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Abstract— In this article, we propose a novel approach
to reduce hardware resource consumption when neural
networks (NNs) are deployed on field-programmable gate
array (FPGA) boards. Rather than using a classical approach
with lookup tables (LUTs) to approximate the activation func-
tions of an NN, the proposed solution is based on a twofold LUT
(t-LUT) architecture, which comprises an error-LUT (e-LUT)
and a data-LUT (d-LUT), in order to achieve high precision
and speed as well as low hardware resource consumption. The
efficiency of the proposed approach was tested against multiple
earlier approaches. Our solution showed that the compressibility
of the previously referenced works, which were based on single
LUTs, could be improved by up to 94.44% and those that were
based on a range addressable LUT (RALUT) by up to 6.35%
in the examined case of a hyperbolic tangent (tanh) activation
function. Moreover, when RALUT and our architecture were
combined, it improved the compressibility of the RALUT-based
result by up to additional 10.21% for a tanh activation function.
The designed architecture had an initial latency of 39.721 ns,
when tested with a 50-MHz clock, to simultaneously retrieve
data from the d-LUT and t-LUTs.

Index Terms— Activation functions, field-programmable gate
array (FPGA), twofold lookup table (t-LUT).

I. INTRODUCTION

W ITH the rapid development of artificial intelligence,
neural networks (NN) play a vital role in many fields,

such as computer vision, natural language processing, and
automatic driving. Generally speaking, most of these NNs
are implemented using a combination of a CPU and graphics
processing unit (GPU), which results in high costs and high
power consumption. Recently, NNs have been implemented
on a field-programmable gate array (FPGA) with low-cost and
low-power architectures. With that being done, a computing
activation function of an NN remains a crucial process.

Due to the hardware limitations in FPGA, activation func-
tions are all based on the approximation rather than being
calculated on the FPGA. Researchers implement the activation
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functions by the following three typical approaches: 1) piece-
wise linear approximation and piecewise nonlinear approxi-
mation [1], [2]; 2) lookup tables (LUTs) [3]; and 3) hybrid
methods using a combination of the first two methods [4]–[7].
Among these, LUT is the fastest method when compared with
the other different hardware implementations as it requires
fewer computations to compute the activation function.

Recently, LUT methods that are characterized by implemen-
tations with a smaller area, shorter latency, and higher accuracy
were presented. These methods either combined the LUTs with
linear interpolation procedure [8] or used range addressable
LUT (RALUT) [9]–[12] mapping unique outputs to an address
range. However, with a high precision [9]–[11], RALUT also
needed a number of comparators, which then involves a high
area complexity. In [12], a customized logic was used to design
an address range decoder, where a simplification of a Boolean
expression for necessary comparisons was arduous. Some
other proposed methods enabled the use of the same LUTs
[13] to reduce the memory space or employ compressibility
within the coding process to optimize the table size [14]. In
[15], Taylor series expansion [16]–[19] was used to decompose
and compress the signal and the middle value was used in
the tables as the reference point to represent the consecutive
values in the original LUT, leading to differences that are
either positive or negative, while no precondition was set for
the compression. Linear LUTs present a simple architecture
where the keywords are directly mapped to an address, but
this results in a heavy hardware usage. Reduction in hardware
usage can be achieved by finding a suitable transformation
function that maps the keywords to an address, but, again,
designing such an architecture is not trivial.

In this article, we propose an LUT architecture that is
based on a direct mapping method, the minimum value
(rather than the middle value) and two LUTs that reduce
the complexity of storage and computation, as it will be
explained. Although the transformation of double-precision
floating-point values to fixed-point values (Fig. 1) results in
many duplicate values, we circumvent that by forming bands
of neighboring values grouped together where from each band
a minimum value is chosen to be stored in an LUT referred to
as the data-LUT (d-LUT). Next, we calculate the difference
between the original value and the minimum value stored in
the d-LUT and store the error value in another LUT called
the error-LUT (e-LUT). Thus, the original LUT values are
obtained by adding the minimum value and the error that are
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Fig. 1. Excerpts from sigmoid function LUT. Many duplicates exist.

simultaneously stored in the d-LUT and e-LUT. By choosing
the minimum value to represent a band of consecutive values,
we ensure that the differences are all only positive values,
which simplifies the computation by not having to work with
the sign bit. Moreover, we defined a precondition, which
enabled us to compute the compressibility mathematically
and present the optimal compressibility for various widths
of LUTs and band sizes. Our experiments with different
activation functions, such as sigmoid, tanh, softplus, and
more, proved that the activation functions approximated based
on the proposed twofold LUT (t-LUT) structure require only
half of the total number of bits compared to the original LUT.

The rest of this article is organized as follows. Section II
explains the t-LUT architecture mathematically. Subsequently,
the procedure of designing our LUT is shown in Section III.
The implementation details and the hardware utilization are
presented in Section IV. In Section V, we discuss the limita-
tions and the advantages of the proposed method and provide
comparisons with other designs. Finally, Section VI concludes
this article.

II. PRINCIPLE OF T-LUT

In this section, the idea behind the proposed t-LUT is
described, followed by the theoretical discussion of compress-
ibility between the original LUT and t-LUT.

A. t-LUT Architecture

When we approximate an activation function using an
LUT (referred to as the single LUT structure) in an FPGA,
the fixed point representation is usually a preferred choice
to represent the data. Unfortunately, due to the quantization
effects, the approach presents many duplicate values, which
causes a huge loss of valuable resources (see Fig. 1). A higher
compressibility can be achieved by widening the sampling
intervals, but this results in an increased error.

To design the t-LUT architecture, we assume that the
difference between two consecutive values in the original LUT
should be either 0 or ± 1 (we will later discuss in Section V the
situation where data do not meet this precondition). We form a
band by grouping B neighboring data together (here, we limit
B = 2k(k ∈ Z+) for computational simplicity) and choose
the minimum value M = min(v1, v2, v3, . . . , vi , . . . , vB ), vi ∈
band, i = 1, 2, 3, . . . , B as the representation value of this

Fig. 2. Abstract of t-LUT architecture.

band. We store all M’s in a d-LUT and employ another LUT
referred to as e-LUT to store all the differences between
original LUT values and M’s. While retrieving them, values
M’s and error values are simultaneously read from d-LUT
and e-LUT, followed by the sign-extension added in addition
to M’s. Thus, the original values are intact while extracting
from the t-LUT. Fig. 2 shows the proposed t-LUT architecture.

B. Bit Width Requirements of t-LUT and Compressibility

Assume that we have built an LUT with size T0 given by

T0 = W0 × D0 (bits) (1)

where W0 is the width in bits and D0 is the depth of the
LUT (D0 depends on the designed techniques). Let B be the
band formed with 2k(k ∈ Z+) values and E be the number of
errors in the band. After grouping, the depth of the d-LUT is
determined by

Dd = ceil

(
D0

B

)
(2)

where ceil(·) means round up to an integer and the width of
d-LUT Wd remains the same as W0. The depth of the e-LUT
is determined by

De = D0. (3)

In theory, the band size B ≥ E , and then, the width of e-LUT
We can be determined by

We = ceil(log2 E) ≤ log2 B. (4)

For a given We and W0, the compressibility C is defined as

C = 1 − Te + Td

To
= 1 −

We × D0 + W0 × ceil

(
D0

B

)
W0 × D0

(5)

where

Te = We × De = We × D0 (bits) (6)

and

Td = Wd × Dd = W0 × ceil

(
D0

B

)
(bits) (7)

are the size of e-LUT and d-LUT, respectively.
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Fig. 3. Relationship between B , W0, and C as depicted in (9). As B increases,
C will reach a maximum and then decrease. C ≤ 0 refers to an uncompressed
case.

When D0 � B , (5) can be approximated as

C ≈ 1 −
We × D0 + W0 × D0

B
W0 × D0

= 1 −
We + W0

B
W0

(8)

where the compressibility C is independent of the depth of
table D0.

Since B ≥ E , for the worst case scenario, we substitute
We = log2 B to find the relationship between the band size B ,
width of LUT W0, and compressibility C . Thus, (8) can be
approximated as

C ≈ 1 −
log2 B + W0

B
W0

. (9)

Fig. 3 shows the relationship between B , W0, and C for
the worst case. It can be inferred that for a fixed W0, as B
is increasing, C will reach a maximum. Also, irrespective
of B , larger the size of W0, the better the compressibility
performance will be.

Once a proper band size is fixed, we can further improve
the compressibility by finding a smaller We = ceil(log2 E) (if
it exists). For most arbitrary LUTs, the number of continuous
values is nonlinear and nonmonotonic. Thus, although it is a
rather complex task to design a generic function that will deter-
mine E , the actual E can be computed through an exhaustive
method (see Appendix A). In general, if ceil(log2 E) < log2 B ,
the compressibility will be greater.

III. DESIGN OF T-LUT

In this section, we will demonstrate the process of designing
a t-LUT for a sigmoid function.

A. Simplification of the Activation Function

Due to the symmetry of the sigmoid function along the zero,
only a portion of the whole function is required to be stored
in the LUT. Specifically, if the positive values are computed,

Fig. 4. Right half of a sigmoid function with LT = 0 and HT = 6.234375.

the corresponding output can be obtained by 1−sigmoid(−x),
where x is the corresponding negative input. Thus, the sigmoid
function F(x) can be represented as

F(x) =
{

sigmoid(x), x ≥ 0

1 − sigmoid(−x), x < 0
(10)

where

sigmoid(x) = 1

1 + e−x
, x ∈ R.

Moreover, once the input exceeds the threshold, the sigmoid
function saturates and the output can be approximated to 1.
Consequently, for a symmetrical and convergent function, only
an output equivalent to 0 ≤ x ≤ Threshold is required to be
stored in LUT (see Fig. 4).

Since the LUT output data precision is identical to the NN
weights precision, the output data may have a wider range than
the sigmoid function. In other words, considering that the NN
weights have m integer bits and n fractional bits (since the
sigmoid function is mapped between 0 and 1), the information
between 0 and 1 is required to be stored. Therefore, only n
fractional bits are used to represent the sigmoid function and,
thus, by storing only n factional bits for each output, we save
an m-bit space per output.

Accordingly, we propose three general strategies for simpli-
fication of the target function f (x).

1) If function f (x) is symmetrical, only one half of the
function is required to be stored in the LUT. The
remaining function can be obtained by the symmetrical
calculation.

2) If function f (x) is convergent to a constant C , then f (x)
can be approximated based on the high (HT) and low
(LT) threshold conditions

f (x) =
{

LUT(x), LT ≤ x ≤ HT

C, else
(11)

where LUT(x) means making inquiry from LUT.
3) If the range of function f (x) is much narrower than

the range of the whole data structure, we abandon the
unused bits in the LUT. For example, for a sigmoid
function of range 0–1, we only need to store the frac-
tional bits to represent all the values and, thus, one can
abandon the sign bit as well as the integer bits.
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TABLE I

ERROR ANALYSIS OF DIFFERENT DATA PRECISIONS

Based on these conditions, in Section III-B, we discuss the
width and depth of t-LUT.

B. Data Precision

Before we design the t-LUT, we first determine the bit width
of f (x) and x , i.e., how many integer and fractional bits
should be used to represent f (x) and x , respectively. Since
hardware designs are constrained, due to memory limitations,
we initially presented our bit width analysis and attainable
compressibility for a block memory size of 18k bits. Later,
we relaxed these memory limitations (see Table X) and
presented the achievable compressibility for different widths
and band sizes.

Now, the number of integer bits of x can be easily deter-
mined from the range (from LT to HT). In the case of the
sigmoid function, it is between 0 and 6. Therefore, the number
of integer bits of x should be 4, including the sign bit. Also,
as we explained earlier, the sigmoid function requires only the
fractional bits to be stored. Therefore, the number of integer
bits of F(x) is 0, while we set the number of fractional
bits of F(x) and x to be equal, which can make the LUT
meet our precondition more easily (more details are discussed
in Section V-A). The number of the fractional bits of F(x)
and x determines the precision and the sampling interval,
respectively. Here

sampling interval = 2− j , j ≤ f (12)

where j is the number of the fractional bits of x and f is
the number of the fractional bits of F(x). Here, we limit
j ≤ f because when j > f , it does not reduce the
mean-squared error (MSE) but exponentially increases the
necessary hardware, resulting in huge memory utilization.
An experimental analysis shown in Appendix B for f = 9
and j = 8, 9, 10, 11, 12 clearly illustrates it. Referring to
Table I, when f increases from 4 to 8, j becomes equal to
f , presenting more samples with higher precision. Moreover,
when f increased from 8 to 12, j is lower than f to meet the
memory limitation.

Table I also shows the maximum absolute error, average
absolute error, and MSE between the original F(x) values in
double precision and the respective approximated values com-
puted for different data widths of LUTs. When f is increased

from 4 to 12 bits, the maximum absolute errors and average
absolute errors will decrease significantly. However, when f
increases from 8 to 12 bits, the memory usage is larger,
yet the compressibility does not increase (how the t-LUT
is built will be discussed later). Therefore, we establish a
tradeoff between the precision, compressibility, and utilization
and fix the precision of both F(x) and x to eight fractional
bits for the sigmoid case, for which we can consequently
build two LUTs—a single LUT structure and the proposed
t-LUT structure—and determine the required depth. For a
given sampling interval, the depth of the single LUT is given
by

D0 = HT − LT

sampling interval
+ 1 (13)

where HT and LT refer to the upper and lower thresholds of the
sigmoid function, respectively. We used MATLAB to compute
the threshold values LT and HT, and they were: LT = 0 and
HT = 6.234375. Based on these thresholds, we designed a
single LUT for the sigmoid function with fractional bit W0 = 8
and the input value x ranging from LT to HT for the sampling
interval given as j = f = 8. Using (13) and (1), the depth
and the total size of the single LUT were D0 = 1597 bits and
T0 = 12 776 bits, respectively.

To design the t-LUT, recall (9) and Fig. 3. When B = 4
or B = 8, the compressibility is maximal, and subsequently,
we use the exhaustive method (see Appendix A) to calculate
the actual E . For the sigmoid function, E = 2 when B = 4
and E = 3 when B = 8 and since ceil(log2 E) is less than
log2 B and the compressibility can be improved from 50%
to approximately 62.45% with a reduction of 7979 bits when
B = 4 and E = 2 or from 50% to approximately 62.48%
with a reduction of 7982 bits when B = 8 and E = 3,
according to (5). The difference between (B = 4, E = 2)
and (B = 8, E = 3) is caused by the approximation from
(5) to (9). Therefore, if there are different B’s, they make the
compressibility maximal according to (9) and Fig. 3, while an
error may exist because of the approximation from (5) to (9).

For a comparison, we chose B = 8 and E = 3 and,
thus, grouped eight neighboring data together and stored
the minimum value across the neighbors in the d-LUT.
Thus, the width of d-LUT is equal to W0 and the depth of
d-LUT Dd is 200, based on (2). Subsequently, we calculate a
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TABLE II

LUT SIZE OF DIFFERENT FUNCTIONS

Fig. 5. Sigmoid-case compressibility function with the best 62.48% com-
pressibility when E = 3 and B = 8.

difference between the original value and the stored minimum
value and use ceil(log2 E) = 2 bits to store the error in the
e-LUT. Therefore, the width of e-LUT is 2 and the depth
of e-LUT is 1597 according to (4) and (3). Fig. 5 shows
the compressibility of sigmoid function. In Table II, more
activation functions were approximated using the t-LUT
structure and then compared with a single structure (GELU
and exp(x) are discussed in Section V).

IV. HARDWARE IMPLEMENTATION AND

UTILIZATION ANALYSIS

To establish the utilized hardware resources, we imple-
mented the proposed LUT with t-LUT structure and compared
it with the single LUT structure. The implementations were
done on a Xilinx Spartan-7 XC7S50 FPGA device with 18k-
bits Block RAM. Fig. 6 shows the structure of our t-LUT.

A. Sketch of the Hardware Architecture

The proposed LUT with t-LUT architecture consists of
four multiplexers, one comparator, three adders/subtractors
units, two core LUTs (d-LUT and e-LUT), and several buffers
for synchronization. Assuming that the LUTs are preloaded,
the following steps are employed to retrieve the stored values.
When queried with a 12-bit input [x(11:0)], for a value greater
than 0 [x(11) = 0)] (refer to Fig. 6), the absolute value of the

TABLE III

BIT WIDTH OF T-LUT

input [x(10:0)] is compared (using the comparator CMP) to
verify the conditions mentioned in (10). Now, we analyze two
possible cases.

Case 1: The input is within HT, i.e., 0 ≤ x ≤ HT.
Now, the comparator enables the LUTs (ena = 1 in
Fig. 6) and the input is presented as an address to retrieve
the preloaded LUT data from both d-LUT and e-LUT.
The depth and width of the LUTs differ for different
activation functions. For the sigmoid function, d-LUT
and e-LUT require an 8-bit and an 11-bit addressing
and the output value to have 8 and 2 bits, respectively.
The address width and the data width for a few activa-
tion functions, such as tanh and softsign are presented
in Table III. Once the data are retrieved from the
LUTs, to satisfy the generalized bit-width requirements,
the retrieved values are concatenated with zeros and
summed and presented as 12-bit outputs.
Case 2: The input exceeds HT (x > HT). The com-
parator disables d-LUT and e-LUT and employs the
multiplexers (MUX2 and MUX3) to present a 12-bit
constant value C as the output. Also, when a nega-
tive input is presented (x(11) = 1), the input is 2′s
complemented and the absolute value is presented to
comparator through MUX1, which retrieves the 12-bit
preloaded data based on the scenarios presented earlier
(cases 1 and 2). Furthermore, to compensate for the
symmetry, the 12-bit output is subtracted from the
contact value C and presented as the output through
MUX4, as shown in Fig. 6.

B. Utilization

Tables IV–VI present the utilization information for differ-
ent activation functions, based on the proposed t-LUT method.
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Fig. 6. Designed circuit for sigmoid, tanh, softsign, (x/(1 + x2)1/2), erf((
√

π/2)x), and (2/π) arctan((π/2)x) functions using t-LUT in FPGA. Note: *
stands for the corresponding bit width of various functions. ** stands for the corresponding depth of d-LUT and e-LUT. Table III shows address width and
the data width for sigmoid, tanh, and softsign.

TABLE IV

UTILIZATION SUMMARY 1 OF ACTIVATION FUNCTION

TABLE V

UTILIZATION SUMMARY 2 OF ACTIVATION FUNCTION

Comparing with a single LUT structure to approximate a
sigmoid function, the t-LUT consumes more logic gates for
the design adders and the comparator, whereas in terms of
Block RAM usage, the single LUT uses 12 776 bits, compared
with the t-LUT structure requiring only 4794 bits, presenting
a compressibility 62.48% with a reduction of 7982 bits.

V. DISCUSSION

In this section, we will analyze the limitation and advantages
of our proposed t-LUT and further present comparisons in
terms of the hardware utilization with respect to other existing
LUT design techniques.

A. Limitation

Our previous results were based on the precondition that the
difference between the two consecutive values in the original

TABLE VI

UTILIZATION SUMMARY 3 OF ACTIVATION FUNCTION (SEE APPENDIX C)

LUT should be either 0 or ±1 [see Fig. 7(a) and (c)]. When
the precondition is not met [see Fig. 7(b) and (d)], the e-LUT
exhibits an overflow, and hence, more bits are required to avoid
the overflow, thus directly reducing the compressibility. The
following cases illustrate the preconditions.

Case 1: The difference between the two consecutive
values of f (x) is neither 0 nor ±1. For example,
while approximating the GELU function, we store the
approximated function in an LUT for an input range
−4 ≤ x ≤ 3.99609375, according to (11), before the
function saturates. Also, a 12-bit fixed point structure
with four signed integer bits and eight fractional bits
was used to approximate the values of the function.
In theory, the maximum compressibility C = 62.50%
can be achieved with B = 8 and We = 3 (see Fig. 3),
but as the difference between the consecutive values
ranges from −1 to 2 [see Fig. 7(b)], it causes the e-
LUT to overflow. To avoid the overflow, we have to
increase the width of the e-LUT to store the whole
error value, leading to a reduction in compressibility
from 62.5% to roughly 54.17%. Table II shows that if
the difference between the consecutive values is larger
(as an example, the derivative of exponent function is
also an exponential function where (d(ex)/dx) = ex ),
the width of the e-LUT will increase, which leads to a
reduced compressibility or even uncompressed scenarios
(refer to GELU and exp(x) in Table II).
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TABLE VII

COMPLEXITY COMPARISON OF DIFFERENT IMPLEMENTATIONS OF HYPERBOLIC TANGENT WITH 0.04 MAXIMUM ERROR

TABLE VIII

COMPLEXITY COMPARISON OF DIFFERENT IMPLEMENTATIONS OF HYPERBOLIC TANGENT WITH 0.02 MAXIMUM ERROR

TABLE IX

COMPLEXITY COMPARISON OF DIFFERENT IMPLEMENTATIONS OF SIGMOID WITH 0.02 MAXIMUM ERROR

Fig. 7. (a) Difference of LUT approx. for eight-fractional-bit softplus is either 0 or 1. (b) Difference of LUT approx. for eight-fractional-bit GELU ranges
from −1 to 2. (c) Difference of LUT approx. for eight-fractional-bit sigmoid is either 0 or 1. (d) Difference of LUT approx. for 12-fractional-bit sigmoid
ranges from 0 to 8.

Case 2: A large sampling interval [referring to (12)]
presents a difference between the consecutive values of
f (x) as being neither 0 nor ±1. As shown in Table I
(with the analysis based on an 18k-bit memory), as f
increases from 4 to 8, j becomes equal to f , and the

compressibility increases from 24.09% to 62.48% since
the consecutive values are either 0 or ±1 [see Fig. 7(c)].
The same is valid when f = 9 and j = 8. However,
when f increases from 10 to 12, keeping j fixed to 7,
the differences between the consecutive values of f (x)
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TABLE X

COMPRESSIBILITY OF DIFFERENT WIDTHS AND BAND SIZES

Fig. 8. Comparison of the original tanh function and different
approximations.

do not satisfy the precondition [the difference ranges
from 0 to 8, as shown in Fig. 7(d)], thus resulting in
lower compressibility. Furthermore, even when f > 12,
the differences between the consecutive values of f (x)
do not satisfy the precondition and the compressibility
decreases.

B. Advantages

1) We used t-LUT to approximate different activation
functions, as shown in Table II. In the respective
literature, there are eight popular activation functions
[from sigmoid to (2/π) arctan((π/2)x)] that meet our
precondition and reach the theoretic compressibility.
Among these results, the softsign reaches the maximum
compressibility of 62.5% when compared with the use
of a single LUT.

2) Since the compressibility is independent of the LUT
depth [as shown in (8)], an increase in the number of
entries in the t-LUT will proportionally increase the
size of the LUTs (d-LUT and e-LUT) with no addi-
tional logic added to the existing circuitry. In contrast,

Fig. 9. Experimental analysis for f = 9 [i.e., fractional bits of F(x)] and
j = 8, 9, 10, 11, 12 (i.e., fractional bits of x), which clearly shows that when
j > f , it does not reduce the MSE but exponentially increases the necessary
hardware, resulting in a huge memory utilization.

the hardware resources in the implementations in [9],
[10], and [12], such as logic gates and comparators,
increase proportionally with the number of additional
entries, on top of the increase in the required memory
resources.

3) The proposed design employs an e-LUT to avoid any
error and thus compresses the information without any
loss, thereby approximating the activation function with
high-precision and less memory resources.

C. Comparison

In order to provide realistic comparisons, we chose to
approximate a hyperbolic tangent function, tanh, with a 3.91%
relative error and a 3.070168e-05 MSE, as shown in Fig. 8.
Furthermore, we also set the LUT architecture designed in
[11] as our benchmark and calculate the compressibility
and the resources utilization in terms of 18k bits of Block
RAM for different architectures. The results are presented
in Tables VII and VIII for the LUT depth size of 512 and
1024, respectively. RALUT in [11] utilized 549 bits (2.98%)
and 1270 bits (6.89%) of the Block RAM and presented the
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Fig. 10. Designed circuit for ELU, softplus, and GELU activation functions using the t-LUT in an FPGA. Note: * stands for the corresponding bit width
of various functions. ** stands for the corresponding depth of d-LUT and e-LUT. Table in Fig. 10 shows the address width and the data width for ELU,
softplus, and GELU.

TABLE XI

ERROR ANALYSIS OF DIFFERENCE SAMPLING PRECISIONS

compressibility of 88.09% and 87.60%, for the LUT sizes
of 512 and 1024, respectively. In comparison, for the same
sizes of the LUT, our t-LUT presented a higher compressibility
of 94.44% and 93.89%. The abovementioned results clearly
indicate that the proposed t-LUT design is effective in reducing
hardware when compared with similar LUT implementations.
Furthermore, RALUT in [11] stores only unique values of the
activation function in each memory location and is based on
a careful analysis. It was noticed that the difference between
the two consecutive values in [11] differs by 1, thus satisfying
our precondition. Clearly, using our proposed t-LUT instead of
the LUT used in [11] improved the respective compressibilities
for about 6%. For the implementation presented in [5], for a
depth size of 16, the compressibility of 98.26% was obtained
when compared with LUT [11]. Another hybrid method pre-
sented in [12] used custom logic circuits along with an LUT
size of 120 bits (0.65%) and reported a compressibility of
98.83% when compared with the LUT architecture defined in
[11]. Replacing the LUTs in [5] and [12] by the proposed
t-LUT improved the respective compressibility to 98.52%
and 98.96%, respectively. Therefore, LUT implementations
satisfying our preconditions can be directly replaced by our
t-LUT, attaining even higher compressibility. Furthermore,
we have also approximated the sigmoid function using our
t-LUT and compared it to the conventional LUT architecture
and RALUT architecture in Table IX. Here, the conventional
LUT that utilized 4608 bits (25.00%) was used as a benchmark
for the comparison. The RALUT architecture utilized 297 bits
(1.61%) and presented a compressibility of 93.55%. When

Algorithm 1 Exhaustive Method Finding E in Original LUT

replaced with t-LUT, it used 303 bits (1.64%) and reported
a compressibility of 93.42%. Also, the combined architecture
of t-LUT and RALUT cost 144 bits (0.78%) and reached an
improved compressibility of 96.86%.

Overall, when the performance of the conventional LUT
is compared against the proposed t-LUT in terms of the
BRAM utilization column data in Tables VII–IX, the t-LUT
outperforms the LUT by the factor greater than 16.

VI. CONCLUSION

LUT implementations on FPGAs are commonly used in
NNs to approximate the activation functions. In this arti-
cle, we proposed a t-LUT architecture, which employs two
parallel LUTs to approximate different activation functions.
In our deployments, implementation of the t-LUT requires
less resources and has a better performance compared with
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previously implemented LUT structures. The proposed design
can be efficiently used in NN implementations on an FPGA.

Furthermore, any existing LUT architectures, satisfying the
described preconditions, can be replaced by the proposed
t-LUT, consequently achieving higher compressibility rates.
We believe that the method can be applied to other function
approximations, e.g., square-root, logarithm, and trigonometric
functions in digital signal processors (DSPs) or GPUs.

APPENDIX A
PSEUDO CODE

See Algorithm 1.

APPENDIX B
SIZE OF TABLE AND MSE

See Fig. 9 and Table XI.

APPENDIX C
CIRCUIT FIGURE

See Fig. 10.

REFERENCES

[1] C.-W. Lin and J.-S. Wang, “A digital circuit design of hyperbolic tangent
sigmoid function for neural networks,” in Proc. IEEE Int. Symp. Circuits
Syst., May 2008, pp. 856–859.

[2] K. Basterretxea, J. M. Tarela, and I. del Campo, “Approximation of
sigmoid function and the derivative for hardware implementation of
artificial neurons,” IEE Proc.-Circuits, Devices Syst., vol. 151, no. 1,
pp. 18–24, Feb. 2004.

[3] F. Piazza, A. Uncini, and M. Zenobi, “Neural networks with digital
LUT activation functions,” in Proc. Int. Conf. Neural Netw., Oct. 1993,
pp. 1401–1404.

[4] J. G. Delgado-Frias, M. Zhang, and S. Vassiliadis, “Elementary function
generators for neural-network emulators,” IEEE Trans. Neural Netw.,
vol. 11, no. 6, pp. 1438–1449, Nov. 2000.

[5] B. Zamanlooy and M. Mirhassani, “Efficient VLSI implementation of
neural networks with hyperbolic tangent activation function,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 1, pp. 39–48,
Jan. 2014.

[6] A. H. Namin, K. Leboeuf, R. Muscedere, H. Wu, and M. Ahmadi, “Effi-
cient hardware implementation of the hyperbolic tangent sigmoid func-
tion,” in Proc. IEEE Int. Symp. Circuits Syst., May 2009, pp. 2117–2120.

[7] Z. Hajduk, “High accuracy FPGA activation function implementation
for neural networks,” Neurocomputing, vol. 247, pp. 59–61, Jul. 2017.

[8] F. Ortega-Zamorano, J. M. Jerez, G. Juárez, J. O. Pérez, and L. Franco,
“High precision FPGA implementation of neural network activation
functions,” in Proc. IEEE Symp. Intell. Embedded Syst. (IES), Dec. 2014,
pp. 55–60.

[9] R. Muscedere, V. Dimitrov, G. A. Jullien, and W. C. Miller, “Efficient
techniques for binary-to-multidigit multidimensional logarithmic number
system conversion using range-addressable look-up tables,” IEEE Trans.
Comput., vol. 54, no. 3, pp. 257–271, Mar. 2005.

[10] R. Muscedere and K. Leboeuf, “A dynamic address decode circuit for
implementing range addressable look-up tables,” in Proc. IEEE Int.
Symp. Circuits Syst., Seattle, WA, USA, May 2008, pp. 18–21.

[11] K. Leboeuf, A. H. Namin, R. Muscedere, H. Wu, and M. Ahmadi, “High
speed VLSI implementation of the hyperbolic tangent sigmoid function,”
in Proc. 3rd Int. Conf. Converg. Hybrid Inf. Technol., Nov. 2008,
pp. 1070–1073.

[12] P. Kumar Meher, “An optimized lookup-table for the evaluation of
sigmoid function for artificial neural networks,” in Proc. 18th IEEE/IFIP
Int. Conf. VLSI System-on-Chip, Madrid, Spain, Sep. 2010, pp. 27–29.

[13] E. Reinhard, E. Garces, and J. Stauder, “Repeated look-up tables,” IEEE
Trans. Image Process., vol. 29, pp. 2370–2379, 2020.

[14] T. Bonny and J. Henkel, “Efficient code density through look-up table
compression,” in Proc. Des., Automat. Test Eur. Conf. Exhib., Apr. 2007,
pp. 1–6.

[15] S.-F. Hsiao, P.-H. Wu, C.-S. Wen, and P. K. Meher, “Table size reduction
methods for faithfully rounded lookup-table-based multiplierless func-
tion evaluation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 5,
pp. 466–470, May 2015.

[16] D. Das Sarma and D. W. Matula, “Faithful bipartite ROM reciprocal
tables,” in Proc. 12th Symp. Comput. Arithmetic, 1995, pp. 17–28.

[17] M. J. Schulte and J. E. Stine, “Approximating elementary functions
with symmetric bipartite tables,” IEEE Trans. Comput., vol. 48, no. 8,
pp. 842–847, Aug. 1999.

[18] N. Koc-Sahan, J. Schlessman, and M. J. Schulte, “Symmetric table
addition methods for neural network approximations,” Proc. SPIE,
vol. 4474, pp. 126–133, Nov. 2001.

[19] F. de Dinechin and A. Tisserand, “Multipartite table methods,” IEEE
Trans. Comput., vol. 54, no. 3, pp. 319–330, Mar. 2005.

Yusheng Xie is currently working toward the
B.S. degree in electronic information engineering at
Shantou University, Guangdong, China.

His research interests include neural network
implementation on field-programmable gate arrays
(FPGAs), image processing, and computer vision.

Alex Noel Joseph Raj received the B.E. degree
in electrical engineering from Madras University,
Chennai, India, in 2001, the M.E. degree in applied
electronics from Anna University, Chennai, in 2005,
and the Ph.D. degree in engineering from the Uni-
versity of Warwick, Coventry, U.K., in 2009.

From October 2009 to September 2011, he was a
Design Engineer with Valeport LTD Totnes, Totnes,
U.K. From March 2013 to March 2017, he was with
the Department of Embedded Technology, School of
Electronics Engineering, Vellore Institute of Tech-

nology, Vellore, India, as a Professor. Since January 2017, he has been with
the Department of Electronic Engineering, College of Engineering, Shantou
University, Shantou, China. His research interests include deep learning,
signal and image processing, and field-programmable gate array (FPGA)
implementations.

Zhendong Hu is currently working toward the
B.S. degree in electronic information engineering at
the Department of Electronic Engineering, Shantou
University, Guangdong, China.

His research field involves the implementation
of peripheral control and neural network on field-
programmable gate arrays (FPGAs).

Shaohaohan Huang is currently working toward
the B.S. degree at Shantou University, Guangdong,
China, who is working for his double major in
electronic engineering and business administration.

His research interests include machine learn-
ing, convolution neural networks, and field-
programmable gate arrays (FPGAs).

Authorized licensed use limited to: Shantou University. Downloaded on August 20,2020 at 00:08:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIE et al.: TWOFOLD LOOKUP TABLE ARCHITECTURE FOR EFFICIENT APPROXIMATION OF ACTIVATION FUNCTIONS 11

Zhun Fan (Senior Member, IEEE) received the B.S.
and M.S. degrees in control engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 1995 and 2000, respectively, and
the Ph.D. degree in electrical and computer engineer-
ing from Michigan State University, Lansing, MI,
USA, in 2004.

He is currently a Full Professor with Shantou Uni-
versity (STU), Shantou, China. He also serves as the
Head of the Department of Electrical Engineering
and the Director of the Guangdong Provincial Key

Laboratory of Digital Signal and Image Processing. Before joining STU,
he was an Associate Professor with the Technical University of Denmark
(DTU), Kongens Lyngby, Denmark, from 2007 to 2011, where he was
first with the Department of Mechanical Engineering and then with the
Department of Management Engineering, and as an Assistant Professor with
the Department of Mechanical Engineering from 2004 to 2007. He has been
a Principle Investigator of a number of projects from the Danish Research
Agency of Science Technology and Innovation and the National Natural
Science Foundation of China. His research is also supported by the National
Science Foundation. His major research interests include intelligent control
and robotic systems, robot vision and cognition, MEMS, computational intel-
ligence, design automation, optimization of mechatronic systems, machine
learning, and image processing.

Miroslav Joler (Senior Member, IEEE) received
the B.S. degree in electrical engineering from the
University of Zagreb, Zagreb, Croatia, in 1996, and
the M.S. and Ph.D. degrees in electrical engineering
from The University of New Mexico, Albuquerque,
NM, USA, in 2001 and 2006, respectively.

In 2006, he was a Postdoctoral Research Asso-
ciate at Portland State University, Portland, OR,
USA. In 2007, 2013, and 2018, he was elevated
to Assistant Professor, Associate Professor, and Full
Professor at the Faculty of Engineering, University

of Rijeka, Rijeka, Croatia, respectively, where he also worked as an Adjunct
Assistant Professor with the Faculty of Maritime Studies in 2008. Since 2008,
he has been the Laboratory Director, the Head of the Communications Systems
Group, the Graduation Committee Chair, and the Department Chair. He has
been a Researcher in multiple scientific projects in the USA and Croatia, while
his industry experience includes working as an RF Engineer from 1996 to
1999. He has coauthored articles in distinguished scientific journals and
conferences. His research interests include antennas, smart clothing, wearable
devices, self-recoverable systems, wireless power transfer, and biomedical
applications of electromagnetics.

Dr. Joler served as a reviewer, a technical program committee member, and
the session (co-)chair and held invited conference talks. He has also served
as a Research Proposal and Annual Report Evaluator, an Editorial (Advisory)
Board Member, and an Associate Editor. In 2001, he received the University
of New Mexico Graduate Office’s Research, Proposal, and Travel Award.
In 2017, he was admitted to the Associate Level of the Croatian Academy of
Engineering.

Authorized licensed use limited to: Shantou University. Downloaded on August 20,2020 at 00:08:02 UTC from IEEE Xplore.  Restrictions apply. 


