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Abstract—This paper considers the problem of velocity-
free fixed-time attitude tracking control for rigid spacecraft.
With the help of the homogeneity theorem, a semi-global
observer is introduced to estimate the unmeasured angular
velocities within fixed time. Then, a velocity-free attitude
tracking controller is designed to make the spacecraft at-
titude track a time-varying reference signal in finite time
which can be up bounded by a fixed number regardless
of the initial conditions. Finally, numerical examples are
provided to illustrate the efficiency of the present control
scheme.

Index Terms—Attitude control, fixed-time control, homo-
geneity property, rigid spacecraft.

I. INTRODUCTION

SPacecraft attitude control has been extensively studied in
the past decades due to it’s wide application in various

space missions. The problem of attitude control of spacecraft
has been well understood for the case when full attitude
states (i.e. both spacecraft attitude and angular velocity) are
measurable. However, in realistic applications, because of
sensor failures and/or the cost reduction in on-board sensors,
measurements of angular velocity might be not available for
the controller development. It should be pointed out that the
design of a velocity-free attitude control system could be
challenging because of the unavailability of angular velocity
measurements. In the literature, the problem of velocity-free
attitude control for spacecraft has been investigated by using
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filters [1]–[3], auxiliary dynamical systems [4], reduced-order
observers [5], and full-order observers [6]–[12] to remove the
requirement of angular velocity measurements.

On the other hand, finite-time control which can guarantee
finite-time convergence of the system trajectory to the equilib-
rium state has been an active research topic in the control com-
munity in the past few years as a finite-time control scheme
can lead to higher accuracy control performance, stronger
robustness against disturbances and a faster convergence rate
(if the state of a dynamic system is near the equilibrium
state) as compared with an asymptotic control law. In the
literature, the finite-time attitude control has been investigated
by using the terminal sliding mode approach [13]–[17], the
method of “adding a power integrator” [18], and the homo-
geneity theorem [19], [20]. In [17], using the terminal sliding
mode control and model predictive control, a double layer
compound controller was designed for attitude control of rigid
spacecraft. It is worth noting that full-state measurements are
required for the implementation of the aforementioned finite-
time attitude control schemes. Considering the unavailability
of angular velocity measurements, several researchers [7]–
[12] have developed full-order finite-time observers to estimate
unmeasured angular velocities, and then designed velocity-free
finite-time attitude controllers with application of the terminal
sliding mode method [11], [12], the adding a power integrator
technique [8] and the homogeneity property [7], [9], [10].

Finite-time control schemes may suffer from two draw-
backs. The first drawback is that the finite-time controller has
a slower convergence rate than an asymptotic controller if the
system state is far away from the equilibrium state. The second
one is that the settling time relies on the initial conditions
heavily. One solution to overcome these two drawbacks is the
fixed-time control [21]–[23]. The fixed-time control scheme
can produce some required control precision within a given
time independent of initial conditions [23]. By using the
sliding mode control and polynomial feedbacks, Polyakov [22]
designed a class of fixed-time controllers for stabilizing control
of linear systems. Based on Implicit Lyapunov Function,
Polyakov et al. [23] developed fixed-time control schemes for
stabilizing control of a chain of integrators. Using the modified
terminal sliding surface [24], nonsingular fixed-time-based
sliding surfaces were proposed in [25] and [26] for spacecraft
attitude control. In [27], an adaptive fixed-time terminal sliding
mode attitude control law was proposed for rigid spacecraft.
Recently, Sun et al. [28] designed a fixed-time attitude tracking
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control scheme by using the technique of adding a power inte-
grator. However, it should be pointed out that such a technique
is focused on dominating some nonlinearities of the system
dynamics but not canceling them in the feedback design [29].
Thus, the control gains and consequently the applied control
torques are usually required to be large to ensure the fixed-
time convergence of the closed-loop system. In addition, full-
state measurements are necessary for the implementation of
the above fixed-time control schemes. In [30], a fixed-time
control scheme was designed for output feedback control of
double integrator systems. Due to the inherent nonlinearity
of the spacecraft dynamics, the fixed-time output feedback
control law developed in [30] is not applicable to solve the
problem of attitude control of spacecraft. Recently, a fixed-
time output feedback controller was proposed in [31] for
a class of multiple-input multiple-output nonlinear systems
under the globally Lipschitz assumption. However, the system
dynamics is supposed to be exactly known and the effect of
measurement noise is not examined.

Motivated by the above observations, this paper is devoted
to studying the problem of fixed-time attitude tracking control
for rigid spacecraft without angular velocity measurements.
Using modified Rodrigues parameters (MRPs) as the atti-
tude representation, a novel velocity-free fixed-time attitude
tracking controller is developed for rigid spacecraft by use
of the homogeneity property. The present control scheme is
continuous and nonsingular. It should be emphasized that the
stability results stated in the present work refer to the attitude
system using the MRPs-based attitude parameterizations. The
main contributions of the present paper are: (1) The conver-
gence time of the proposed scheme is independent of initial
conditions but the initial conditions may play a decisive role in
the convergence time of the finite-time attitude controllers in
[7]–[16], [18]–[20]; (2) Compared with the fixed-time attitude
controllers presented in [25]–[28], the proposed fixed-time
control scheme does not require angular velocity measure-
ments, and thus it can reduce the cost of on-board sensors;
(3) In contrast to the fixed-time output feedback control law in
[30], the proposed scheme is applicable to solve the problem
of fixed-time output feedback control of a class of second-
order nonlinear systems; (4) In comparison with the fixed-time
output feedback controller in [31], the stability analysis of the
resulting closed-loop system before the convergence of the
fixed-time observer is presented, the effect of uncertainty is
investigated, and the effect of measurement noise is examined
in the present work.

II. BACKGROUND AND PRELIMINARIES

A. Notations, Definitions and Lemmas

The notation ∥·∥ represents the induced norm of a matrix or
the Euclidean norm of a vector. In denotes the n×n identity
matrix. For yi ∈ Rmi , i = 1, · · · , n, col(y1, · · · , yn) =
[yT1 , · · · , yTn ]T . Given α > 0 and x ∈ Rn, denote
sigα(x) = col(sigα(x1), · · · , sigα(xn)), where sigα(xi) =
sgn(xi)|xi|α(i = 1, · · · , n), and sgn(·) is the signum function.
For x ∈ R3, x× ∈ R3×3 refers to the skew-symmetric matrix
defined by x× = [0, −x3, x2; x3, 0, −x1; −x2, x1, 0].

For any λ > 0 and any set of real parameters ri >
0 (i = 1, · · · , n), a dilation operator δrλ : Rn 7−→ Rn is
defined by δrλ(x1, · · · , xn) = col(λr1x1, · · · , λrnxn), where
r = col(r1, · · · , rn).

A continuous function V : Rn 7−→ R is homogeneous of
degree k with respect to (w.r.t.) the dilation δrλ if V (δrλ(x)) =
λkV (x), ∀λ > 0. A differential system ẋ = f(x) (or a vector
field f ), with continuous f : Rn 7−→ Rn, is homogeneous of
degree k w.r.t. the dilation δrλ if fi(δrλ(x)) = λk+rifi(x), i =
1, · · · , n, ∀λ > 0.

Lemma 1 [32]. Consider the map ϕ : (0,∞)× Sn 7→ Rn \
{0} defined by ϕ(λ, x) = δrλ(x), where x ∈ Sn = {x ∈
Rn|∥x∥ = 1}. Then, ϕ is a bijection. Furthermore, denoting
its inverse ϕ−1 : Rn\{0} 7→ (0,∞)×Sn by ψ(y) = ϕ−1(y) =
(ψλ(y), ψx(y)), we have that ψλ and ψx are C∞ on Rn \{0},
lim∥y∥→0 ψλ(y) → 0, and lim∥y∥→∞ ψλ(y) → ∞.

Definition 1. Consider the following system:

ẋ = f(x, t), f(0, t) = 0, x ∈ Ψ ⊆ Rn (1)

where f : Ψ × R+ 7→ Rn is continuous on an open
neighborhood Ψ of the origin x = 0. The origin of system
(1) is said to be (locally) fixed-time stable if it is Lyapunov
stable and fixed-time convergent in a neighborhood Ψ0 ⊆ Ψ of
the origin. The “fixed-time convergence” refers to that for any
initial condition x(t0) = x0 ∈ Ψ0 at any given initial time t0,
there is a settling time T > 0 which is independent of initial
conditions, such that every solution x(t; t0, x0) of system (1)
is defined for t ∈ [t0, t0 + T ), x(t; t0, x0) ∈ Ψ0 \ {0}, for
t > t0 + T , x(t; t0, x0) = 0 and limt→t0+T x(t; t0, x0) = 0.
If Ψ = Ψ0 is any subset (arbitrarily large) of Rn, then the
origin of system (1) is semi-globally fixed-time stable. If
Ψ = Ψ0 = Rn, then the origin of system (1) is globally
fixed-time stable.

Lemma 2 [33]. For any xi ∈ R, i = 1, 2, · · · , n, and
a real number ν ∈ (0, 1], (

∑n
i=1 |xi|)ν ≤

∑n
i=1 |xi|ν ≤

n1−ν (
∑n

i=1 |xi|)
ν .

Lemma 3 [33]. For any xi ∈ R, i = 1, 2, · · · , n, and
a real number p > 1,

∑n
i=1 |xi|p ≤ (

∑n
i=1 |xi|)

p ≤
np−1

∑n
i=1 |xi|p.

Lemma 4 [34]. For any x ∈ R, y ∈ R, c > 0, d > 0, and
γ > 0, |x|c|y|d ≤ cγ|x|c+d/(c+ d) + d|y|c+d/(γc/d(c+ d)).

Lemma 5. Consider system (1). Suppose that there exists a
positive definite continuous function V (x) defined on Ψ and it

satisfies V̇ (x) ≤
{

−k1V β if V > 1
−k2V α if V ≤ 1

, where k1 > 0, k2 >

0, β > 1 and 0 < α < 1. Then the origin of system (1) is
fixed-time stable. The settling time T (x0) satisfies T (x0) ≤
1/[k1(β − 1)] + 1/[k2(1− α)],∀x0 ∈ Ψ.

Proof. See [22].
Remark 1. Definition 1 is a modification of the definition

of “finite-time stable” given in [35] since fixed-time stability
can be considered as a special case of finite-time stability.
Furthermore, semi-global stabilization implies that any given
subset of Rn (no matter how large it is) can be included in the
region of attraction, but this is not true for local stabilization.
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B. Spacecraft Attitude Kinematics and Dynamics

The equations of motion for rigid spacecraft are [36]

q̇ = P (q)ω (2)
Jω̇ = −ω×Jω + τ (3)

where ω ∈ R3 is the angular velocity of the spacecraft with
respect to an inertial frame I and expressed in the body frame
B, J ∈ R3×3 is the positive-definite mass moment of inertia
matrix, τ ∈ R3 is the applied control torque generated by
actuators, q(t) ∈ R3 represents the MRPs [37] describing the
spacecraft attitude with respect to an inertial frame, defined
by q(t) = ϱ(t) tan

(
κ(t)
4

)
, κ ∈ [0, 2π)rad with ϱ and κ

denoting the Euler eigenaxis and eigenangle, respectively. The
Jacobian matrix P (q) ∈ R3×3 for the MRPs is defined by
P (q) = 1

2

[
1−qT q

2 I3 + q× + qqT
]

[37].
Let qd be the desired attitude which is generated by

q̇d = P (qd)ωd, where ωd denotes the desired angular velocity.
In this paper, it is assumed that the desired trajectory qd
is constructed such that the singularity problem associated
with MRPs is avoided, and that ωd and ω̇d are uniformly
bounded. The relative attitude between the actual attitude q
and the desired attitude qd is computed as qe = q ⊗ q−1

d =
qd(q

T q−1)+q(1−qTd qd)−2q×d q

1+qTd qdqT q+2qTd q
[37]. The relative angular velocity

is given as ωe = ω − Cqeωd, where Cqe = C(qe) =

I3 +
8(q×e )2−4(1−qTe qe)q

×
e

(1+qTe qe)2
denotes the corresponding direction

cosine matrix relate to qe. Then, the dynamic equations for the
attitude tracking error qe and angular velocity error ωe are:

q̇e = P (qe)ωe (4)
Jω̇e = −ω×Jω + τ − JCqe ω̇d + Jω×

e Cqeωd

= τ + f̄(ωe, ωd, ω̇d) (5)

where f̄(ωe, ωd, ω̇d) = −(ωe + Cqeωd)
×J(ωe + Cqeωd) −

JCqe ω̇d + Jω×
e Cqeωd.

By appropriate procedures, the attitude tracking error system
given in (4) and (5) can be transformed into

q̇e = ve, v̇e = τ̄ + f(qe, ve, ωd, ω̇d) (6)

with τ̄ = g(qe)τ, g(qe) = P (qe)J
−1, and f(qe, ve, ωd, ω̇d) =

−g(qe)(P−1(qe)ve + Cqeωd)
×J(P−1(qe)ve + Cqeωd) −

P (qe)Cqe ω̇d+P (qe)(P
−1(qe)ve)

×Cqeωd+ Ṗ (qe)P
−1(qe)ve.

The main objective of this paper is to develop a velocity-
free attitude control law for τ so that the attitude state tracking
errors qe and ωe converge to zero within fixed time. Note that
although the problem of attitude control for rigid spacecraft
is addressed in this work, the control law derived here can
be directly applied to a more general class of second-order
nonlinear systems expressed in the form of (6).

Remark 2. Since the Jacobian function ∂f/∂ve is not
globally bounded, we can conclude that the nonlinear function
f(qe, ve, ωd, ω̇d) does not have a global Lipschitz property,
i.e. the globally Lipschitz assumption in [31] does not hold
for the spacecraft system studied in this paper. Therefore,
we will design a semi-global fixed-time observer rather than
a global fixed-time observer. Semi-global implies that there
exists a suitable observer gain depending on a compact set

(which can be chosen arbitrary large) such that the fixed-time
convergence of the observer can be achieved for any initial
conditions within this compact set.

Remark 3. In contrast to the usual Rodrigues parameters (i.e.
q(t) = ϱ(t) tan(κ(t)/2) [37]), the advantage of the MRPs-
based attitude description is that it is valid for eigenaxis
rotations up to 360◦. Although the unit quaternion can globally
represent the attitude of a spacecraft without singularities, a
norm constraint is imposed on the four parameters. Thus, the
MRPs are employed to represent the spacecraft attitude in this
paper.

III. VELOCITY-FREE FIXED-TIME ATTITUDE
CONTROLLER DESIGN

To design a velocity-free fixed-time attitude controller, a
semi-global observer is proposed in this section so that the
observer errors can converge to zero within fixed time when
there are no disturbances and parametric uncertainties. The
effect of uncertainties is also discussed. Then, a velocity-free
fixed-time attitude tracking controller is designed. Finally, the
fixed-time convergence of the resulting closed-loop system
is analyzed by using the homogeneous Lyapunov approach
together with the homogeneity property.

A. Semi-Global Fixed-Time Observer
Let q̂e and v̂e be estimates of qe and ve, respectively. The

fixed-time observer is proposed as follows: ˙̂qe = v̂e + θγ1

(
sigα1(q̃e) + sigβ1(q̃e)

)
˙̂ve = τ̄ + θ2γ2

(
sigα(q̃e) + sigβ2(q̃e)

)
+ f̂

(7)

where q̃e = qe − q̂e, 0 < α < 1, α1 = (1 + α)/2, β1 =
2− α1, β2 = 2− α, f̂ = f(qe, v̂e, ωd, ω̇d), θ and γi(i = 1, 2)
are some positive constants.

The dynamic equations for the observer errors q̃e and ṽe =
ve − v̂e are given as follows: ˙̃qe = ṽe − θγ1

(
sigα1(q̃e) + sigβ1(q̃e)

)
˙̃ve = −θ2γ2

(
sigα(q̃e) + sigβ2(q̃e)

)
+ (f − f̂).

(8)

Defining η1 = q̃e, η2 = ṽe/θ, and η = col(η1, η2), we have

η̇ = h1 + h2 + h3 (9)

where h1(η) = θcol(η2/2 − γ1sigα1(η1),−γ2sigα(η1)),
h2(η) = θcol(η2/2 − γ1sigβ1(η1),−γ2sigβ2(η1)), and
h3 = col(0, (f − f̂)/θ). Consider the dilations δr1λ(η) =
col(λη1, λα1η2) and δr2λ(η) = col(λη1, λβ1η2). Then, we can
demonstrate that h1(η) is homogeneous of degree (α−1)/2 <
0 w.r.t. the dilation δr1λ(η) and h2(η) is homogeneous of
degree (1− α)/2 > 0 w.r.t. the dilation δr2λ(η).

Denote M1 ∈ R6×6 as M1 = [−γ1I3, I3/2; −γ2I3, 0].
Since M1 is a Hurwitz matrix, there exists a positive definite
matrix N1 = NT

1 such that MT
1 N1 + N1M1 = −I6. Define

x1 = η1, x2 = sig1/α1(η2), x = col(x1, x2), Vx = ∥x∥, y1 =
η1, y2 = sig1/β1(η2), y = col(y1, y2), and Vy = ∥y∥. We can
obtain that Vx and Vy are homogeneous of degree 1 w.r.t. the
dilation δr1λ(η) and the dilation δr2λ(η), respectively.
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Denote V (η) = ηTN1η. Like the works in [32], [38], the
candidate Lyapunov function used in this paper is given in the
following propositions.

Proposition 1: Let ϕ(z) ∈ C∞(R,R) be

ϕ(z) =

{
0 if z ∈ (−∞, 1]
1 if z ∈ [2,+∞)

and
dϕ

dz
≥ 0, ∀z ∈ R. (10)

Consider

V̄1(η) =

∫ +∞

0+

1

ρ3
ϕ(V (δr1ρ(η)))dρ. (11)

If η ∈ R6\{0} and V̄1(0) = 0, then there exists an ϵ > 0 such
that for all α ∈ (1−ϵ, 1+ϵ) the function V̄1(η) is well defined,
positive definite, radially unbounded, of class C1(R6, R), and
satisfies

(a) V̄1(η) is homogeneous of degree 2 w.r.t. the dilation
δr1λ(η);

(b) there exist some constants c1 > 0 and c2 > 0
such that c1V 2

x ≤ V̄1(η) ≤ c2V
2
x , for all η ∈ R6, where

c1 = minη∈S6(x)

(
V̄1(η)

)
and c2 = maxη∈S6(x)

(
V̄1(η)

)
with

S6(x) = {η ∈ R6|∥x(η)∥ = 1};
(c) Lh1 V̄1(η) is homogeneous of degree (α+3)/2 w.r.t. the

dilation δr1λ(η) and satisfies Lh1 V̄1(η) ≤ −φθV̄ (α+3)/4
1 (η),

for all η ∈ R6, where φ > 0;
(d) ∂V̄1(η)

∂η1i
is homogeneous of degree 1 and ∂V̄1(η)

∂η2i
is

homogeneous of degree 2 − α1 w.r.t. the dilation δr1λ(η),
respectively, where i = 1, 2, 3. Furthermore, there exist some
constants c3i > 0 and c4i > 0 such that

∣∣∣∂V̄1(η)
∂η1i

∣∣∣ ≤ c3iVx and∣∣∣∂V̄1(η)
∂η2i

∣∣∣ ≤ c4iV
2−α1
x , where c3i = maxη∈S6(x)

(∣∣∣∂V̄1(η)
∂η1i

∣∣∣)
and c4i = maxη∈S6(x)

(∣∣∣∂V̄1(η)
∂η2i

∣∣∣).
Proof. See the Appendix.
A similar proposition is presented as follows.
Proposition 2: Denote

V̄2(η) =

∫ +∞

0+

1

ρ3
ϕ(V (δr2ρ(η)))dρ. (12)

If η ∈ R6\{0} and V̄2(0) = 0, then there exists an ϵ > 0 such
that for all α ∈ (1−ϵ, 1+ϵ) the function V̄2(η) is well defined,
positive definite, radially unbounded, of class C1(R6, R), and
satisfies

(a) V̄2(η) is homogeneous of degree 2 w.r.t. the dilation
δr2λ(η);

(b) there exist some constants c5 > 0 and c6 > 0 such that
c5V

2
y ≤ V̄2(η) ≤ c6V

2
y , for all η ∈ R6.

(c) Lh2 V̄2(η) is homogeneous of degree (5−α)/2 w.r.t. the
dilation δr2λ(η) and satisfies Lh2 V̄2(η) ≤ −φθV̄ (5−α)/4

2 (η),
for all η ∈ R6, where φ > 0;

(d) ∂V̄2(η)
∂η1i

is homogeneous of degree 1 and ∂V̄2(η)
∂η2i

is
homogeneous of degree 2 − β1 w.r.t. the dilation δr2λ(η),
respectively, where i = 1, 2, 3. Furthermore, there exist some
constants c7i > 0 and c8i > 0 such that

∣∣∣∂V̄2(η)
∂η1i

∣∣∣ ≤ c7iVy and∣∣∣∂V̄2(η)
∂η2i

∣∣∣ ≤ c8iV
2−β1
y .

Remark 4. Equation (10) gives the condition for choosing
ϕ(·), and any function satisfying (10) can be used for ϕ(·).
An example for ϕ(·) is ϕ(z) = s(z−1)

s(z−1)+s(2−z) , where s(z)

is defined as s(z) = 0 for z ∈ (−∞, 0] and s(z) = e−1/z

for z ∈ (0,+∞). Since s(z) is C∞, we can conclude that
ϕ(z) ∈ C∞. Furthermore, we can verify that the function
ϕ(z) meets the condition presented in (10).

The fixed-time convergence of the observer in (7) is now
given in the following theorem.

Theorem 1. Consider the observer (7) with bounded control
torque τ . For any ∆1 > 0, if E = col(qe, ωe, q̂e, ω̂e) lies
within the compact set Ω∆1 = {E ∈ R12|∥E∥ ≤ ∆1}, then
there exist an observer parameter θ and an ϵ > 0 such that the
observer errors q̃e and ṽe converge to zero within fixed time,
for all α ∈ (1− ϵ, 1).

Proof. The proof is divided into two parts: Part 1 (Vy > 1)
and Part 2 (Vy ≤ 1).

Part 1: Vy > 1. The candidate Lyapunov function is V2(η) =
V̄2(η)/c5, where V̄2(η) is defined in (12) and c5 > 0 is given
in Proposition 2. Clearly, V2(η) > 1 when Vy > 1. Using (9),
the time derivative of V̄2(η) is

˙̄V2(η) = Lh1
V̄2(η) + Lh2

V̄2(η) +
∂V̄2
∂η

h3. (13)

Note that Lh1 V̄2(η) is continuous and when α = 1, we have
δr2ρ(η) = ρη and V (δr2ρ(η)) = ρ2V (η) = ρ2ηTN1η, and
consequently Lh1

V (η) = ∂V (η)
∂η h1 = −θηT η. Thus, we can

obtain

Lh1
V̄2(η) =

∫ ∞

0+

1

ρ3
ϕ′(ρ2V (η))(−ρ2θηT η)dρ

= −θηT η
∫ ∞

0+

1

ρ
ϕ′(ρ2V (η))dρ < 0

which in turn implies that there exists an ϵ1 ∈ (0, 1) such
that Lh1

V̄2(η) ≤ 0 for all α ∈ (1 − ϵ1, 1) and all η ∈ {η ∈
R6|Vy(η) > 1}. Furthermore, by use of Proposition 2, we
can obtain that there exist ϵ2 ∈ (0, 1) and φ1 > 0 such that
Lh2 V̄2(η) ≤ −φ1θV̄

(5−α)/4
2 for all α ∈ (1 − ϵ2, 1) and all

η ∈ R6. Therefore, there exists ϵ3 = min(ϵ1, ϵ2) such that for
all α ∈ (1− ϵ3, 1)

˙̄V2(η) ≤ −φ1θV̄
(5−α)/4
2 +

∂V̄2
∂η

h3. (14)

If E ∈ Ω∆1 , by the mean value theorem, then we can obtain
that there exists a constant ψ > 0 so that ∥(f − f̂)/θ∥ ≤
ψ∥ṽe∥/θ = ψ∥η2∥ ≤ ψV β1

y , where Lemma 3 has been
applied. Then, (14) becomes

˙̄V2(η) ≤ −φ1θV̄
(5−α)/4
2 +

3∑
i=1

c8iψV
2−β1
y ∥η2∥

≤ −φ1θV̄
(5−α)/4
2 + c8ψV

2
y

≤ −φ1θV̄
(5−α)/4
2 +

c8ψ

c5
V̄

(5−α)/4
2

= −φ1

(
θ − c8ψ

φ1c5

)
V̄

(5−α)/4
2 (15)

where c8 =
∑3

i=1 c8i, and Proposition 2 has been used. Thus,
the time derivative of V2(η) is

V̇2(η) ≤ −φ1c
(1−α)/4
5

(
θ − c8ψ

φ1c5

)
V

(5−α)/4
2

= −ϱ1V (5−α)/4
2 . (16)
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If we select the parameter θ so that θ > c8ψ/(φ1c5) (i.e.
ϱ1 > 0), then it follows from (16) and the proof of Lemma
5 that V2(η) will converge to V2(η) ≤ 1 (i.e. Vy ≤ 1) within
fixed time t1 = 4/[ϱ1(1− α)].

Part 2: Vy ≤ 1. When Vy ≤ 1, it can be verified that Vx ≤ 1.
Consider the Lyapunov function V1(η) = V̄1(η)/c2, where
V̄1(η) and c2 are defined in Proposition 1, which implies that
V1(η) ≤ 1 when Vy ≤ 1. Following the same procedure in
Part 1 and using Proposition 1, there exist ϵ4 ∈ (0, 1) and
φ2 > 0 such that

˙̄V1(η) ≤ −φ2θV̄
(3+α)/4
1 +

∂V̄1
∂η

h3

≤ −φ2θV̄
(α+3)/4
1 +

3∑
i=1

c4iψV
2−α1
x ∥η2∥

≤ −φ2θV̄
(α+3)/4
1 + 3(1−α1)/2c4ψV

2
x

≤ −φ2θV̄
(α+3)/4
1 +

3(1−α1)/2c4ψ

c1
V̄1 (17)

where c4 =
∑3

i=1 c4i and we have used the fact that
∥η2∥ ≤ 3(1−α1)/2V α1

x obtained by Lemma 2. Hence, the time
derivative of V1(η) is

V̇1(η) ≤ −φ2θc
(α−1)/4
2 V

(α+3)/4
1 +

3(1−α1)/2c4ψ

c1
V1

≤ −φ2c
(α−1)/4
2

[
θ − 3(1−α1)/2c4ψ

c1φ2c
(α−1)/4
2

]
V

(α+3)/4
1

= −ϱ2V (α+3)/4
1 . (18)

If we choose the parameter θ such that θ >

3(1−α1)/2c4ψ/(c1φ2c
(α−1)/4
2 ) (i.e. ϱ2 > 0), then we

can conclude from (18) that V1(η) will converge to zero
when t→ t1 + 4/[ϱ2(1− α)].

With the combination of Part 1 and Part 2, it can be obtained
that the observer errors q̃e and ω̃e will converge to the origin
within fixed time t = 4/[ϱ2(1 − α)] + 4/[ϱ1(1 − α)] for all
α ∈ (1− ϵ, 1) with ϵ = min(ϵ3, ϵ4). This completes the proof.

Next, the effect of both parametric and non-parametric
uncertainties on the performance of the fixed-time observer
is addressed. In this case, the spacecraft dynamics in (3) is
reexpressed as Jω̇ = −ω×Jω+τ+ϑ, where ϑ is the bounded
external disturbance, and the inertia matrix is assumed to be
J = J0 + ∆J with J0 and ∆J representing respectively the
nominal part and the uncertain part of the inertia matrix. By
replacing J with J0, the fixed-time observer in (7) becomes ˙̂qe = v̂e + θγ1

(
sigα1(q̃e) + sigβ1(q̃e)

)
˙̂ve = g0τ + θ2γ2

(
sigα(q̃e) + sigβ2(q̃e)

)
+ f̂0

(19)

and the dynamics of the observer errors is ˙̃qe = ṽe − θγ1

(
sigα1(q̃e) + sigβ1(q̃e)

)
˙̃ve = −θ2γ2

(
sigα(q̃e) + sigβ2(q̃e)

)
+ f0 − f̂0 +Υ

(20)

where Υ = gτ − g0τ + ϑ + f − f0 denotes the lumped
uncertainty and the definition of f0 is similar to that of f
in which J is replaced with J0.

Corollary 1. Consider system (6) in the presence of para-
metric uncertainties and bounded external disturbances and the
observer (19) with bounded control torque τ . For any ∆1 > 0,
if E lies within the compact set Ω∆1

, then there exist an
observer parameter θ > 1 and an ϵ > 0 such that for all
α ∈ (1 − ϵ, 1) the observer error oe = col(q̃e, ṽe) converges

to the region ∥oe∥ ≤ ∆e = 61−
α1
2

(
c1
c2

)α1
2

(
ΥM

ϱ2c2θ
1−α
2α1

)α1
α

within fixed time, where ΥM is some positive constant.
Proof. See the Appendix.
Remark 5. If the parameter θ > 1 is chosen such that

ΥM/(ϱ2c2θ
(1−α)/(2α1)) < 1 and the parameter α is selected

to approximate to zero such that the power α1/α = 1/2 +
1/(2α) is sufficiently larger than 1, then we obtain that the
observer error oe could be as small as desirable, which implies
that the smaller the observer errors, the larger the observer
parameter θ and the smaller the observer parameter α are
required. Thus, to achieve better disturbance rejection and
robustness properties, we can select smaller α rather than
larger observer gains. The high-gain observer [39] is robust
to both parametric uncertainties and external disturbances
with sufficiently large observer gains. However, the high-gain
observer suffers from a peaking phenomenon [39].

B. Velocity-Free Fixed-Time Attitude Controller
The velocity-free fixed-time attitude control law is now

designed as follows:

τ = g−1
(
−f̂ − k1sigα(qe)− k2sigα/α1(v̂e)

)
− g−1

(
k1sigβ2(qe) + k2sigβ2/β1(v̂e)

)
(21)

where k1 and k2 are some positive constants. Define ζ1 = qe,
ζ2 = v̂e and ζ = col(ζ1, ζ2). With the control law (21), ζ is
governed by the following dynamic equation:

ζ̇1 = ζ2 + ṽe

ζ̇2 = −k1sigα(ζ1)− k2sigα/α1(ζ2)− k1sigβ2(ζ1)

− k2sigβ2/β1(ζ2) + θ2γ2

(
sigα(q̃e) + sigβ2(q̃e)

)
(22)

which can be expressed in a compact form as

ζ̇ = h4 + h5 + h6 (23)

where h4 = col(ζ2/2,−k1sigα(ζ1) − k2sigα/α1(ζ2)), h5 =
col(ζ2/2,−k1sigβ2(ζ1) − k2sigβ2/β1(ζ2)) and h6 =
col(ṽe, θ2γ2(sigα(q̃e) + sigβ2(q̃e))). Consider the dilations
δr3λ(ζ) = col(λζ1, λα1ζ2) and δr4λ(ζ) = col(λζ1, λβ1ζ2).
Then, we can verify that h4 is homogeneous of degree
(α − 1)/2 < 0 w.r.t. the dilation δr3λ(ζ) and h5 is
homogeneous of degree (1 − α)/2 > 0 w.r.t. the dilation
δr4λ(ζ).

Define a Hurwitz matrix M2 = [0, I3/2; −k1I3, −k2I3].
Hence, there exists a positive definite matrix N2 = NT

2

such that MT
2 N2 + N2M2 = −I6. Denote u1 = ζ1, u2 =

sig1/α1(ζ2), u = col(u1, u2), v1 = ζ1, v2 = sig1/β1(ζ2), v =
col(v1, v2), Uu = ∥u∥ and Uv = ∥v∥. Then, it can be obtained
that Uu and Uv are homogeneous of degree 1 w.r.t. the
dilations δr3λ(ζ) and δr4λ(ζ), respectively.
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Define a radially unbounded function U = ζTN2ζ, and
construct Lyapunov functions as

Ū1(ζ) =

∫ +∞

0+

1

ρ3
ϕ(U(δr3ρ(ζ)))dρ (24)

and

Ū2(ζ) =

∫ +∞

0+

1

ρ3
ϕ(U(δr4ρ(ζ)))dρ. (25)

Similar to Propositions 1 and 2, we can show that there exist
some constants d1 > 0 and d2 > 0 such that d1U2

u ≤ Ū1(ζ) ≤
d2U

2
u and some constants d5 > 0 and d6 > 0 such that

d5U
2
v ≤ Ū2(ζ) ≤ d6U

2
v . Now, the theorem about the fixed-

time observer and the fixed-time velocity-free controller is
stated as follows.

Theorem 2. Consider the spacecraft system described by
(2) and (3). For any positive constant ∆2, if the observer is
given by (7), the control law is defined by (21), and the initial
conditions η(0) and ζ(0) satisfy

max(1, V2(η)) + max(1, U2(ζ)) ≤ ∆2 (26)

where U2(ζ) = Ū2(ζ)/d5, then there exist an observer
parameter θ and an ϵ ∈ (0, 1) such that for all α ∈ (1− ϵ, 1)

(1) all signals of the resulting closed-loop system are
bounded;

(2) the attitude tracking errors (i.e. qe and ωe) and the
observer errors (i.e. q̃e and ω̃e) converge to zero within fixed
time.

Proof. (1) To show the boundedness of all signals of the
closed-loop system, we consider four cases in the proof; that
is, Case 1 (Vy > 1, Uv > 1), Case 2 (Vy > 1, Uv ≤ 1), Case
3 (Vy ≤ 1, Uv > 1), and Case 4 (Vy ≤ 1, Uv ≤ 1). Note that
all signals of the closed-loop system are bounded for Case 4.
Thus, only Cases 1-3 are required to address.

Case 1: Vy > 1 and Uv > 1. Consider the Lyapunov
function candidate L1 = U2(ζ) + KV2(η). By the proof of
Theorem 1, we know that there exists ϵ1 ∈ (0, 1) such that for
all α ∈ (1− ϵ1, 1)

V̇2(η) ≤ −ϱ1V (5−α)/4
2 . (27)

Following the same procedure of the proof of Theorem 1, we
can obtain that there exist a positive constant ϱ3 and ϵ2 ∈ (0, 1)
such that for all α ∈ (1− ϵ2, 1)

˙̄U2(ζ) ≤ −ϱ̄3U (5−α)/4
2 +

∂Ū2

∂ζ
h6 (28)

where ϱ̄3 = ϱ3d
(5−α)/4
5 . Note that ∂Ū2(ζ)

∂ζ1i
is homogeneous

of degree 1 and ∂Ū2(ζ)
∂ζ2i

is homogeneous of degree 2 − β1
w.r.t. the dilation δr4λ(ζ), respectively, where i = 1, 2, 3.
Further, there exist positive constants d7i and d8i such that∣∣∣∂Ū2(ζ)

∂ζ1i

∣∣∣ ≤ d7iUv and
∣∣∣∂Ū2(ζ)

∂ζ2i

∣∣∣ ≤ d8iU
2−β1
v . Using the

inequalities ∥sigα(q̃e)∥ ≤ 3(1−α)/2∥q̃e∥α ≤ 3(1−α)/2V
α/2
2 ,

∥sigβ2(q̃e)∥ ≤ ∥q̃e∥β2 ≤ V
β2/2
2 , and ∥ṽe∥ = θ∥η2∥ ≤ θV

β1/2
2 ,

where Lemmas 2 and 3 have been used, it follows that

∂Ū2

∂ζ
h6 ≤ d8γ2θ

2U2−β1
v (∥sigα(q̃e)∥+ ∥sigβ2(q̃e)∥)

+ d7Uv∥ṽe∥

≤ d8γ2θ
2U

2−β1
2

2

(
3

1−α
2 V

α
2

2 + V
β2
2

2

)
+ d7θU

1
2
2 V

β1
2

2

≤ ϱ̄3
4
U

1+3α
4

2 + ς1V
1+3α

4
2 +

ϱ̄3
4
U

5−α
4

2 + ς2V
5−α
4

2

+
ϱ̄3
4
U

5−α
4

2 + ς3V
5−α
4

2 ≤ 3ϱ̄3
4
U

5−α
4

2 + ςV
5−α
4

2 (29)

where Lemma 4 has been used, d7 =
∑3

i=1 d7i, d8 =∑3
i=1 d8i, ς = ς1 + ς2 + ς3, ς1 = 2α/[(1+ 3α)ι

(2−β1)/α
1 ] with

ι1 = ϱ̄3(1+3α)/[4×3(1−α)/2d8γ2θ
2(4−2β1)], ς2 = 2β2/[(5−

α)ι
(2−β1)/β2

2 ] with ι2 = ϱ̄3(5 − α)/[4d8γ2θ
2(4 − 2β1)], and

ς3 = 2β1/[(5− α)ι
1/β
3 ] with ι3 = ϱ̄3(5− α)/(8d7θ).

Using (27), (28) and (29), the time derivative of L1 can be
obtained as

L̇1 ≤ −ϱ1KV (5−α)/4
2 − 3ϱ̄3

4d5
U

5−α
4

2 +
ς

d5
V

5−α
4

2

= − ϱ̄3
4d5

U
5−α
4

2 − ϱ1

(
K − ς

d5ϱ1

)
V

5−α
4

2 ≤ 0 (30)

if K is chosen such that K > ς/(d5ϱ1), which in turn implies
that all signals in the closed-loop system are bounded.

For Case 2 (Vy > 1, Uv ≤ 1) and Case 3 (Vy ≤ 1, Uv >
1), we can consider the Lyapunov function L2 = U1(ζ) +
KV2(η) and L3 = U2(ζ)+KV1(η), where U1(ζ) = Ū1(ζ)/d2.
Following the procedure of Case 1, the boundedness of all
signals of the closed-loop system can be obtained.

(2) As the boundedness of all signals of the system is
ensured, by using Theorem 1, we can obtain that the observer
errors q̃e and ω̃e converge to zero within fixed time t1.
When t > t1, the dynamic equation of ζ in (23) becomes
ζ̇ = h4+h5. Since h4 is homogeneous of degree (α−1)/2 < 0
w.r.t. the dilation δr3λ(ζ) and h5 is homogeneous of degree
(1 − α)/2 > 0 w.r.t. the dilation δr4λ(ζ), respectively, we
can verify that ζ will converge to zero within fixed time t2.
Therefore, q̃e, ω̃e, qe and ω̂e will converge to zero in fixed time
t = t1 + t2, which in turn implies that the attitude tracking
errors qe and ωe also converge to zero within fixed time. The
proof is complete.

Remark 6. In Theorem 2, it is assumed that the initial
conditions lie within a bounded set which can be chosen
arbitrary large. This implies that there is no singularity for
the initial attitude. However, by Theorem 2, we can conclude
that the singularity will never occur if the assumption about
the initial conditions is satisfied.

Remark 7. If α is selected to be α = 1, then the fixed-
time observer (7) reduces to a Luenberger-style observer [40]{

˙̂qe = v̂e + 2θγ1q̃e
˙̂ve = τ̄ + 2θ2γ2q̃e + f̂

, and the control law (21) becomes

an asymptotic controller as τ = g−1
(
−f̂ − 2k1qe − 2k2v̂e

)
which can be easily implemented in practice. The only differ-
ence between the above method and the proposed approach
is the use of an extra parameter α in the observer and
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controller. With appropriate α, the proposed fixed-time control
scheme can provide better disturbance rejection and robustness
properties without increasing the observer and controller gains.

Remark 8. If the inertia matrix is not exactly known and
there are bounded external disturbances, using the fixed-time
observer (19), then the fixed-time controller (21) would be

τ = g−1
0

(
−f̂0 − k1sigα(qe)− k2sigα/α1(v̂e)

)
− g−1

0

(
k1sigβ2(qe) + k2sigβ2/β1(v̂e)

)
. (31)

In this case, the attitude tracking errors will converge to a small
bounded region rather than approach to zero within fixed time.

Remark 9. When full-state measurements are available, the
terminal sliding mode method may be used to design an
attitude controller without requiring the knowledge of inertia
matrices (see, e.g. [14], [15]), but the implementation of the
proposed control scheme may rely on a known inertia matrix
(at least its nominal value). Fortunately, the nominal value
of the inertia matrix is usually known in practical situations.
In addition, the proposed controller is not applicable to the
case in which the initial Euler eigenangle is ϱ(0) = 2π (i.e.
the initial attitude tracking error in terms of MRPs is not
bounded). In this case, we may use a quaternion-based output
feedback controller (e.g. [4]) to drive the attitude of spacecraft
away from the singular point, and then switch to the proposed
controller to force the attitude tracking errors to zero or the
neighborhood of zero within fixed time.

Remark 10. If the attitude of a spacecraft is controlled by
reaction wheels, the torque is defined by τ = −ḣw − ω×hw
[41], where hw = JwΩs represents the wheel angular momen-
tum, the cross coupling term ω×hw results from gyroscopic
effects of the spinning wheels, Jw = diag(Jw1, Jw2, Jw3) is
the axial moments of inertia of the wheels, and Ωs denotes the
axial angular velocity of the wheels in regard to the spacecraft.
In this case, ḣw can be considered as the control input, and it
can be designed as ḣw = −τ − (P−1v̂e +Cqeωd)

×hw, where
τ is defined in (21) or (31).

Remark 11. Since the finite-time (fixed-time) convergence of
the observer is achieved, the separation principle is satisfied
[42]; that is, we can design the observer and the controller
separately. The only requirement is that the boundedness of
the states of both the observer and the spacecraft system at
any time interval [0, t] should be guaranteed. Thus, to verify
that the requirement for the separation principle is satisfied,
there are two steps in the proof of Theorem 2. In Step 1, it
is shown that all signals (i.e., the observer error oe and the
attitude tracking errors qe and ve) of the closed-loop system
and consequently the control torque τ are bounded for all
t ≥ 0 if the initial conditions lie within a bounded set, i.e.
there is no finite time escape. Then, in Step 2, it follows from
Theorem 1 that the observer error oe converges to zero within
fixed time t1, and when t > t1, it can be proven that the
attitude tracking errors qe and ve converge to zero within fixed
time t2 by using the homogeneity property.

IV. NUMERICAL SIMULATIONS

The effectiveness of the proposed controller will be il-
lustrated through numerical simulations in this section. The
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Fig. 1. Effect of the proposed controller (31) on the attitude
tracking.
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Fig. 2. Effect of the controller parameters on the perfor-
mance of the proposed controller.

inertia matrix is considered to be J = J0 + ∆J , where
J0 = [1.9 0.3 0.4; 0.3 1.5 0.2; 0.4 0.2 1.3]kg · m2 and
∆J = 0.1J0 denote the nominal part and the uncertain part
of the inertia matrix, respectively. The external disturbance ϑ
is assumed to be ϑ = 10col(sin(t/10), cos(t/10), sin(t/5))
mNm. The axial inertia moment matrix of the wheels is
Jw = diag(0.002, 0.002, 0.002)kg·m2. Sun sensors are consid-
ered to measure the spacecraft attitude. The reference attitude
is qd = 0.1col(cos(0.2t), sin(0.2t),

√
3). The observer and

controller parameters are chosen as α = 0.3, θ = 2, γ1 =
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the fixed-time controller (solid
line) and the finite-time controller
(dotted line)
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Fig. 3. Performance comparison between the fixed-time
control law (31) and the finite-time controller [8].
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Fig. 4. Attitude tracking error in Euler angles: φe (solid line),
θe (dashed line), and ψe (dotted line) (without low-pass
filter).
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Fig. 5. Attitude tracking error in Euler angles: φe (solid line),
θe (dashed line), and ψe (dotted line) (with low-pass filter).

0.5, γ2 = 0.5, k1 = 0.05, and k2 = 0.05. The initial conditions
for the observer are q̂e(0) = qe(0) and v̂e(0) = 0.

First, the initial conditions are q(0) = col(0.07,−0.15, 0.5)
and ω(0) = col(20,−18, 30) deg/s. The measurement noises
are considered in the simulation, and the measured attitude
is assumed to be qm = q + qn, where the elements of qn
are generated from a uniform distribution in na[−1, 1] with
a magnitude of na = 0.00008. It could be pointed out that a
magnitude of 0.00008 on MRPs measurements is physically
equal to about 0.0183 degree error in Euler angles with a 3-2-1

rotation sequence. The results are depicted in Fig. 1. It can be
observed that the attitude tracking errors in Euler angles (i.e.
φe, θe, and ψe) are less than 0.02 degree when t ≥ 50s. This
demonstrates that the proposed control law can provide good
attitude performance even in the absence of angular velocity
measurements as well as in the presence of uncertainty and
noises.

Second, the effect of the parameters (i.e. α, k1, and
k2) on the performance of the proposed controller is ad-
dressed. The initial conditions are considered to be q(0) =
col(−0.2,−0.5, 0.6) and ω(0) = col(−15, 20,−20) deg/s.
The results are shown in Fig. 2. It is found that the attitude
tracking errors become larger as the parameter α increases
while better attitude control performance can be achieved
if the controller gains increase to k1 = k2 = 0.5 when
α = 0.7. However, larger control torques are required. The
results indicate that the better the attitude control performance,
the smaller the parameter α and the larger the parameters k1
and k2 are required.

Third, the performance of the present fixed-time velocity-
free controller (31) is compared with the finite-time velocity-
free controller in [8]. The controller gains are k1 = k2 = 0.5
and the values of other parameters are chosen the same as
those in [8]. The results are shown in Fig. 3. It can be seen that
the finite-time controller can provide faster convergence rate,
because the controller gains used in the finite-time controller
(i.e. k1 = k2 = 0.5) are ten times as much as those used in the
proposed controller (i.e. k1 = k2 = 0.05). However, during the
steady-state stage, the fixed-time control law (31) can lead to
better attitude control performance than the finite-time control
law in [8].

Finally, the performance of the proposed controller is exam-
ined in a worse case. In this example, the external disturbance
is supposed to be ϑ = 100col(sin(t/10), cos(t/10), sin(t/5))
mNm and the elements of the measurement noise qn are
generated from a Gaussian distribution. Here, the mean and
standard deviation of the Gaussian distribution are taken as
µ = 0 and σ = 0.01. Note that a magnitude of 3σ = 0.03
on MRPs measurements is physically equivalent to about 7.25
degree errors in Euler angles with a 3-2-1 rotation sequence.
The controller parameters are k1 = k2 = 0.5 and α = 0.5, and
the other parameters are chosen as the same as those in the
above cases. It can be observed from Fig. 4 that the attitude
tracking errors in Euler angles (i.e. φe, θe, and ψe) are less than
3.4 degrees at the steady-state stage when the magnitude of
the measurement noise is as large as about 7.25 degrees. This
demonstrates that the performance of the proposed controller
can be degraded with the increase of the measurement noise’s
magnitude. To reduce the effect of the measurement noise,
like the works in [3], [8], the measured attitude qm is passed
through a low-pass filter 1/(1+0.1s), where s is the Laplace
variable. Then, the output of the filter, qf , is applied in the
controller and the observer. The results are shown in Fig. 5.
It can be found that the use of the low-pass filter can reduce
the attitude tracking errors which are less than 2 degrees at
the steady-state stage.

Remark 12. The results indicate that the measurement noise
may have an important influence on the performance of the
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controller, and the effect of the measurement noise can be
reduced by using a low-pass filter. In a recent paper [43],
under the assumption of the boundedness of the measurement
noise and its first two derivatives, the attitude measurement
noise is considered as mismatched disturbance. Then, the
adaptive control approach is used to cope with the mismatched
disturbance.

V. CONCLUSIONS

The problem of velocity-free attitude tracking control for
spacecraft has been studied in the paper. By use of the
homogeneous method, a novel fixed-time attitude controller
was developed. The proposed control scheme can guarantee
that the attitude state of the spacecraft converges to a time-
varying reference attitude within fixed time. Numerical simu-
lations were conducted to illustrate that the present controller
can produce good attitude control performance even in the
presence of measurement noises, external disturbances and
parametric uncertainties and in the absence of angular velocity
measurements. Furthermore, numerical comparison between
the designed control law and a velocity-free finite-time attitude
control scheme in the literature was examined to show that
the proposed fixed-time controller can lead to higher attitude
accuracy and stronger robustness against uncertainties than the
finite-time control law. One of our future works will extend the
control scheme developed here to attitude coordination control
for spacecraft formations.

APPENDICES

Proof of Proposition 1
Let α ∈ (0,+∞). Referring to [32], we can verify that

V̄1(η) is well defined, positive definite, radially unbounded,
of class C1(R6, R), and homogeneous of degree 2 w.r.t. the
dilation δr1λ(η). Further, a similar proof for Part (c) can be
found in [38]. Hence, only the proof for Parts (b) and (d) is
considered.

(b) If η = 0, we can conclude that c1V 2
x ≤ V̄1(η) ≤ c2V

2
x

holds for some positive constants c1 and c2. Let η ∈ S6(x).
Since the set S6(x) is compact, there exist positive constants
c1 and c2 such that c1 ≤ V̄1(η) ≤ c2 when η ∈ S6(x), i.e.
c1V

2
x ≤ V̄1(η) ≤ c2V

2
x .

For any η ∈ R6 \ {0}, by Lemma 1, there exist λ1 > 0
and λ2 > 0 such that η = δr1λ1

(η̄) and η̃ = δr1λ2
(η̄), where

η̄ ∈ S6(η) = {η ∈ R6| ∥η∥ = 1} and η̃ ∈ S6(x), and it fol-
lows that η = δr1λ1/λ2

(η̃) = δ1λ(η̃), where λ = λ1/λ2. Thus,
we have V̄1(η) = V̄1 (δ

r
1λ(η̃)) = λ2V̄1(η̃) and λ2c1V

2
x(η̃) ≤

λ2V̄1(η̃) ≤ λ2c2V
2
x(η̃). Since Vx is homogeneous of degree 1

w.r.t. the dilation δr1λ(η), we have c1V 2
x(η) ≤ V̄1(η) ≤ c2V

2
x(η).

Therefore, c1V 2
x ≤ V̄1(η) ≤ c2V

2
x for all η ∈ R6.

(d) Note that ∂V̄1(δ
r
1λ(η))

∂δr1λ(η1i)
= λ∂V̄1(η)

∂η1i
(i = 1, 2, 3), which

implies that ∂V̄1(η)
∂η1i

is homogeneous of degree 1 w.r.t. the

dilation δr1λ(η). Similarly, we can obtain that ∂V̄1(η)
∂η2i

is ho-
mogeneous of degree 2− α1 w.r.t. the dilation δr1λ(η). Using
the homogeneity property, we can show that

∣∣∣∂V̄1(η)
∂η1i

∣∣∣ ≤ c3iVx

and
∣∣∣∂V̄1(η)

∂η2i

∣∣∣ ≤ c4iV
2−α1
x for some positive constants c3i and

c4i and for all η ∈ R6.

Proof of Corollary 1
The proof is similar to that of Theorem 1, except for the

presence of the lumped uncertainty Υ.
Part 1: Vy > 1. Considering the Lyapunov function V2(η) =

V̄2(η)/c5 and using (16), we obtain V̇2(η) ≤ −ϱ1V (5−α)/4
2 +

1
c5θ

∂V̄2

∂η2
Υ. Since the control torque and external disturbances

are assumed to be bounded and E ∈ Ω∆1
, there exists a

positive constant ΥM such that ∥Υ∥ ≤ ΥM . Then, we have

V̇2(η) ≤ −ϱ1V (5−α)/4
2 +

ΥM

c5θ
V

(2−β1)/2
2

≤ −ϱ1c5θ −ΥM

c5θ
V

(5−α)/4
2 . (32)

If we select the parameter θ such that ϱ1c5θ − ΥM > 0,
then we can conclude that V2(η) converges to V2(η) ≤ 1 (i.e.
Vy ≤ 1) within fixed time.

Part 2: Vy ≤ 1. Considering the Lyapunov function V1(η) =
V̄1(η)/c2 and using (18), we obtain

V̇1(η) ≤ −ϱ2V (α+3)/4
1 +

1

c2θ

∂V̄1
∂η2

Υ

≤ −ϱ2V (α+3)/4
1 +

ΥM

c2θ
V

(2−α1)/2
1

= −ϱ2V (2−α1)/2
1

(
V

α/2
1 − ΥM

ϱ2c2θ

)
. (33)

From the above equation, we can conclude that V1 converges
to the region V1 ≤ (ΥM/(ϱ2c2θ))

2/α within fixed time, i.e. x
converges to the region ∥x∥ ≤ (c1/c2)

1/2 (ΥM/(ϱ2c2θ))
1/α

within fixed time.
Let θ > 1, then we can obtain

∥oe∥ ≤
3∑

i=1

(|q̃ei|+ |ṽei|) ≤ θ

3∑
i=1

(|η1i|+ |η2i|)

= θ
3∑

i=1

(|x1i|+ |x2i|α1) ≤ θ
3∑

i=1

(|x1i|α1 + |x2i|α1)

≤ 61−
α1
2 θ∥x∥α1 ≤ 61−

α1
2 θ

(
c1
c2

)α1
2
(

ΥM

ϱ2c2θ

)α1
α

= 61−
α1
2

(
c1
c2

)α1
2

(
ΥM

ϱ2c2θ
1−α
2α1

)α1
α

(34)

where Lemma 3 and the fact that ∥x∥ ≤ 1 have been used.
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