can still be
achieved with fewer function evaluations.

Recent significant advancements have been made in surrogate-
assisted multi-objective evolutionary algorithms (SA-MOEA) for solv-
ing expensive multi-objective problems without constraints. These ad-
vancements primarily focus on three aspects: the construction, man-
agement, and design of infill criteria for surrogate models. Firstly,
the establishment of surrogate models offers a cost-effective alter-
native to using more expensive original evaluation functions. Typi-
cal surrogate models include Gaussian processes [2,3], radial basis
functions (RBF) [4,5], and support vector machines (SVM) [6]. Sec-
ondly, to enhance the predictive accuracy of surrogate models, effective
management and periodic updates are necessary. This includes using
surrogate model ensembles [7,8] and implementing model selection
strategies [9]. Lastly, the purpose of the infill criterion is to select the
most promising solutions for actual evaluation, which helps accelerate
population convergence while maintaining diversity. Common met-
rics used in this process include expected improvement (EI) [10–12],
lower confidence bound (LCB) [13], and probability of improvement
(PoI) [14].

Constraint handling is also crucial for ECMOPs. Existing constraint
handling methods are mainly categorized as follows [15]: (1) Methods
based on the penalty function, which transform a constrained opti-
mization problem into an unconstrained one by applying a penalty
factor for optimization. (2) Methods based on the separation of ob-
jectives and constraints, such as the constrained dominance principle
(CDP) [16], 𝜀-CDP [17,18], and stochastic ranking [19]. (3) Multi-
objective methods, for example, considering constraint violation (CV)
as an additional optimization objective [20,21], or treating the con-
straint function as an objective function simultaneously [22]. (4) Meth-
ods that transform CMOPs into other types of problems, such as con-
verting CMOPs into multi-stage optimization problems to be optimized
sequentially [23–25], or transforming CMOPs into collaborative op-
timization of different subproblems within multi-subpopulations [26–
28]. Although the CMOEAs that integrate these constraint handling
techniques have made significant achievements in solving CMOPs, they
typically require numerous evaluations and cannot be directly used to
solve ECMOPs.

Resolving ECMOPs usually requires overcoming feasibility, conver-
gence, and diversity challenges within a smaller number of function
evaluations. Fig. 1 illustrates these difficulties. As shown in Fig. 1(a),
when the feasible region is relatively small, it becomes challenging for
the population to find a feasible solution, leading to feasibility diffi-
culties. When encountering multiple infeasible regions, the population
may fall into local optima, resulting in convergence difficulties, as il-
lustrated in Fig. 1(b). Additionally, when there are multiple segmented
feasible regions along the PF, the population may not fully cover all the
solutions across the entire PF, leading to diversity challenges, as shown
in Fig. 1(c). Furthermore, as depicted in Fig. 1(d), with fewer function
evaluations, most existing CMOEAs struggle to search the true PF. To
address these challenges, we propose a surrogate-assisted push and pull

search algorithm (SA-PPS), which incorporates Bayesian active learning

2 
to effectively solve ECMOPs. The main contributions are outlined as
follows:

1. We propose an integrated adaptive infill criterion. During the
push phase, candidate solutions are selected based on the HV
contribution and uncertainty of the surrogate evaluated indi-
viduals under unconstrained conditions, which helps the pop-
ulation quickly converge to the UPF while maintaining diver-
sity. In the pull phase, an adaptive selection strategy based
on regional division is adopted. This strategy adaptively selects
candidate solutions based on feasibility, convergence, and distri-
bution infill criterion according to the status of the sub-regions.
It guides the algorithm to perform more refined local search
near the CPF, while simultaneously enhancing the population’s
feasibility, convergence, and diversity.

2. A batch training data selection strategy based on Bayesian active
learning is introduced in the pull search stage. This strategy not
only allows the surrogate model to focus on predicting areas
of interest and thereby improving prediction accuracy but also
accelerates model training by simplifying the datasets.

3. The proposed SA-PPS algorithm was compared with several
state-of-the-art algorithms on the MW and LIRCMOP test prob-
lems, as well as a real-world optimization problem. The experi-
mental results demonstrate its excellent performance in handling
ECMOPs.

The remainder of this paper is organized as follows: Section 2 intro-
duces related work on expensive constrained multi-objective evolution-
ary algorithms, along with brief descriptions of the push and pull search
framework, the Gaussian process regression model, and Bayesian active
learning for data selection. Section 3 provides a detailed explanation
of the proposed SA-PPS algorithm. Section 4 presents the experimental
results and analysis of SA-PPS and comparative algorithms on the MW
and LIRCMOP test problems, as well as an aircraft design optimization
problem. Finally, conclusions are drawn in Section 5.

2. Preliminary

2.1. Related work

Recently, ECMOPs have attracted considerable attention from re-
searchers [29]. The primary method for addressing ECMOPs is
surrogate-assisted CMOEAs (SA-CMOEAs). Similar to multi-objective
evolutionary agorithms (MOEAs), SA-CMOEAs can typically be cate-
gorized into three types: (1) Indicator-based methods, (2) Dominance-
based methods, and (3) Decomposition-based methods.

Indicator-based SA-CMOEAs primarily focus on designing appro-
priate selection indicators for candidate solutions that can filter out
solutions enhancing the diversity and convergence of the population,
while guiding the population towards the feasible region as much as
possible. For instance, De Winter et al. [30] convert the surrogate
model-predicted objective value into an HV indicator and use the HV
contribution as the objective function to select appropriate candidate

solutions. Singh et al. [31] employ the product of the PoI [14] and
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the HV value as a measure of individual fitness for optimization. Deb
et al. suggested using the S-metric indicator in the M5 framework [32],
which combines the sum of the achievement aggregate function and the
CV value to determine the fitness of a solution. Currently, indicator-
based methods fail to effectively utilize the potential of infeasible
solutions to help populations escape local optima. Although individuals
within the infeasible region may have greater potential, they are easily
dominated by individuals in the feasible region.

Decomposition-based SA-CMOEAs decompose ECMOPs into many
sub-problems for optimization. For instance, Yang et al. [29] introduced
the ASA-MOEA/D algorithm which includes three search strategies:
feasibility search, diversity search, and convergence search. This algo-
rithm adaptively selects one of these strategies based on the state of
the population. Deb et al. [33] employ the S-metric indicator to assess
the fitness of an individual for a subproblem and utilize a reference
vector to preserve the diversity of the population. Han et al. [34]
use the product of the objective value and the feasibility probability
of the decomposed subproblem as the measure of individual fitness,
aiming to minimize the objective value while considering feasibility.
Decomposition-based SA-CMOEAs can maintain population diversity
and prevent the population from converging on local optima. However,
the selection of candidate solutions prioritizes feasibility, which makes
it difficult for the population to cross infeasible regions and converge
to the true constrained PF.

Dominance-based SA-CMOEAs utilize surrogate models to predict
all objective and constraint values of individuals and calculate multiple
indicators for select candidate solutions by non-dominated ranking.
For instance, Blank et al. [32] constructed a surrogate model for
each objective and constraint function, and employed the NSGA-II
algorithm to optimize ECMOPs. Regis [35] employed the minimum
distance between the surrogate evaluated individuals and the expen-
sive evaluated population in both the objective and decision spaces
as two selection indicators. This approach selects candidate solutions
through non-dominated ranking and screens valid individuals using
predicted constraint violation values. Dominance-based SA-CMOEAs
can comprehensively consider multiple optimization criteria. However,
similar to decomposition-based and indicator-based methods, feasible
individuals always dominate infeasible ones, which may prevent them
from traversing infeasible regions in ECMOPs with complex constraints.

Overall, many existing CMOEAs [29,34,35] prioritize feasibility
over convergence. However, prioritizing feasibility can make it chal-
lenging for these algorithms to handle complex CMOPs [23,26]. There-
fore, a flexible strategy that toggles between feasibility and conver-
gence is necessary. For example, in the KTS algorithm [36], an adap-
tive switching search strategy is introduced, which alternates between
ignoring constraints and considering constraints in surrogate evolu-
tionary searches based on the population’s state. In the MGSAEA al-
gorithm [26], a multi-stage search framework is employed, initially
ignoring constraints but later considering them, thus reducing time
costs with a coarse-grained surrogate model. However, these algorithms
do not consider how to select appropriate data samples for training
the surrogate model, which may impact the accuracy of the surrogate
model.

To address the limitations of current SA-CMOEAs in handling EC-
MOPs, we propose an SA-CMOEA algorithm named SA-PPS, based on
the push and pull search framework. It integrates surrogate modeling
and Bayesian active learning within the PPS framework. To effectively
search the constrained PFs, we have developed distinct infill criteria
for both the push and pull search stages. Utilizing these strategies, SA-
PPS is capable of exploring the unconstrained PFs with limited function
evaluations during the push stage and swiftly identifying regions near
constrained PFs in the pull stage.
 c

3 
2.2. Push and pull search framework

The push and pull search (PPS) framework [23] represents a clas-
sical multi-stage optimization algorithm within the realm of CMOEAs.
To solve CMOPs, PPS [23] divides the optimization process into two
stages: the push search stage, where the population optimizes without
considering constraints, and the pull search stage, where the population
considers both optimization objectives and constraints. This frame-
work can flexibly integrate various search mechanisms into the push
and pull search stages, enabling it to handle CMOPs with different
characteristics [24].

2.3. Gaussian regression process model

The Gaussian process regression model (GPR) is one of the most
commonly used surrogate models. For given data, the GPR model
considers the output 𝑦 of input 𝐱 as a random variable following a
Gaussian distribution 𝑁(𝜇, 𝜎), where 𝜇 is the mean value of prediction
and 𝜎 is the variance of prediction, also called uncertainty. Let the
training dataset be (𝐱𝑖, 𝑦), 𝐱𝑖 ∈ R𝐷, 𝑖 ∈ {1,… , 𝐷}. The output of the

PR model for the prediction point 𝐱 is as follows:

�̂�(𝐱∗) = 𝜇(𝐱∗) + 𝒌∗𝑇 (𝐾 + 𝜎2𝑛𝐼)
−1(𝒚 − 𝜇(𝑋)) (3)

2(𝐱∗) = 𝑘(𝐱∗, 𝐱∗) − 𝒌∗𝑇 (𝐾 + 𝜎2𝑛𝐼)
−1𝒌∗ (4)

here �̂�(𝐱∗) is the prediction mean, 𝜎2(𝐱∗) is the prediction variance, 𝒌∗
s the covariance vector between the training set 𝑋 and the prediction
oint 𝐱∗, 𝐾 is the covariance matrix of the training 𝑋, and 𝜇(𝑋) is
he mean vector of the training set 𝑋. The covariance function is also
eferred to as the kernel function in the GPR model. In this paper, the
atérn 5/2 kernel [37] is used as the kernel function of the GPR model,

nd it is defined as follows:

(𝐱, 𝐱′) = 𝜎2𝑛 (1 +

√

5𝑑
𝜌

+ 5𝑑2

3𝜌2
)𝑒𝑥𝑝(−

√

5𝑑
𝜌

) (5)

where 𝜌 is a non-negative hyperparameter of the kernel function. 𝑑 =
√

(𝐱 − 𝐱′)𝑇 (𝐱 − 𝐱′) is the Euclidean distance between 𝐱 and 𝐱′.

.4. Bayesian active learning for data selection

Bayesian active learning is an effective machine learning strategy
imed at optimizing model performance by selecting samples with
he highest informational value in a limited data environment. This
ethod has been widely used in classification and regression tasks [38].
ompared to many traditional predictors, it not only has clear statistical
r physical meaning [39], but also can balance the use of experiments
o explore the unknown function with experiments that exploit prior
nowledge to identify extrema [40].

The specific process of Bayesian active learning involves the follow-
ng steps: (1) In the initial stage, a surrogate model is trained using a
mall amount of labeled data, and the model estimates the prediction
ncertainty of unlabeled data using posterior distribution. (2) A query
trategy (such as uncertainty or information entropy) is then used to
elect key samples that can significantly reduce model’s uncertainty,
nd these samples are labeled. The newly labeled data are used to
pdate the surrogate model. (3) This process is repeated until the
redefined performance goal is achieved or the algorithm’s termination
ondition is met.

In this paper, we combine Gaussian process regression models with
ayesian active learning. Gaussian processes can predict the mean and
ariance of sampled points, allowing the model to optimize prediction
ccuracy by selecting samples with the highest prediction uncertainty
ith minimal computational expense. This strategy is particularly im-
ortant during the pull search stage for building local surrogate mod-
ls, as it enables more precise selection of candidate solutions that
ontribute most to improving the model’s performance.
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Fig. 2. Flowchart of the proposed SA-PPS.
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3

. Proposed algorithm

The proposed SA-PPS consists of three main components: a push
earch stage, a pull search stage, and a data selection mechanism based
n Bayesian active learning. The functions of each component are
riefly described as follows:

1. Push search stage: In the push search stage, SA-PPS uses NSGA-
II and surrogate models to guide the evolution of the surrogate
evaluated population without considering any constraints. It
uses hypervolume contribution and objective uncertainty to se-
lect candidate solutions for expensive evaluation, allowing the
population to quickly cross the infeasible region and reach the
UPF. Details can be found in Section 3.1.

2. Pull search stage: During the pull search stage, surrogate mod-
els are constructed separately for each objective and constraint.
By using reference vectors, the population is divided into mul-
tiple sub-regions. Different solution selection strategies are allo-
cated to each sub-region based on their specific states, enabling
the population to converge more effectively while maintaining
diversity. Details can be found in Section 3.2.

3. Batch Bayesian active learning data selection (BatchBALDS):
During the pull search stage, as the amount of sample data
increases, the training time for the surrogate model increases
rapidly. The BatchBALDS method enables the selection of appro-
priate training data for model construction, which can signifi-
cantly accelerate the training of the surrogate model and enable
the model to focus on estimating the region around the CPF.
This further enhances the performance of the proposed SA-PPS.
Details can be found in Section 3.3.

The flowchart of the SA-PPS algorithm is shown in Fig. 2. First,
he population is initialized, and an expensive evaluation is conducted..
hen, the current search state is judged: if it is the push search stage,
surrogate model is established only for each objective, and candidate

olutions are selected using the push stage search infill criterion. If
t is in the pull search stage, the training data is selected based on
atchBALDS to establish a surrogate model for each objective and
onstraint, and the candidate solution is selected using the pull search
tage infill criterion. The transition between the Push and Pull phases is
etermined by the HV value change rate 𝛾HV of the population. When

𝛾HV is less than the given threshold 𝛿, the algorithm transitions from
the push search stage to the pull search stage. The definition of 𝛾HV is
as follows:

𝛾HV =
𝐻𝑉𝑘 −𝐻𝑉𝑘−𝑙 (6)

𝑚𝑎𝑥(𝐻𝑉𝑘−𝑙 , 𝛥) f

4 
Algorithm 1: SA-PPS
Input: The max number of true evaluations 𝐹𝐸max, the number

of selected candidates 𝑁sel, the surrogate evaluated
population size 𝑁surr, the number of generations for
surrogate assisted search 𝑡max

Output: The archive of expensive evaluated solutions 𝑃arch
1 𝑃arch ← generate 𝑁 individuals by Latin hypercube sampling;
2 𝑠𝑡𝑎𝑔𝑒 ← 0;
3 while 𝐹𝐸 < 𝐹𝐸max do
4 if 𝑠𝑡𝑎𝑔𝑒 == 0 then
5 𝑃cand ← PushSearch(𝑃arch, 𝑁sel, 𝑁surr, 𝑡max);
6 else
7 𝑃cand ← PullSearch(𝑃arch, 𝑁sel, 𝑁surr, 𝑡max);
8 end
9 Evaluate each solution in 𝑃cand with a real function;
10 𝑃arch ← 𝑃arch ∪ 𝑃cand;
11 update 𝐹𝐸;
12 if 𝑠𝑡𝑎𝑔𝑒 == 0 and (𝛾HV < 𝛿 or 𝐹𝐸 > 𝐹𝐸max∕2) then
13 𝑠𝑡𝑎𝑔𝑒 ← 1;
14 end
15 end

where 𝐻𝑉𝑘 is the HV value of the current 𝑘-generation population and
𝐻𝑉𝑘−𝑙 is the HV value of the population from 𝑙 generations earlier, and

is set to 1𝑒−6. The rate of change in the HV indicator reflects the
urrent population’s convergence status. When the population cannot
roduce new non-dominated solutions during the evolutionary process,
he 𝐻𝑉 change rate is 0. Conversely, if new non-dominated solutions
re generated, the 𝐻𝑉 change rate is a value greater than 0, with
arger values more strongly indicating that the population has not yet
onverged. When the 𝐻𝑉 change rate is extremely small, it suggests
hat the population has literally converged. At this point, switching to
he pulling stage can effectively avoid wasting computational resources,
hereby improving the search efficiency and performance of the SA-
PS algorithm. It is worth noting that if the expensive evaluation
eaches 0.5 times the maximum evaluation and the algorithm has
ot yet transitioned to the pull search stage, the algorithm is forcibly
ransitioned to avoid wasting too many evaluations in the push search
tage.

.1. Push search stage

In the push stage, we build a surrogate model for each objective
unction, that is, there are 𝑀 surrogate models in total. Additionally,
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the NSGA-II is used as the optimizer to guide the search of the popu-
lation without considering any constraints. When choosing candidate
solutions for expensive evaluation, we combine hypervolume improve-
ment (HVI) and uncertainty. The calculation of HVI is as follows:

𝑉 𝐼(𝐱surr) = 𝐻𝑉 (�̂� (𝐱surr) ∪ 𝒚𝑒) −𝐻𝑉 (𝒚𝑒) (7)

where 𝐱surr is a candidate solution, and 𝒚𝑒 is a set of expensive eval-
uated solutions in the objective space. When the number of non-
dominated solutions in 𝒚𝑒 is less than the selected number 𝑁sel, many
individuals have an HVI value of zero. Then, we select solutions for
expensive evaluation based on their average uncertainty. The definition
of an individual’s average uncertainty is as follows:

�̂�mean(𝐱) =
1
𝑚

𝑚
∑

𝑖=1
�̂�𝑖(𝐱) (8)

where the uncertainty of the 𝑖th objective value, �̂�𝑖(𝐱), of the individual
𝐱 is calculated using the trained GPR model.

The detailed steps of the push search are shown in Algorithm 2.
Firstly, all the expensive evaluated individuals are used as training data
to train the surrogate model for each objective function, as shown in
line 1. Then, NSGA-II is used as the optimizer to guide the evolution
of the surrogate evaluated population, as shown in line 2. After 𝜔
enerations of evolution, the individual with the largest HVI in the
urrogate evaluated population is selected to join the candidate solution
et, as shown in lines 8–11. If the HVI of the individual with the largest
VI is 0, the individual with the largest �̂�mean is selected to join the
andidate solution set, as shown in lines 12–14.
Algorithm 2: PushSearch

Input: The archive of expensive evaluated solutions 𝑃arch, the
number of selected candidates 𝑁sel, the surrogate
evaluated population size 𝑁surr, the number of
generations for surrogate assisted search 𝑡max

Output: Candidate solutions for expensive evaluation 𝑃arch
1 𝑆models ← Train GPR models separately for each objective using

the individuals in 𝑃arch;
2 𝑃surr ← NSGA-II(𝑃arch, 𝑆models, 𝑡max);
3 𝑃cand = ∅;
4 foreach 𝐱 ∈ 𝑃surr do
5 �̂�mean(𝐱) ←

1
𝑚
∑

�̂�𝑖(𝐱);
6 end
7 for 𝑖 ← 1 ∶ 𝑁sel do
8 foreach 𝐱 ∈ 𝑃surr do
9 𝐻𝑉 𝐼𝐱 ← 𝐻𝑉 (𝐱 ∪ 𝑃cand ∪ 𝑃arch) −𝐻𝑉 (𝑃cand ∪ 𝑃arch);
10 end
11 𝐱 = argmax

𝐱∈𝑃surr∖𝑃cand
𝐻𝑉 𝐼𝐱;

12 if 𝐻𝑉 𝐼𝐱 = 0 then
13 𝐱 ← argmax

𝐱∈𝑃surr∖𝑃cand
�̂�mean(𝐱);

14 𝑃cand ← 𝑃cand ∪ 𝐱;
15 else
16 𝑃cand ← 𝑃cand ∪ 𝐱;
17 end
18 end

3.2. Pull search stage

In the pull search stage, the algorithm aims to efficiently search for
CPFs, for which an adaptive infill criterion based on subregion division
is proposed. This method enables the population to effectively search
for CPFs while maintaining diversity. The distributions of solutions
within a subregion 𝛥𝑖 for the expensive evaluated population and the

surrogate evaluated population can be categorized into three scenarios:

5 
Fig. 3. Illustrations for selecting candidate individuals based on three infill criteria
during the pull search stage.

(1) At least one feasible solution exists, (2) Only infeasible solutions
exist, and (3) No solutions exist.

Based on the different combinations of the three scenarios for each
population, there are a total of nine different cases, as illustrated in
Fig. 3. Here, A, B, and C represent the three scenarios for the expensive
evaluated population, while a, b, and c represent the three scenarios for
the surrogate evaluated population.

The specific correspondences between Figs. 3 and 4 are described as
follows: Fig. 4 illustrates the process for selecting candidate individuals
in the objective space. In Fig. 4, the objective space is divided into five
sub-regions (𝛺1, 𝛺2, 𝛺3, 𝛺4, and 𝛺5), which correspond to five cases
in Fig. 3, namely S3:Ac, S1:Aa, S3:Bc, S2:Bb, and S1:Ab. The specific
selection processes of 9 corresponding cases are provided in Appendix
I.

Specifically, in the cases of S3:Ac and S3:Bc, there are expensive
evaluated individuals in sub-regions 𝛺1 (or 𝛺3), but no surrogate
evaluated individuals. In these cases, the diversity infill criterion is em-
ployed. According to this criterion, the diversity values of the surrogate
evaluated individuals in the neighborhoods are calculated, specifically
the sum of the Chebyshev values and constraint violation values. The
surrogate evaluated individual with the smallest diversity value is
selected as the candidate solution. The candidate solutions selected in
𝛺1 and 𝛺3 are represented by diamonds with blue and yellow borders,
respectively, in Fig. 4.

For the case of S1:Aa, there is at least one expensive evaluated
individual and at least one surrogate evaluated individual within the
feasible region in sub-region 𝛺2. In this case, we emply the convergence
infill criterion to select a candidate solution. The surrogate evaluated
individual with the highest 𝐻𝑉 𝐼 value from the feasible region is
selected as the candidate solution, as indicated by the diamond with
a blue border in Fig. 4. For the case of S1:Ab, there is at least one
expensive evaluated individual within the feasible region, while the
surrogate evaluated individuals are all in the infeasible region in sub-
regions 𝛺5. In this case, we also use the convergence infill criterion to
select a candidate solution. The surrogate evaluated individual with the
smallest CV value from the infeasible region is chosen as the candidate
solution, as indicated by the diamond with a purple border in Fig. 4.

In the case of S2:Bb, both expensive evaluated individuals and
surrogate evaluated individuals are located in the infeasible region
of sub-region 𝛺4. In this scenario, the feasibility infill criterion is
employed. The surrogate evaluated individual with the maximum fea-
sibility value is chosen as the candidate solution, as indicated by the
diamond with a red border in Fig. 4.

The specific descriptions of the convergence, feasibility, and diver-
sity infilling strategies are as follows:

• Convergence Infill Criterion (CIC). The CIC is designed to guide
the population towards more optimal directions within the feasi-

ble domain. To ensure that individuals within subregions search
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Fig. 4. Illustrations for selecting candidate individuals in the objective space.

while considering both distribution and convergence within the
subregion, CIC integrates the Hypervolume Indicator (HVI) and
the constraint dominance principle (CDP) to select candidate
solutions, known as HVI-CDP. According to the HVI-CDP, solution
𝐱𝑎 is considered better than 𝐱𝑏 if it meets any of the following
conditions:

1. 𝐱𝑎 and 𝐱𝑏 are both infeasible, and 𝐶𝑉 (𝐱𝑎) < 𝐶𝑉 (𝐱𝑏).
2. 𝐱𝑎 is feasible, but 𝐱𝑏 is infeasible.
3. 𝐱𝑎 and 𝐱𝑏 are both feasible, and 𝐻𝑉 𝐼(𝐱𝑎) > 𝐻𝑉 𝐼(𝐱𝑏).

• Feasibility Infill Criterion (FIC). The FIC prioritizes individuals
with the highest feasibility as candidate solutions. To quantify the
feasibility of surrogate evaluated individuals, we introduce the
feasibility indicator 𝐼fea. A smaller 𝐼fea indicates greater feasibility
of the surrogate evaluated individual. If 𝐱 is infeasible, 𝐼fea is
defined as follows:

𝐼fea =
𝑝
∑

𝑖=1
max(�̂�𝑖(𝐱), 0) +

𝑞
∑

𝑗=1
max(ℎ̂𝑗 (𝐱) − 𝛿, 0) (9)

If 𝐱 is feasible, 𝐼fea is defined as follows:

𝐼fea =
𝑝
∑

𝑖=1
min(�̂�𝑖(𝐱), 0) +

𝑞
∑

𝑗=1
min(ℎ̂𝑗 (𝐱) − 𝛿, 0) (10)

It can be observed that when the surrogate evaluated individual
𝐱 is predicted to be an infeasible solution, the value of 𝐼fea for
𝐱 equals the overall constraint violation. When the surrogate
evaluated individual 𝐱 is predicted to be a feasible solution, the
value of 𝐼fea equals the sum of constraint function values. A
smaller value of 𝐼fea indicates that 𝐱 is deeper within the feasible
domain, implying greater feasibility.

• Diversity Infill Criterion (DIC). The DIC aims to encourage the
population to explore different subregions as extensively as pos-
sible to prevent convergence to local optima. When a subregion
lacks expensive evaluated individuals or surrogate evaluated indi-
viduals, we design a corresponding subproblem for this subregion
as part of the infill criterion. It is defined as follows:

𝑓𝑠𝑢𝑏(𝐱|𝜆) = 𝑔𝑡𝑐ℎ(𝐱|𝜆) + 𝐶𝑉 (𝐱) (11)

where 𝑔𝑡𝑐ℎ(𝐱|𝜆) represents the Chebyshev decomposition function.

The pseudo-code for the pull search stage is depicted in Algorithm 3.
In lines 1–2, BatchBALDS is first used to select training data, and then
surrogate models for objectives and constraints are trained separately.
In line 3, the CCMO algorithm is used as the optimizer, utilizing
6 
the trained surrogate models to replace the real function evaluation.
In lines 5–6, each individual in the surrogate evaluated population
𝑃surr and in the expensive evaluated archive set 𝐴 is associated with
the weight vector 𝜆𝑖, respectively. In line 7, the objective space is
divided into 𝑁sel subregions, each denoted as 𝛥𝑖. The regional division
strategy used in this paper aims to divide the objective space into 𝑁sel
subregions, where 𝑁sel is the number of selected candidates. First, 𝑁sel
weight vectors are uniformly generated in the objective space. Next, for
any point in the objective space, the distance from that point to all the
weight vectors is calculated, and the closest weight vector is identified.
This point is then assigned to the subregion associated with this nearest
weight vector. Consequently, the objective space is divided into 𝑁sel
non-overlapping subregions. In this paper, we set the value of 𝑁sel to
5. In lines 10–11, the surrogate evaluated population is divided into
𝑁sel sub-populations, and the state of the solutions in the sub-region 𝛥𝑖
is assessed. In lines 12–13, if the state of 𝑆𝛥𝑖 is 𝑆1, a candidate solution
is chosen according to the CIC criterion. In lines 14–15, if the state of
𝑆𝛥𝑖 is 𝑆2, a candidate solution is chosen according to the FIC criterion.
In lines 16–17, if the state of 𝑆𝛥𝑖 is 𝑆3, a candidate solution is chosen
according to the DIC criterion.
Algorithm 3: PullSearch

Input: The archive of expensive evaluated solutions 𝑃arch, the
number of selected candidates 𝑁sel, the surrogate
evaluated population size 𝑁surr, the number of
generations for surrogate assisted search 𝑡max

Output: Candidate solutions for expensive evaluation 𝑃arch
1 𝐷 ← BatchBALDS(𝑃arch, 𝑁𝐷1, 𝑁𝐷2);
2 𝑆models ← Train GPR models separately for each objective and

constraint using the individuals in 𝐷;
3 𝑃surr ← CCMO(𝑃arch, 𝑆models, 𝑡max);
4 Set uniform reference vectors {𝜆1, ..., 𝜆𝑁sel};
5 Assign each individual 𝐱 ∈ 𝑃surr to its closest reference vector;
6 Assign each individual 𝐱 ∈ 𝑃arch to its closest reference vector;
7 Divide the objective space into 𝑁sel subregions 𝛥𝑖, for

𝑖 ∈ {1,… , 𝑁sel};
8 𝑃cand = ∅;
9 for 𝑖 ← 1 ∶ 𝑁sel do
10 𝑃 𝛥𝑖

surr ← 𝑃surr in 𝛥𝑖;
11 Determine the state 𝑆𝛥𝑖 of subregion 𝛥𝑖;
12 if 𝑆𝛥𝑖 is S1 then
13 𝐱 ← HVICDP(𝑃 𝛥𝑖

surr, 1);
14 else if 𝑆𝛥𝑖 is S2 then
15 𝐱 ← max𝐱∈𝑃 𝛥𝑖

surr
𝐼fea(𝐱);

16 else if 𝑆𝛥𝑖 is S3 then
17 𝐱 ← min𝐱∈𝑃surr 𝑔tch(𝐱|𝜆𝑖) + 𝐶𝑉 (𝐱);
18 end
19 𝑃cand ← 𝑃cand ∪ 𝐱;
20 end

3.3. Batch data selection based on Bayesian active learning

As the training data increases, the training time for the surrogate
model also grows, potentially leading to significant computational
costs. Meanwhile, training data far from the Pareto front might distract
the model’s attention, leading to lower prediction accuracy in areas
near the CPF. To address this issue, we propose a batch Bayesian active
learning method called BatchBALDS. This method is divided into two
stages: the first stage involves selecting a set of data samples, 𝐷1, to
improve the accuracy of the surrogate model near the CPF region. The
second stage involves selecting another set of data samples, 𝐷2, aimed
at reducing the global error of the surrogate model.

To construct 𝐷1, we select a sample set D1 from both the infeasible
and feasible regions near the CPF. For the infeasible part, inspired
by the BiCo [41] algorithm, we first treat the constraint violation as
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an additional objective for non-dominated sorting. From the obtained
set of non-dominated solutions, we select the infeasible solutions of
the original problem as the population 𝑈 , which is the population
located on the infeasible side of the CPF. Then, non-dominated sorting
is performed on population 𝑈 while ignoring the constraints of the
original optimization problem. In population 𝑈 , individuals in the front
non-dominated layers are farther from the CPF, while individuals in
the back layers are closer to the CPF. Therefore, we filter population
𝑈 starting from the last non-dominated layer in selecting individuals
while using crowding distance to choose individuals within the same
non-dominated layer. This process is essentially the reverse of the
selection step in the NSGA-II algorithm. For the selection of data in
the feasible region, the NSGA-II algorithm is utilized. To select data
𝐷2, a batch data selection strategy inspired by Bayesian active learning
is employed. By choosing a set of data points that exhibit the highest
uncertainty, we aim to minimize the prediction error of the surrogate
model. We use a greedy approximation approach, which involves iter-
atively selecting individuals with the highest uncertainty and adding
them to 𝐷2 until a predetermined quantity is reached.
Algorithm 4: BatchBALDS

Input: The archive of expensive evaluated solutions 𝑃arch, the
number of selected candidates in the first stage 𝑁𝐷1, the
number of selected candidates in the second stage 𝑁𝐷2

Output: The data for training surrogate models 𝐷train
1 𝑈 ← Select infeasible solutions from 𝑃arch and construct a new

solution set using CV as an additional objective;
2 𝐷11 ← Select 𝑁𝐷1∕2 individuals from 𝑈 using the NSGA-II

selection operator in reverse order;
3 𝐷12 ← Select 𝑁𝐷1∕2 individuals from 𝑃arch using the NSGA-II

selection operator;
4 𝐷1 ← 𝐷11 ∪𝐷12;
5 𝐷pool ← 𝑃arch∖𝐷1;
6 𝐷2 ← ∅;
7 for 𝑖 ← 1 ∶ 𝑚 do
8 Use 𝐷1 to train the GPR model for the 𝑖-th objective;
9 𝐷sel ← ∅;
10 for 𝑗 ← 𝑁𝐷2 do
11 foreach 𝐱 ∈ 𝐷pool∖𝐷sel do
12 𝑆𝐱 ← 𝜎(𝐱|𝐷sel);
13 end
14 𝐱𝑗 = argmax

𝐱∈𝐷pool∖𝐷sel
𝑆𝐱;

15 𝐷sel ← 𝐷sel ∪ 𝐱𝑗 ;
16 end
17 𝐷2 ← 𝐷2 ∪𝐷sel;
18 end
19 for 𝑖 ← 1 ∶ 𝑞 do
20 Use 𝐷1 to train the GPR model for the 𝑖-th constraint;
21 𝐷sel ← Use the same method as shown in lines 10-16 to

obtain the training data;
22 𝐷2 ← 𝐷2 ∪𝐷sel;
23 end
24 Remove duplicate individuals from 𝐷2;
25 𝐷𝑡𝑟𝑎𝑖𝑛 ← 𝐷1 ∪𝐷2;

The specific process of the BatchBALDS method is depicted as
lgorithm 4. Initially, we select individuals near the CPF as the train-

ng dataset 𝐷1, as shown in lines 1–4. Then, for each objective and
constraint, we train the corresponding GPR models as shown in lines 8
and 20. Subsequently, we iteratively select individuals with the highest
uncertainty to be added to 𝐷2 in a greedy manner, as shown in lines
10–17 and 21–22. Finally, we remove duplicate individuals from 𝐷2
and then merge 𝐷1 and 𝐷2 to serve as the training data for this round
of GPR model training.

During the sample selection process, it is necessary to calculate the
uncertainty 𝜎(𝐱|𝐷2). According to the Gaussian process assumption,
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the joint distribution between the test point 𝑥∗ and the training set
𝐷1 containing 𝑁𝐷1 individuals, as well as the dataset 𝐷2 containing
𝑙 individuals, follows a Gaussian distribution in the absence of noise:
[

𝒚𝐷1∪𝐷2
𝑦∗

]

∼ 𝑁(
[

𝝁(𝑋𝐷1∪𝐷2)
𝝁(𝐱∗)

]

,
[

𝐾(𝑋𝐷1∪𝐷2, 𝑋𝐷1∪𝐷2) 𝐾(𝐱∗, 𝑋𝐷1∪𝐷2)𝑇

𝐾(𝐱∗, 𝑋𝐷1∪𝐷2) 𝐾(𝐱∗, 𝐱∗)

]

)
(12)

Here, 𝐾(𝑋𝐷1∪𝐷2, 𝑋𝐷1∪𝐷2) represents the covariance matrix between the
training set 𝐷1 and 𝐷2, while 𝐾(𝐱∗, 𝑋𝐷1∪𝐷2) denotes the covariance
vector between 𝐱∗ and 𝑋𝐷1∪𝐷2. Their definitions are as follows:

𝐾(𝑋𝐷1∪𝐷2) =
⎡

⎢

⎢

⎣

𝑘(𝑥1𝐷1, 𝑥
1
𝐷1) … 𝑘(𝑥1𝐷1, 𝑥

𝑙
𝐷2)

⋮ ⋱ ⋮
𝑘(𝑥𝑙𝐷2, 𝑥

1
𝐷2) … 𝑘(𝑥𝑙𝐷2, 𝑥

𝑙
𝐷2)

⎤

⎥

⎥

⎦

(13)

𝐾(𝐱∗, 𝑋𝐷1∪𝐷2) =
[

𝑘(𝐱∗, 𝑥1𝐷1) … 𝑘(𝐱∗, 𝑥𝑖𝐷2)
]

(14)

Since the conditional distribution of a Gaussian distribution is still a
Gaussian distribution, the predictive variance corresponding to the test
point 𝑥∗ can be derived as follows [42]:

𝜎(𝐱∗) = 𝐾(𝐱∗, 𝑋𝐷1∪𝐷2)𝐾(𝑋𝐷1∪𝐷2, 𝑋𝐷1∪𝐷2)−1

(𝒚𝐷1∪𝐷2 − 𝝁(𝑋𝐷1∪𝐷2))
(15)

4. Experimental study

To evaluate the performance of the proposed SA-PPS, we selected 9
algorithms for comparison, including CCMO [26], PPS-MOEA/D [23],
MultiObjectiveEGO [43], M1-2 [33], M2-2 [33], MGSAEA [44], KTS
[36], PAC-MOO [45] and SA-CRVEA-AS [46]. Among these, CCMO and
PPS-MOEA/D are CMOEAs that do not use surrogate models. MultiOb-
jectiveEGO, M1-2, M2-2, MGSAEA, KTS, PAC-MOO and SA-CRVEA-AS
are surrogate-assisted CMOEAs specifically designed for ECMOPs. We
selected two test problem sets, MW [47] and LIRCMOP [17], with the
number of decision variables set to 10. The parameter settings for the
SA-PPS are as follows:

1. The maximum number of expensive evaluation is set to 1000.
2. The surrogate evaluated population size is set to 300, and the

number of generations for surrogate-assisted evolution is 100.
3. The number of individuals for the expensive evaluation in each

generation is set to 5.
4. For BatchBALDS, the sizes of the training sets 𝐷1 and 𝐷2,

denoted as 𝑁𝐷1 and 𝑁𝐷2, are both set to 200.

For the comparison algorithms, the population size, the number of
expensive evaluation, and the number of initial individuals are kept
consistent with those of the SA-PPS, while other parameters are set
according to the specifications in their respective papers.

We adopt the IGD [48], HV [49], and the success rate (SR) of
obtaining feasible solutions as evaluation indicators. Both the IGD and
HV metrics measure the convergence and diversity of an algorithm,
where a lower IGD value and a higher HV value indicates better
performance. The SR represents the ratio of the number of times an
algorithm successfully finds a feasible solution in 30 independent runs
on a given test problem. Additionally, the significance level for the
Wilcoxon rank-sum test with the significance level of 0.05 is employed.
When the search for any feasible solution fails, the IGD value is set to a
large number (in this paper, it is set to 1e20) and the HV value is set to 0
for the Wilcoxon rank-sum test. The results of comparison experiments
are displayed in following subsections.

It is worth noting that the experiments related to the effectiveness
of the BatchBALDS mechanism and its parameter sensitivity analysis
are discussed in Sections B and C of Appendix II. The experiments on
the sensitivity analysis of the forcible transition factor are introduced
in Section D of Appendix II. The experiments on the effectiveness of the

proposed filling criteria are detailed in Section E of Appendix II.
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Table 1
Wilcoxon Rank Sum significance test results (win/loss/tie) of SA-PPS and the other 9 ECMOEAs on MW1-MW14 and LIRCMOP1-LIRCMOP14.

Test problem set Metrics Algorithms

PPS-MOEA/D CCMO MultiObjectiveEGO M1–2 M2–2 MGSAEA KTS PAC-MOO SA-CRVEA-AS SA-PPS

MW1-14
IGD 0/14/0 0/13/1 1/12/1 2/11/1 2/11/1 2/9/3 4/6/4 0/14/0 3/6/5 ——
HV 0/14/0 0/13/1 1/12/1 0/13/1 0/13/1 1/10/3 4/6/4 0/14/0 0/10/4 ——

LIRCMOP1-14
IGD 0/14/0 0/14/0 0/14/0 0/14/0 1/12/1 3/11/0 6/6/2 0/14/0 1/5/8 ——
HV 0/14/0 0/14/0 0/14/0 0/14/0 0/13/1 3/11/0 6/6/2 0/14/0 1/10/3 ——
Fig. 5. SA-PPS, SA-CRVEA-AS, PAC-MOO, KTS, MGSAEA, M1-2, M2-2, MultiObjectiveEGO, CCMO and PPS-MOEA/D were independently run on the MW13 problem 30 times each,
and the feasible non-dominated solutions with the median HV indicator were obtained.
4.1. Experimental results on the MW test problems

Table 1 displays the Wilcoxon Rank Sum significance test results
of SA-PPS and the other 9 ECMOEAs on MW1-MW14. These results
were obtained from 30 independent runs of the SA-PPS algorithm and 9
other comparison algorithms, including CCMO, PPS-MOEA/D, MultiOb-
jectiveEGO, M1-2, M2-2, MGSAEA, KTS, PAC-MOO and SA-CRVEA-AS
on the MW test problem set. From the IGD metric, it is clear that SA-
PPS achieves the best performance on 6 test problems, followed by
KTS, MGSAEA, MultiObjectiveEGO and SA-CRVEA-AS, which achieve
the best performance on 4, 2, 1 and 1 problems, respectively. For the
HV metric, SA-PPS significantly outperforms all comparison algorithms
on 8 test problems, demonstrating that SA-PPS exhibits better diver-
sity and convergence compared to existing SA-CMOEAs. The detailed
results are presented in Supplementary Tables A.1 – A.2. Tables A.1 –
A.2 also show the success rates (SR) of all algorithms in finding feasible
solutions during 30 independent runs. SA-PPS achieves 100% SR on 12
problems in the MW test set, while the comparison algorithms CCMO,
PPS-MOEA/D, MultiObjectiveEGO, M1-2, M2-2, MGSAEA, KTS, PAC-
MOO and SA-CRVEA-AS achieve 100% SR on 6, 1, 8, 6, 6, 10, 9, 2 and
10 problems, respectively. This indicates that SA-PPS demonstrates a
higher SR in finding feasible solutions compared to the 9 comparison
algorithms.

Fig. 5 displays the feasible non-dominated solution sets with median
HV values obtained by SA-PPS and 9 comparison algorithms after 30 in-
dependent runs on the MW13 test problem. The CPF of MW13 is located
in three discontinuous and narrow feasible regions, posing a significant
challenge to SA-CMOEAs. However, SA-PPS exhibits superior conver-
gence and diversity compared to the other comparison algorithms.
This advantage arises because, during the push stage, SA-PPS does not
consider constraints while searching, thereby reducing the challenges
posed by the narrow feasible regions. Additionally, the proposed solu-
tion selection mechanism employs a self-region partitioning approach,
further enhancing the diversity of the population. On the other hand,
although MGSAEA and KTS are able to search near the three PF
regions, their convergence still needs improvement. M1-1 and M2-2
can approach one of the PFs, but their diversity remains inferior to
8 
that of SA-PPS. MultiObjectiveEGO, CCMO, and PPS-MOEA/D, perform
significantly worse in terms of diversity and convergence compared
to SA-PPS. SA-CRVEA-AS obtains a similar performance to SA-PPS on
MW13, while PAC-MOO fails to find any feasible solutions.

Fig. 6 illustrates the feasible non-dominated solution sets with
median HV values obtained by SA-PPS and 9 comparison algorithms
after 30 independent runs on MW14. The MW14 problem features mul-
tiple disconnected PF surfaces. SA-PPS demonstrates superior diversity
compared to the 9 comparison algorithms, as it is able to locate all PF
surfaces. In contrast, the comparison algorithms failed to search all PF
surfaces. This further highlights the effectiveness of SA-PPS in handling
complex ECMOPs with disconnected PF surfaces.

4.2. Experimental results on LIRCMOPs

We further compared the performance of SA-PPS with the 9 com-
parison algorithms on the LIRCMOP test problems. The LIRCMOP test
suite includes some problems with very small feasible regions, requiring
an algorithm of traversing multiple infeasible regions to reach the true
CPF.

Table 1 displays the Wilcoxon Rank Sum significance test results
of SA-PPS and the other 9 ECMOEAs on LIRCMOP1-LIRCMOP14. It is
clear that SA-PPS significantly outperformed CCMO, PPS-MOEA/D, M1-
2, MultiObjectiveEGO and PAC-MOO across all problems. Additionally,
SA-PPS demonstrated significant superiority over M2-2 on 12 problems,
over MGSAEA on 11 problems, over KTS on 6 problems and over
SA-CRVEA-AS on 4 problems. The detailed results are presented in
Supplementary Tables A.3 – A.4. In Tables A.3 – A.4, SA-PPS achieved
100% SR on LIRCMOP1-4, while the MGSAEA that also uses a two-
phase search strategy did not. This discrepancy could be due to the
significant distance between the CPFs and UPFs, necessitating more
computational resources for the population to transition from the UPFs
to the CPFs. However, the infill criterion proposed by SA-PPS ac-
celerates this process, thereby enhancing the feasibility. Additionally,
SA-PPS exhibited the best performance on LIRCMOP3-4, LIRCMOP7,
and LIRCMOP12-14. KTS achieved the best performance on 6 problems,
including LIRCMOP1-2, LIRCMOP5, and LIRCMOP9-11, because its
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Fig. 6. SA-PPS, SA-CRVEA-AS, PAC-MOO, KTS, MGSAEA, M1-2, M2-2, MultiObjectiveEGO, CCMO and PPS-MOEA/D were independently run on the MW14 problem 30 times each,
and the feasible non-dominated solutions with the median HV indicator were obtained.
Fig. 7. SA-PPS, SA-CRVEA-AS, PAC-MOO, KTS, MGSAEA, M1-2, M2-2, MultiObjectiveEGO, CCMO and PPS-MOEA/D were independently run on the LIRCMOP12 problem 30 times
each, and the feasible non-dominated solutions with the median HV indicator were obtained.
adaptive search modes reduced the computational cost of searching the
UPFs.

Figs. 7 and 8 display the feasible non-dominated solution sets
with median HV values obtained by SA-PPS and 9 comparison algo-
rithms after 30 independent runs on the LIRCMOP12 and LIRCMOP14
test problems, respectively. As evident from Fig. 7, SA-PPS signifi-
cantly outperforms the comparison algorithms in terms of convergence.
This performance is attributed to SA-PPS’s ability to mitigate the im-
pact of infeasible regions during the push search stage. Additionally,
the pull search stage utilizes an infill criterion that enhances the
diversity of the population by selecting candidate solutions based on
sub-region partitioning. This approach enables SA-PPS to search for
feasible non-dominated solutions near the multiple disconnected CPFs
in LIRCMOP12.

Furthermore, as shown in Fig. 8, SA-PPS achieves better conver-
gence and diversity on LIRCMOP14 compared to the 9 comparison
algorithms. This superiority can be attributed to the same factors dis-
cussed earlier. Overall, these results further validate the effectiveness
of SA-PPS in handling complex ECMOPs with narrow feasible regions
and disconnected PFs.

4.3. Aircraft design optimization

Namura et al. [50] introduced a set of practical problems related
to the design optimization of aircraft wing shapes. In this study, we
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selected one of these optimization problems, HPA222, as a real-world
problem for our experiments. For a detailed description and mathemat-
ical expressions of this optimization problem, please refer to Appendix
III.

In this experiment, the maximum number of evaluations is set
to 2000. We employ 9 comparison algorithms: SA-CRVEA-AS, PAC-
MOO, KTS, MGSAEA, M1-2, M2-2, MultiObjectiveEGO, CCMO and
PPS-MOEA/D. The parameters for these algorithms are set to the de-
fault values specified in their respective papers. Since the true Pareto
front for HPA222 is unknown, we use the HV metric to evaluate the
performance of the algorithms, with the reference point set to [700, 2.5].

Table 2 presents the statistical results for the proposed SA-PPS algo-
rithm and the 9 comparison algorithms applied to the HPA222 problem,
with each algorithm being run independently 30 times. Additionally,
Fig. 9 displays the non-dominated solution sets with median HV values
for SA-PPS and the comparison algorithms. The results indicate that SA-
PPS demonstrates superior performance, significantly outperforming all
9 comparison algorithms.

5. Conclusion

In this paper, we propose a surrogate-assisted CMOEA named SA-
PPS to solve ECMOPs, which incorporates Bayesian active learning
within the push and pull search framework. The proposed SA-PPS
has three key components: the push search strategy, the pull search
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Fig. 8. SA-PPS, SA-CRVEA-AS, PAC-MOO, KTS, MGSAEA, M1-2, M2-2, MultiObjectiveEGO, CCMO and PPS-MOEA/D were independently run on the LIRCMOP14 problem 30 times
each, and the feasible non-dominated solutions with the median HV indicator were obtained.
Fig. 9. Non-dominated solution sets corresponding to the median HV indicator obtained from 30 independent runs of SA-PPS and the comparison algorithms on HPA222.
Table 2
HV results of SA-PPS and the other 9 ECMOEAs on HPA222. The symbols ’+ ’, ’−’ and ’≈’ indicate that the result is significantly better, significantly worse, or
statistically similar to the results obtained by SA-PPS, respectively. The best result for each problem is highlighted in gray.

HPA222 CCMO PPS-MOEA/D MultiObjectiveEGO M1-2 M2-2 MGSAEA KTS PAC-MOO SA-CRVEA-AS SAPPS

Mean 1.342e+03 − 1.254e+03 − 1.305e+03 − 1.320e+03 − 1.336e+03 − 1.317e+03 − 1.359e+03 − 9.537e+02 − 1.353e+03 − 1.369e+03
Std 6.619e+00 3.441e+01 8.977e+00 5.873e+01 4.959e+01 3.035e+01 8.674e+00 7.737e+01 9.074e+00 4.401e+00
strategy, and a batch data selection strategy based on Bayesian ac-
tive learning. At the push stage, the population is able to quickly
approximate the UPFs within a limited number of evaluations without
considering any constraints. At the pull stage, a new infill criterion is
proposed to effectively guide the population towards the CPFs. Further-
more, a batch data selection strategy based on Bayesian active learning
is suggested to enable the population to eliminate redundant data and
select only valuable solutions for expensive evaluation as training data,
thereby enhancing the accuracy of the surrogate model in estimating
the region near the CPFs while maintaining overall surrogate accuracy.
Comprehensive experimental results demonstrate that the proposed
SA-PPS achieves the best performance on most test problems. When
ECMOPs involve high-dimensional decision variables, it can lead to a
significant decrease in the accuracy of the surrogate model. Therefore,
a future research task is to enhance the capability of SA-PPS to handle
ECMOPs with higher-dimensional decision variables.
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