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Abstract— Cracks are among the most common, most likely,
and earliest of all pavement distresses. Detecting and repairing
cracks as early as possible can help extend the service life
of pavements. However, Detecting cracks with precision can
be challenging due to their varied structural characteristics
and complex background interference. In this paper, a new
convolutional neural network architecture, OUR-Net, is designed
to more efficiently treat both high- and low-frequency visual
image features. An Ocatve Convolution is incorporated into
the proposed network as an enhancement to conventional con-
volution. In particular, an Octave Convolution Residual Block
(OCRB) is embedded in the encoder to replace the convolutional
layer of the classical encoder. Moerover, we propose Octave
Max Unpooling (OMU) as the upsampling operation of the
decoder, enabling the neural network to learn how to decode
multi-spatial frequency features. Compared with models using
traditional convolution, OUR-Net has better capability of pro-
cessing multi-scale information, thus simultaneously improving
model performance while saving computational costs by reducing
spatial redundancy. We evaluate the superiority of the proposed
method by comparing it to state-of-the-art crack segmentation
methods on four public datasets (CrackLS315, CFD, Crack200,
DeepCrack), which encompass cracks of various widths. Com-
prehensive experimental results reveal that the proposed method
performs excellently, which achieves F1l-score and mloU of
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0.9112, 0.9271, 0.8106, 0.9318, and 0.8369, 0.8644, 0.6815, 0.8723,
respectively, on the four datasets. A lightweight version of
the proposed network is constructed using depthwise separable
convolution that achieves excellent performance with only 0.88M
parameters.

Index Terms— Crack segmentation, octave convolution, octave
convolution residual block, octave max unpooling, multi-spatial
frequency features.

I. INTRODUCTION

RACK is a typical infrastructure surface damage, fre-
C quently occuring on surfaces such as bridges, pavements,
tunnels, metals, and dams. Among them, pavement cracks
are typical engineering structural surface defects. Pavements
are often subjected to fatigue stresses and cyclic loading,
resulting in defects in the pavement structure. Cracks in
the pavement reduce the local stiffness and thus lead to
material discontinuity, which poses a significant threat to
the service of the pavement and traffic safety. Appropriate
pavement maintenance can extend pavement lifespan, reduce
fuel consumption, and enhance roadway safety. Therefore,
timely and accurate crack assessments are crucial for pave-
ment maintenance. Manual inspections for pavement defects
are inefficient, requiring significant labor and time, and can
cause disruptions to traffic. As a result, automatic pavement
crack detection using computer vision has gradually become
a mainstream defect detection method with low cost and high
accuracy, which can also effectively replace manual labor.

Since the rapid development of computer vision tech-
nology, several methods for detecting cracks automatically
based on computer vision technology have been proposed.
Kamaliardakani et al. [1] utilized a threshold-based technique
to distinguish crack pixels from the background. In addition,
methods such as edge detection [2], mathematical mor-
phology [3], and minimal paths [4] are widely adopted as
traditional image processing techniques. The crack detection
also involves the use of filters, such as the Sobel [5] and Gabor
filters [6]. Furthermore, support vector machine [7] and ran-
dom forest [8], [9] were used to enhance crack segmentation
accuracy. However, in real-world scenarios, the complexity of
crack topology, various crack widths, weather-induced lighting
conditions, skidproof stripes that closely resemble cracks,
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Fig. 1. Schematic diagram of cracks of different widths. From left to right,
they are extremely thin crack, thin crack, thick crack and extremely thick
crack.

and objects on the pavement, such as leaves, road markings,
shadows, and maintenance hole covers, can make the task of
crack segmentation extremely challenging.

Deep learning has proliferated recently duo to its robust
feature representation capability. In particular, convolutional
neural networks have achieved excellent performance in
images. Inspired by deep learning, many groups [10], [11],
[12], [13], [14], [15] have used convolutional neural net-
works to automatically extract deep crack features, enabling
a breakthrough in crack detection and segmentation. Nev-
ertheless, there are still several challenges that researchers
and practitioners face in the crack segmentation task. A key
issue that must be addressed is the significant imbalance
between crack and non-crack pixels in crack images, which
can cause the network to prioritize background information.
To mitigate this issue, most existing methods adjust the loss
function weights for the two categories. Although doing this
can help improve model performance, detecting thin cracks
with finer details still remains a challenge. Therefore, a finer
segmentation of cracks requires more attention to the edge
detail information of cracks and thin cracks, but at the same
time, the main structure of cracks cannot be ignored. In order
to retain more detailed information while extracting the main
structure of cracks, DeepCrack [16] utilized SegNet [17] to
fuse same-scale convolutional features in its encoder and
decoder. Yang et al. [18] utilized a feature pyramid method
to integrate contextual information for crack segmentation.
Zhou et al. [19] developed ECDFFNet, a network that utilizes
enhanced convolution and dynamic feature fusion to enhance
performance. The DeepLabv3+ decoder by Sun et al. [20]
incorporates a multi-scale attention module that utilizes atten-
tion masks to dynamically adjust the weights of high-level and
low-level feature maps. Although multi-scale feature fusion
can in general enhance model accuracy, most of these meth-
ods implemented it by simply stacking multi-level features.
Therefore, the improvement of model performance is limited,
which also generates more spatial redundancy, increases the
consumption of computational resources, and prolongs the
inference time.

As we can observe in an illustrative example shown in
Figure 1, according to the width of the cracks, we can
classify them into categories of extremely thin, thin, thick, and
extremely thick ones, in which the extremely thin cracks are
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Fig. 2. Prediction maps of existing crack segmentation models. Only
extremely thin cracks are present in the first row of the image. The second and
third rows of images contain more than one type of crack. In the third column,
the first row shows the prediction map for the method FPHBN [18], and the
second and third rows show the prediction map for the method DMA-Net [20].

hardly observable by naked eyes. Few methods can simultane-
ously take into account cracks of various widths, and segment
them all very well. As shown in Figure 2, when the image
contains more than one type of cracks, the existing crack
segmentation models tend to ignore the extremely thin ones.

Images in general can be divided into low- and high-
spatial frequency components. Among them, the low-spatial
frequency component describes smooth changes and the high-
spatial frequency component describes the details of rapid
changes [21], [22], [23], [24]. As shown in Figure 3, for
a crack image, the low-spatial frequency component mainly
relates to the backbone structure of the crack, while the high-
spatial frequency component roughly relates to the edge details
or thin cracks. Building on these observations, we proposed
a novel method that implements multi-scale feature fusion
by utilizing multi-frequency feature representation instead of
simply stacking feature maps, which is capable of extracting
and exploiting both high-frequency and low-frequency infor-
mation of visual images in an effective and efficient way.
Experimental results show that the proposed method improves
the model accuracy while reducing the spatial redundancy,
and achieves superior segmentation performance for cracks of
different widths. This method is a multi-frequency network
based on Octave Max Unpooling and Octave Convolution
Residual Block called OUR-Net, where “O” represents the
Octave Convolution used in both modules, “U” represents
Octave Max Unpooling, and “R” represents Octave Convo-
lution Residual Block.

In summary, this paper makes the following contributions.

o We proposed a new model called OUR-Net for crack seg-
mentation, which basically applies Octave Convolution
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(a) Original image

(c) Low frequency component

Fig. 3.

(d) High frequency component

(b) Crack image

(e) The location of different frequencies

(a) Original image. (b) The corresponding ground truth of the original image. (c) The low frequency component of (d) gained using low-pass filtering.

(e) The high frequency component of (f) gained using high-pass filtering. (g) The crack image is decomposed into a low frequency component describing the
backbone structure of the crack (green) and a high frequency component describing the edge details or thin cracks (red).

to replace the conventional convolution in the encoder
and decoder building blocks of the classical SegNet
architecture.

o In particular, we proposed an Octave Convolution Resid-
ual Block (OCRB) to be integrated in the OUR-Net to
improve its performance.

e We also proposed Octave Max Unpooling (OMU) to
replace the traditional up-sampling operation to enable
the network to fully decode multi-frequency features and
produce more accurate prediction results.

The remainder of this paper is structured as follows.
Section II reviews the related work. Section III describes
the proposed OUR-Net and the loss function used in detail.
Section IV presents the experimental design and analyzes the
experimental results. Section V concludes the paper.

II. RELATED WORKS

Pavement crack segmentation involves assigning each pixel
in a pavement image to a binary class (crack or non-crack),
making it a pixel-wise binary classification task. As computer
vision technology has rapidly developed, the methods used for
pavement crack segmentation can be classified into the follow-
ing seven categories, among which the first six categories are
traditional crack segmentation methods, which are sensitive to
environmental noise.

A. Wavelet-Based Methods

Subirats et al. [25] used the continuous wavelet transform
in three steps to determine whether cracks are present in the
image. Chambon et al. [26] utilized a 2D matched filter to
create a customized mother wavelet and applied it to a Markov
Random Field process for crack segmentation. However, the
anisotropic nature of wavelet-based methods makes them less
effective in handling cracks with low continuity or high
curvature.

B. Thresholding-Based Methods

In general, crack pixels have a lower grayscale value than
non-crack pixels. Crack pixels can be extracted from the
background by setting a reasonable threshold value. However,
this thresholding-based method is sensitive to noise on the
pavement, and a suitable threshold is difficult to find. Ban-
harnsakun [27] first utilized a threshold-based approach to
segment the crack images into distressed and non-distressed
regions. Peng et al. [28] implemented an improved Otsu
threshold segmentation algorithm and an improved adaptive
iterative threshold segmentation algorithm to detect cracks in
the runway surfaces of airport. Usually, researchers combined
the threshold method with other methods to enhance the
accuracy of crack segmentation.

C. Graph Theory-Based Methods

CrackTree, a fully automated crack detection method pro-
posed by Zou et al. [29], segments cracks using a graph model,
minimum spanning tree, and recursive edge pruning. This
method can detect the location and shape of the cracks but
is also sensitive to noises.

D. Edge Detection-Based Methods

A beam-based method was proposed by Ouyang and
Wang [30] for extracting cracks, which perform well at low
signal-to-noise ratios. Ayenu-Prah and Attoh-Okine [5] pro-
posed a crack detection method utilizing a Sobel edge detector
and bidimensional empirical mode decomposition. However,
edge detection methods cannot distinguish between edges
caused by cracks and those caused by changes in lighting or
texture, which can lead to false positive problems.

E. Hand-Crafted Features-Based Methods

HOG [31] and LBP [32] are feature extractors that extract
hand-crafted features from the crack patches, which are
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later fed to the classifier for processing. The hand-crafted
features-based methods require manual selection and design
of image features, which requires a great deal of expertise
and experience.

F. Minimal Path-Based Methods

Minimal path search is a branch of energy minimiza-
tion methods that are frequently used in crack detection.
Li et al. [33] extended the F* algorithm in two aspects and
proposed FoSA for crack detection using a seed-growing
strategy. According to Amhaz et al. [34], crack detection
can be enhanced by selecting a set of minimal paths and
introducing two post-processing steps.

G. Deep Learning-Based Methods

The rapid development of deep learning technology, espe-
cially deep convolutional neural networks(DCNNSs), driven by
advancements in computer hardware, has led to unprecedented
achievements in the field of computer vision. DCNN-based
methods have achieved breakthrough performance in struc-
tural health detection of road infrastructure [35], [36], [37],
especially in pavement crack detection [38]. Cha et al. [39]
proposed a structural visual detection method based on Fast
Region-based Convolutional Neural Network (Faster R-CNN)
in order to detect multiple types of damage simultaneously in
quasi real-time. These DCNN-based methods are able to detect
multiple damage types using bounding boxes. DCNN-based
crack detection methods can efficiently capture the character-
istics of cracks while effectively reducing noise interference
on pavement images. Cha et al. [40] proposed a vision-
based approach to detect concrete cracks without calculating
defect features using a deep architecture of convolutional
neural network. Deep learning-based crack detection tasks can
be categorized into three types: image classification, object
detection, and semantic segmentation. The image classification
task is to determine whether the image or patch contains
cracks [38], [41]. The object detection task is to localize where
the crack is in the picture using the bounding box [42], [43].
The semantic segmentation task is to differentiate the pixels in
an image into cracked pixels and non-cracked pixels based on
a convolutional neural network [44], [45], [46], [47] or Trans-
former [48]. In particular, Kang et al. [49] provided a novel
idea that firstly use bounding box to localize the crack region
in the image and then segment the crack pixels in the detected
crack region. In addition, Al-Huada et al. [50] proposed a
hybrid deep learning pavement crack semantic segmentation
method which is based on the knowledge transfer between
class activation map (KTCAM) and encoder-decoder segmen-
tation network (KTCAM-Net). Yang et al. [S1] proposed a
multiscale triple-attention network, MST-Net, for end-to-end
pixel-level crack detection. These methods achieved improved
results thanks to the proper features of the cracks extracted
using deep convolutional neural networks.

III. METHOD

In this section, we first describe the general architecture
of the proposed network, and then give detailed the multi-
frequency feature representation based on OctConv, Octave
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Convolution Residual Block and Octave Max Unpooling.
Finally, we elaborate on the loss function utilized.

A. Overall Architecture

Figure 4 illustrates the proposed architecture of OUR-
Net. In this study, we introduce multi-frequency feature
representation based on Octave Convolution (OctConv) [52],
which aims to improve multi-frequency feature extraction
and reduce spatial redundancy. We design a multi-frequency
feature encoder based on Octave Convolution Residual Block
(OCRB) to enable the network to encode multi-frequency
features. A novel up-sampling operation called Octave Max
Unpooling (OMU) is designed to provide the network with
the capability of decoding multi-frequency features.

The multi-frequency feature encoder consists of five cas-
cading encoder blocks. Each encoder block is made up of
an OCRB (see Figure 5) that extracts both high- and low-
frequency crack features and a particular down-sampling
operation. Down-sampling operations like max-pooling, while
increasing the receptive field and reducing the spatial res-
olution of the feature map, may at the same time ignore
some detailed information and degrade the performance of
fine-grained segmentation. We therefore proposed a particu-
lar down-sampling operation in this work, which is a max
pooling operation performed separately for the high- and low-
frequency components of the feature map, with the aim of
enhancing crack segmentation performance. Thus, the partic-
ular down-sampling operation yield two max pooling indices,
which will be utilized in the corresponding decoder up-
sampling operation. In addition, the corresponding decoder is
constructed according to the encoder. Each decoder block con-
tains one OMU operation and two or three convolution blocks
consisting of a 3x3 OctConv operation, a batch normalization
operation (BN), and a rectified linear unit (ReLU), which
correspond to the classical SegNet decoder structure. This
encoder-decoder structure can capture smooth low-frequency
components, like the backbone structure of a crack, as well
as sharply changing high-frequency components, like details
along the edges of a crack or thin cracks. A 1x1 convolutional
layer follows the decoder’s end to generate the crack prediction
map.

B. Multi-Frequency Feature Representation Based On
OctCony

The smooth structure of natural scene images can be rep-
resented by the low-spatial frequency components, while the
fine details with rapid changes are represented by the high-
spatial frequency components. In the case of crack images,
the low-spatial frequency components represent the overall
crack structure, and the high-spatial frequency components
represent the edge details of the cracks or thin cracks.
According to this characteristic, we speculate that utilizing
multi-frequency feature representation [52] has a potential of
increasing the effectiveness of crack segmentation. We utilize
Octave Convolution (OctConv) [52] to achieve this multi-
frequency feature representation that fully extracts the high-
and low-frequency information of cracks. The diagram of
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The architecture of the proposed OUR-Net. The two colors in the module represent the high- and low-frequency components, respectively. The

two different colored arrows in the third part represent the max pooling indices resulting from the max pooling operation on the high- and low-frequency

components, respectively.
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Fig. 5. The illustration of Octave Convolution Residual Block. The orange color represents the high-frequency component, and the blue color represents the

low-frequency component.

OctConv operation is presented in Figure 6. The input feature
map X is explicitly factorized into two components, X and
XL, along the channel dimension. The inputs for the high-
and low-frequency feature maps are denoted by X# and X*,
respectively. Compared to their high-frequency counterparts,
the low-frequency feature maps have a frequency that is one
octave lower. Then the high- and low-frequency feature maps
of the output ¥ = {Y# Y%} will be given by

YH — YH—)H + YL—)H

— fH—>H(XH)+fL—>H(XL) (1)
YL — YL—)L + YH—)L
— fL—>L(XL)+fH—>L(XH) (2)

where fH~H and fL=L denote two regular convolutions
which are utilized for intra-frequency information updates,

and fH=L and fL~H denote a series of operations for
inter-frequency information exchange. f”~’ involves both
down-sampling and regular convolution operations, which
folds the down-sampling of the feature map X% into the
regular convolution. fL~# involves both up-sampling and
regular convolution operations, which folds the up-sampling
over the feature map X’ into the regular convolution.

C. Octave Convolution Residual Block

When extracting image features, the conventional encoder
structure is implemented using multiple layers of progres-
sive encoder blocks that consist of a series of regular
convolutional operations, which lacks the capability of real-
izing multi-frequency feature representation. To address this
issue, we propose the OCRB in this paper, as illustrated in
Figure 5. OCRB uses OctConv instead of regular convolution
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Fig. 6. The process of Octave Convolution. f H—>H apq fL—L represent

intra-frequency information updates while f H=L and fL”H represent
inter-frequency information exchange.

to decompose the feature map into high- and low-frequency
groups. Following OctConv, the feature maps of each group
are processed by BN and ReL.U, sequentially, to further extract
the overall and detailed features of the cracks. Each OCRB
is made up of two or three such combinations stacked in
sequence, which corresponds to the encoder of the classi-
cal SegNet structure. In addition, the residual connection is
adopted in each OCRB inspired by residual learning [53].
A residual block is considered as: ¥ = F (X, {W;}) + X,
in which the function F (X, {W;}) represents the residual
mapping being learned. In our method, residual mapping F =
{Fu,Fr}, Fg and Fr represent the residual mapping of the
high-frequency group and low-frequency group, respectively.
Then, an OCRB can be defined as:

Y = Fy (x® {wH}) + x#

[ 22 )
If the OCRB has two layers, F = 0 (W2 x o (6 (W] x X)))
in which 6 and o denote BN and ReLU, respectively. The
addition operation is performed by element-wise addition. The
dimensions of F and X are not necessarily the same. We can
perform a regular convolution and BN operation to match the
dimensions. Finally, the output is processed by ReLU. Thus,
Eq. (3) can be rewritten as:

YH = ¢ (]-"H (XH, {WiH}) +6 (W X XH))
[ Yt =o (Fp (XE{WE}) + 0 (W x xb))

3)

“4)

D. Multi-Frequency Feature Decoding

Although multi-frequency feature representation can extract
multi-frequency features of crack images, crack segmenta-
tion as a pixel-wise binary classification problem requires
decoding the feature map to match the input image size.
Therefore, a process is necessary that can recover spatial
details from the encoded multi-frequency features and produce
high-resolution prediction maps. We can simply conduct up-
sampling operations for high-frequency and low-frequency
features separately. However, doing this cannot allow inter-
frequency information exchange, which may decrease the
network’s ability to recover spatial details of cracks. To over-
come this limitation, we propose Octave Max Unpooling
(OMU).

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Unpooled
Map

0] 6 <
_______ LS
S)
13111 _\9‘\
&y
Pooled Feature
Map Map

Fig. 7. The illustration of Max Pooling and Max Unpooling. The darker the
color in the grid, the larger the value. The white color means the value is 0.
The number in the lower right corner of each grid in the feature maps and
unpooled maps represents its index.

During the encoding stage, the feature map Z € R"*¥ can
be divided into a number of regions Ry, 1 <m < M,1 <
n < N, as illustrated in Figure 7. Where M and N refer to
the height and width of the pooled map obtained from the
feature map Z after max pooling, respectively. For a region
Ry.n, the maximum value of all items within the region is
selected as the representation of this region. The max pooling
indices Z = {i|0 < i < h x w — 1} can be obtained after
the max pooling operation, where i refers to the index of the
max value within a region R,, , of the feature map Z. The 7 €
RM*N s a matrix with the same size as the pooled map. In the
corresponding decoding stage, the unpooling operation [54]
utilizes the max pooling indices to up-sample the feature map
X € RM*N to generate the unpooled map ¥ € R"*¥. Based
on Figure 7 and the definition of the unpooling operation,
we can summarize the formula for the unpooled map Y at
position (p, g) as follows:

Xipiy91, pwH+qg=1p ¢
Yp’qz\px(p’q)z Lsttzj LstLzJ
0, else

Q)

where |-] denotes the floor operation.

Our goal in designing OMU is not only to decode
multi-frequency features, but also to efficiently process inter-
frequency information exchange, as shown in Figure 8. X#
and X’ refer to the high- and low-frequency feature maps of
the input, respectively. The output ¥ = {¥*#, ¥~} of OMU can
be decomposed into high- and low-frequency feature maps,
represented by Y = yH—=H  yl—>H apq yL = yL—L 4
YH=L respectively. Here, YH~H and YL~L correspond
to intra-frequency information updates, while Y# =% and
YL=H correspond to inter-frequency information exchange.
To compute the high-frequency feature map Y, we use a
max unpooling operation to update intra-frequency informa-
tion, while inter-frequency information exchange is achieved
by folding the up-sampling of the max unpooling operation
applied to the low-frequency input feature map X’ into the
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regular convolution process as follows:

H _ yvH—H L—~H
Y, ., =Y +Y,,
=Wy (p.q)
D W v (1 15) @©
i,jeAx
where (p,q) denotes the location coordinate and
a={a pli= -5t st = st st

defines a local neighborhood, in which k denotes the size
of the convolution kernel. In this work, k = 3. Similarly,
for the low-frequency feature map Y, we also use the max
unpooling to compute intra-frequency information update,
while to exchange inter-frequency information, the average
pooling of the max unpooling of the high-frequency input
feature map (X" is folded into the regular convolution
process as follows:

YL — YL%L + YH%L

=Wy (P, q)
+ Z WTk 1 j kl
2
i,jeAk
Wen Q(p+i)+05,2(q+j)+05)  (7)

where the location (p, ¢) is multiplied by a factor 2 to perform
down-sampling. Because the down-sampling operation here is
an average pooling that averages all four adjacent positions,
the location is further shifted by half step to achieve the pooled
maps are well aligned with the input.

In addition, « denotes the ratio of the number of channels
assigned to low-frequency feature maps, where o ranges
from O to 1. If not explicitly mentioned in this paper, the hyper-
parameter « is set to 0.5 by default. Furthermore, in OMU,
®jp = 0oy = «, wWhere «;, and «,,; denote the ratio of the
number of channels of low-frequency feature maps in the input
and output feature maps, respectively.

E. Loss Function

The pavement crack segmentation can be formulated as a
pixel-wise binary classification problem, where each pixel in
the crack image is classified as either a crack pixel or non-
crack pixel. However, there is an extreme imbalance in the
number of crack pixels and non-crack pixels in the crack
image. In this paper, we utilize the loss function that combines
weighted binary cross-entropy loss and dice loss to address this
issue.

1) Weighted Binary Cross-Entropy: The training set con-
taining M images is set to S = {( X", Y"),m=1,--- , M},
where X xi(m)li =1,---,|X™|t refers to the crack

image and Y™ = {yi(m)|i =1,---,|Y"; y(m) € {0, 1}} refers

to the corresponding ground-truth crack map. To make the
notation more straightforward, we will next omit the super-
script m. The training aims to enable the network to generate
prediction maps that approximate ground-truth. Additionally,
we define W as the learnable parameters for the entire network.
Then the definition of the weighted cross-entropy loss as
follows:

Lwpce =— Y wplog P (yi = 1|X; W)
ieyt
— > log Pi (yi = 0|X: W) ®)
ieY—

where YT and Y~ refer to crack pixels and non-crack pixels
in the ground-truth image, respectively. Then P; denotes the
probability that pixel i in the crack prediction map is a crack
pixel or a non-crack pixel. Additionally, w, denotes the weight
allocated to the crack pixels, which when given a larger value
allows the network to have more emphasis on the crack pixels
during the training process. Let G*A', and G represent the
number of crack pixels and non-crack pixels in the entire

G
— for

training set, respectively. In this work, we set w, = Gt
N
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TABLE I
ALL THE DATASETS

Dataset Size N%r:il:l?;lgof Nl,lrr:sl::;g()f Total Number
CrackLS315  512x512 252 63 315
CFD 480x%320 94 24 118
Crack200 640x352 899 225 1124
DeepCrack 544x384 300 237 537

the sake of solving the class imbalance problem mentioned
above.

2) Dice Loss: To calculate the similarity of two sets, the
dice coefficient, which measures ensemble similarity, is typi-
cally employed. A larger dice coefficient indicates that the sets
are more similar and vice versa. Accordingly, the dice loss in
this work is formulated as follows:

22111\]:1 PnYn T €
N N
zn=1 Pn + anl Yn T €

where N refers to the total number of pixels in crack image, p
represents the prediction of network, y represents the ground-
truth of the crack. ¢ = le — 5, which prevents exceptions
caused by a denominator of 0.

Finally, the weighted cross-entropy loss and the dice loss
are integrated, yielding the total loss as follows:

Lpice = 1- (9)

L = BLwgcE + ¥ Lpice (10)

where § and y denote the weights assigned to the weighted
cross-entropy loss and dice loss, respectively. In this work,

B=y=1L

IV. EXPERIMENT AND RESULTS
A. Implementation Details

All experiments in this paper are performed on two NVIDIA
GeForce GTX 3060 GPUs separately. PyTorch, a publicly
available deep learning framework, is utilized to implement
the proposed network. During the training phase, we utilize
RAdam with a weight decay of 0.0002 as the optimizer to
update the network parameters, while also setting the batch
size to 8. A systolic schedule of n; = 0.9n;_; is adopted
for the current learning rate n; after 10 periods of loss
value saturation, with le-5 as the minimum learning rate.
In addition, data augmentation operations are used, which
include horizontal and vertical flip, random rotation, random
affine transformation, and random adjustment of brightness,
contrast, gamma, and saturation. Each operation is triggered
with a 50% probability.

B. Datasets

In this paper, we validate the effectiveness of the pro-
posed method using four datasets named CrackL.S315, CFD,
Crack200, and DeepCrack, respectively, as shown in Table I.
These four datasets are described in detail as follows.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

1) CrackLS315 [16]: This dataset contains 315 images of
road surfaces taken under laser illumination. As the training
set, we utilize 252 images and as the test set, 63 images. Since
the cracks in the image are extremely thin, we denote the
cracks in the CrackLLS315 dataset as extremely thin cracks.

2) CFD [8]: Tt contains 118 manually labeled color images
with a size of 480 x 320. There is noise in these images, like
shadows, oil spots, and water stains, posing a challenge for
crack segmentation. This dataset was captured in Beijing with
mobile phones. A total of 94 images are utilized as training
images and 24 images are utilized as test images in this dataset.
Since the cracks in the CFD dataset are in general slightly
thicker than the cracks in the CracklLS315 dataset, we call the
cracks in the CFD dataset as thin cracks.

3) Crack200 [18]: Yang et al. [18] propose a dataset called
Crack500, which contains 200 images as the test set, to vali-
date their proposed model. We use the test set of Crack500 as
our dataset and rename it Crack200. Each image is divided into
16 non-overlapping regions and regions containing fewer than
1000 pixels of cracks are filtered out. Through this operation,
Crack200 consists of 1124 images. To facilitate training, each
image was cropped again to 640 x 352 pixels. Then, this
dataset was divided into 899 training images and 225 testing
images. Since the cracks in the Crack200 dataset are normally
thicker, we refer to the cracks in the Crack200 dataset as thick
cracks.

4) DeepCrack [55]: This dataset contains 537 manually
annotated RGB color images. Each image corresponds to a
mask that precisely covers the crack regions. They all have
a size of 544 x 384 pixels. This dataset was divided into
300 training images and 237 testing images. This dataset
consists of various scenes, textures, and crack scales. And
the crack widths exhibit a wide range, spanning from 1 to
180 pixels. Therefore, the DeepCrack dataset contains both
thick cracks and extremely thick cracks.

C. Comparison Methods

1) FCN: FCN [56] is based on the VGG network, which
defines a skip architecture to combine deep-level semantic
information with shallow-level appearance information.

2) HED: HED [57] based on VGG16 is a breakthrough in
edge detection. It utilize fully convolutional neural networks
and deeply supervised networks to facilitate image-to-image
prediction.

3) U-Net: U-Net [58] has achieved a significant break-
through in medical image segmentation. Both its skip
connection structure and encoder-decoder architecture are
widely used in image segmentation tasks.

4) DeepCrack_Zou: Based on the encoder-decoder archi-
tecture of SegNet, Zou et al. [16] develop DeepCrack to
integrate convolutional features of the same scale generated
by the encoder and decoder. We denote it as DeepCrack_Zou.

5) DeepCrack_Liu: Based on HED, Liu et al. [55] propose
the DeepCrack network, and the final crack detection results
are refined by guided filtering and conditional random field
methods. We denote it as DeepCrack_Liu.

6) FPHBN: Based on HED, FPHBN [18] integrates con-
textual information into low-level features through a feature
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pyramid module and uses a hierarchical boosting module to
balance loss among easy and hard samples.

7) ECDFFNet: Using enhanced convolution and dynamic
feature fusion, ECDFFNet [19] achieves enhanced perfor-
mance in capturing long-range dependencies and paying
attention to local details.

8) DMA-Net: DMA-Net [20] enhances DeepLabv3+ and
the decoder of DeepLabv3+ is enriched by a multi-scale
attention module, in which feature maps of high-level and low-
level are dynamically weighted.

D. Performance Evaluation Criteria

In this study, Precision(PR), Recall(RE), and FI-
score(F'1), and mean Intersection over Union(mloU) are
applied to assess the proposed model’s performance, which
are calculated as follows:

TP
PR= ——" an
TP+ FP
TP
RE = —— "~ (12)
TP+ FN
2x PR x RE
o SRR (13)
PR+ RE
TP
mloU = mean | ————— (14)
TP+ FP+ FN

where T P, FP, and FN represent the number of true posi-
tives, false positives, and false negatives, respectively. Taking
into account the balance of PR and RE, F1 represents the
harmonic mean of the two measures. As cracks have a certain
width, a crack pixel etected within 2 pixels of the ground-truth
is considered a true positive.

E. Experimental Results

1) Results on CFD: As shown in Figure 9(a), the curve
obtained by our method is closest to the upper right corner
of the chart, so we have obtained the highest precision and
recall values on the CFD dataset. Out of all the compared
methods, FCN performs the worst. The quantitative results in
Table II show that our method achieves a precision, recall,
F1-score, and mloU of 0.9269, 0.9276, 0.9273, and 0.8644,
respectively, on the CFD dataset, which outperforms the other
methods. Compared with FCN, HED, U-Net, DeepCrack_Zou,
DeepCrack_Liu, FPHBN, ECDFFNet, and DMA-Net, our
method improves the performance of Fl-score by percent of
12.17, 6.49, 1.36, 6.25, 2.84, 4.40, 0.46 and 2.89, respectively,
and on mloU by percent of 18.99, 10.63, 2.33, 10.26, 4.81,
7.34, 0.8 and 4.89, respectively.

2) Results on Crack200: 1t is clear from Figure 9(b)
that our method outperforms all the other methods on the
Crack200 too, among which U-Net and DeepCrack_Liu show
the poorest performance. The data in the Table III shows
that the F1-score (0.8106) and mloU (0.6815) of our method
are better than the other compared methods. DeepCrack_Liu
scores the lowest Fl-score and mloU of 0.6769 and 0.5116.
Compared to FCN, HED, U-Net, DeepCrack_Zou, Deep-
Crack_Liu, FPHBN, ECDFFNet, and DMA-Net, there are
8.7, 7.74, 12.04, 4.08, 13.37, 1.52, 2.55 and 0.62 percent

TABLE II
QUANTITATIVE EVALUATION ON CFD

Method Pr Re F1 mloU
FCN [CVPR’2015] 0.7923  0.8194 0.8056 0.6745
HED [ICCV’2015] 0.8674 0.8574 0.8624  0.7581
U-Net [MICCAI’2015] 09118 09157 09137 0.8411
DeepCrack_Zou [TIP’2018] 0.8565 0.8733 0.8648 0.7618
DeepCrack_Liu [Neuro’2019] 09179  0.8806  0.8989  0.8163
FPHBN [TITS’2019] 0.8869 0.8797 0.8833  0.7910
ECDFFNet [TITS’2022] 09162 09292 0.9227 0.8564
DMA-Net [TITS’2022] 0.8926  0.9042 0.8984  0.8155
Ours 0.9269 09276  0.9273  0.8644
TABLE III
QUANTITATIVE EVALUATION ON CRACK200
Method Pr Re F1 mloU
FCN [CVPR’2015] 0.7039  0.7445 0.7236  0.5669
HED [ICCV’2015] 0.697  0.7733  0.7332  0.5788
U-Net [MICCAI’2015] 0.7108 0.6707 0.6902  0.5269
DeepCrack_Zou [TIP’2018] 0.7436  0.798  0.7698  0.6258
DeepCrack_Liu [Neuro’2019]  0.6774  0.6764  0.6769  0.5116
FPHBN [TITS’2019] 0.7702  0.8223  0.7954  0.6603
ECDFFENet [TITS’2022] 0.7435 0.8315 0.7851  0.6462
DMA-Net [TITS 2022] 0.7736  0.8378  0.8044  0.6729
Ours 0.7742 0.8506 0.8106 0.6815

of improvement on Fl-score by our method, respectively.
In addition, there are 11.46, 10.27, 15.46, 5.57, 16.99, 2.12,
3.53 and 0.86 percent of improvement on mloU.

3) Results on DeepCrack: As shown in Figure 9(c), our
method achieves the best performance over other comprared
methods on the DeepCrack dataset. The performance of
DMA-Net follows closely behind and is on par with our
method, achieving a significant lead over other methods.
DeepCrack_Zou, FPHBN, and ECDFFNet perform similarly
and rank in the second tier. From the Table 1V, it can be con-
cluded that our method obtain the best F1-score and mloU of
0.9318 and 0.8723 on the DeepCrack dataset. Although the F1-
score and mloU of DMA-Net also reach 0.9304 and 0.8698,
it is slightly lower than ours. The mloU of FCN, HED, U-Net,
DeepCrack_Zou, DeepCrack_Liu, FPHBN, ECDFFNet, and
DMA-Net are lower than our method by percent of 8.8, 10.95,
5.65, 2.58, 9.54, 2.01, 3.24 and 0.25, respectively. The F1-
scores are lower than our method by percent of 5.27, 6.64,
3.32, 1.49, 5.73, 1.16, 1.88 and 0.14.

4) Results on CrackLS315: The cracks in the CrackLS315
dataset images are extremely thin, which causes the task of
segmenting the cracks so difficult that FCN and HED fail to
identify the cracks. As shown in Figure 9(d), our method,
DMA-Net, and ECDFFNet perform approximately the same,
which as a group is far superior to the other compared meth-
ods. It is notable to point out that our method still outperforms
the others in this group. Among the remaining methods, the
performance of DeepCrack_Zou is the worst and far below
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Fig. 9. Precision-Recall curves on the four datasets.

TABLE IV
QUANTITATIVE EVALUATION ON DEEPCRACK

Method Pr Re F1 mloU
FCN [CVPR’2015] 0.8761  0.8821 0.8791 0.7843
HED [ICCV’2015] 0.8633  0.8676  0.8654  0.7628
U-Net [MICCAI'2015] 09137 0.884 0.8986 0.8158
DeepCrack_Zou [TIP’2018] 09144 09193 09169 0.8465
DeepCrack_Liu [Neuro’2019]  0.8891  0.8603  0.8745  0.7769
FPHBN [TITS’2019] 09142 09263 09202 0.8522
ECDFFENet [TITS’2022] 09171 09089 09130 0.8399
DMA-Net [TITS’2022] 0.9328 0.9280 0.9304 0.8698
Ours 0.9339 09297 0.9318 0.8723

the other methods. As shown in the Table V, the Fl-score
and mloU of our method can still reach 0.9112 and 0.8369 on
the extremely thin crack dataset, outperforming DMA-Net and
ECDFFNet by a small margin. Furthermore, our method has
a higher Fl-score than those of U-Net, DeepCrack_Liu, and
FPHBN by percent of 4.54, 3.55, and 5.17, respectively, and
even higher value than that of DeepCrack_Zou by percent of
46.96. Similarly, the same is the case for mloU.

According to Figure 9 and the quantitative results on the
four datasets, it can be concluded that FCN, HED, and U-Net
perform relatively poorly as general-purpose image segmenta-
tion methods. In contrast, other methods proposed specifically
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TABLE V
QUANTITATIVE EVALUATION ON CRACKLS315

Method Pr Re F1 mloU
U-Net [MICCAI'2015] 0.8719 0.8598 0.8658 0.7634
DeepCrack_Zou [TIP’2018] 04115 04764 04416 0.2833
DeepCrack_Liu [Neuro’2019]  0.8716  0.8798  0.8757  0.7789
FPHBN [TITS’2019] 0.8751 0.8444 0.8595 0.7536
ECDFFNet [TITS’2022] 0.9079 09085 0.9082 0.8318
DMA-Net [TITS 2022] 09106 0.9082 0.9094 0.8339
Ours 0.9138 09086 0.9112 0.8369

for crack segmentation perform better. The proposed method,
U-Net, DeepCrack_Zou, and DMA-Net achieve better perfor-
mance than FCN and HED, indicating that a decoder network
can enhance the crack segmentation accuracy. Zou et al. [16]
have demonstrated that multi-scale feature fusion can effec-
tively improve crack segmentation accuracy. Therefore all
comparison methods use multi-scale feature fusion. However,
most of them stack multi-level features together to reduce the
loss of crack details so that more redundant information is
retained. The proposed method outperforms all the compared
methods, which indicates that using multi-frequency feature
representation to fuse multi-scale features is more effective
than stacking multi-level features. For ECDFFNet and DMA-
Net, ECDFFNet only adopts multi-scale feature fusion, while
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Raw image  Ground Truth FCN HED U-Net DeepCrack_Zou DeepCrack_Liu FPHBN ECDFFNet DMA-Net OUR-Net
(a) CFD
Raw image  Ground Truth U-Net DeepCrack_Zou DeepCrack_Liu FPHBN ECDFFNet DMA-Net OUR-Net
(b) CrackLS315
Fig. 10. Comparison results of different methods on CFD and CrackL.S315 datasets. The results of the comparison are plotted as green for true positives,

red for false positives, blue for false negatives, and black for true negatives.

DMA-Net employs multi-scale feature fusion and a decoder
network. Thus the experimental results suggest that DMA-Net
outperforms ECDFFNet in terms of performance in general.
Meanwhile, the proposed method and DMA-Net, both of
them utilize decoder networks. However, the proposed method
uses multi-frequency feature representation to fuse multi-
scale features, while DMA-Net stacks multi-level features.
Our proposed method outperforms DMA-Net, as indicated
by the experimental results. This further confirms the effec-
tiveness of the proposed method. Additionally, in Figure 9,
DeepCrack_Zou works well on thin, thick, and extremely
thick cracks but badly on extremely thin cracks. DMA-
Net is particularly effective on extremely thin, thick, and
extremely thick cracks but is generally effective on thin cracks.
The same goes for other comparison methods. Contrastingly,
optimal performance is achieved by the proposed method

on all types of cracks, which adequately demonstrates its
robustness.

Figure 10 and Figure 11 display the visualization results.
Figure 10 shows the resluts on thin and extremely thin cracks.
In Figure 10(a), the input images are selected from the CFD
dataset, which have thin cracks, and may contain stains and
complex cracks. The proposed method yields optimal predic-
tion results, as evident from the visualization. In Figure 10(b),
the input images are selected from the CrackL.S315 dataset,
which consists of extremely thin cracks, and some cracks
are influenced by lane lines. These cracks are so thin that
they are even hard to be observed by the naked eyes. But
the proposed method can still get the closest crack maps
to the ground truth without interference. The visualization
results of thick and extremely thick cracks are provided in
Figure 11. In Figure 11(a), the input images are selected
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Raw image  Ground Truth FCN HED U-Net DeepCrack_Zou DeepCrack_Liu FPHBN ECDFFNet DMA-Net OUR-Net
(a) Crack200
Raw image  Ground Truth FCN HED U-Net DeepCrack_Zou DeepCrack_Liu FPHBN ECDFFNet DMA-Net OUR-Net

(b) DeepCrack

Fig. 11.
red for false positives, blue for false negatives, and black for true negatives.

from the Crack200 dataset, which features thick cracks. The
proposed method produces better predictions in these images
even when they contain apparent noise. In Figure 11(b),
the input images are selected from the DeepCrack dataset,
which includes thick cracks and extremely thick cracks. The
second, third, and fourth rows of Figure 11(b) show the
corresponding ground truth and the prediction maps when
the input images are extremely thick cracks. The proposed
method can reduce the background interference and, thus,
false positives while predicting the cracks more completely
to reduce false negatives. The last two rows of Figure 11(a)
and the first row of Figure 11(b) show that when both
thick and thin cracks are present in the input image, the
proposed method accurately predicts the thick cracks while
also more completely predicting the thin cracks, which reflects
the superior ability of the proposed method to extract the edge
details of cracks and thin cracks while extracting the main
structure of cracks. In addition, in the last row of Figure 11(b),
the input image comes with complex interference information
from the environmental background. The proposed method can
effectively remove the complex environmental interference,
which will be detailed in the later sections.

5) Ablation Experiments: In this study, the proposed net-
work becomes SegNet when Octave Convolution (OctConv),
Octave Convolution Residual Block (OCRB), and Octave Max
Unpooling (OMU) are not utilized. Therefore, we use SegNet
as the baseline. Since OCRB and OMU are designed based on

Comparison results of different methods on Crack200 and DeepCrack datasets. The results of the comparison are plotted as green for true positives,

TABLE VI
THE ABLATION EXPERIMENTS ON DEEPCRACK

Method Pr Re F1

Baseline 0.9015 09187 0.9101
OctBaseline 0.9230 09106 0.9168
OctBaseline+OMU 0.9336 0.9222  0.9279
OctBaseline+OCRB 0.9283  0.9290  0.9286

OctBaseline+OMU+OCRB (OUR-Net)  0.9325  0.9312  0.9318

TABLE VII
COMPARISON OF DIFFERENT L0OSS FUNCTIONS ON DEEPCRACK

Method Pr Re F1

OUR-Net (WBCE) 0.9279  0.9240  0.9260
OUR-Net (Dice) 0.9523 0.8571 0.9022
OUR-Net (WBCE+Dice) 0.9325 09312 0.9318

OctConv, we used the network utilizing only OctConv as the
octave baseline (OctBaseline), which differs from the baseline
mainly by replacing the regular convolution with the Octave
Convolution. Based on the OctBaseline, we added OMU and
OCRB, separately. As shown in Table VI, on the DeepCrack
dataset, the baseline model gets the lowest F1-score of 0.9101,
and the OctBaseline model gets an F1-score of 0.9168, which
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Raw Image ECDFFNet

OUR-Net

(a) Cracks with font on the road surface

Raw Image ECDFFNet OUR-Net

(c) Cracks with environmental background
Raw Image ECDFFNet OUR-Net

OUR-Net

Raw Image ECDFFNet

(b) Cracks with skidproof stripes on the road surface

OUR-Net

Raw Image ECDFFNet

(d) Cracks with shadows or leaves on the road surface
Raw Image ECDFFNet OUR-Net

(e) Cracks with at least two types of interference

Fig. 12.
TABLE VIII
THE FLOPS, MODEL S1ZE AND FPS OF ALL METHODS
ON CFD DATASET
Methods FLOPs| Params| FPS?T
FCN [CVPR’2015] 64.95G 134.27M 29
HED [ICCV’2015] 188.11G 29.43M 37
U-Net [MICCAT’2015] 128.09G 31.03M 23
DeepCrack-Zou [TIP’2018] 320.76G 30.91M 8
DeepCrack-Liu [Neuro’2019] 47.08G 14.72M 38
FPHBN [TITS’2019] 147.96G 34.92M 21
ECDFFNet [TITS’2022] 183.53G 58.34M 15
DMA-Net [TITS’2022] 53.40G 60.46M 23
Ours 44.85G 24.69M 23

is 0.67 percent higher than that of the baseline model. This
adequately verifies the effectiveness of Octave Convolution in
the crack segmentation task. When OMU and OCRB are added

Images of pavement cracks captured in a realistic environment using a smartphone and their prediction maps.

TABLE IX

THE PERFORMANCE COMPARISON OF DIFFERENT o VALUES
ON CRACK200 DATASET

o Pr Re F1 FPS
025 0.7638 0.8225  0.7920 15
0.5 0.7742  0.8506  0.8106 20
0.75 0.7698 0.8368  0.8019 22

separately, the Fl-scores are increased by percent of 1.11 and
1.18, respectively, which indicates that the added modules are
effective. The model obtained when OMU and OCRB are
used simultaneously is the proposed OUR-Net with the highest
Fl-score of 0.9318. The results in Table VI demonstrate that
each module benefits the crack detection task, with the best
results achieved when both modules are used simultaneously.
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TABLE X
COMPARISON OF LIGHTWEIGHT MODEL RESULTS ON CFD DATASET

Methods Pr Re F1 mloU FLOPs| Params|
MobileNetV3 [ICCV’2019] 0.6958 0.9139  0.7901  0.6530 1.12G 2.81M
BiSeNetV2 [IJCV’2021] 0.8684 0.9232  0.8950  0.8099 10.38G 5.19M
LinkCrack [TITS 2022] 09018 0.9294 09154 0.8440 35.65G 3.42M
RHACrackNet [CACAIE’2023] 0.8615 0.9515 0.9042  0.8252 5.38G 1.63M
OUR-Net* 09186 09236  0.9211 0.8537 1.59G 0.88M

In addition, in Table VII, OUR-Net (WBCE) and OUR-Net
(Dice) denote the loss functions as the weighted binary cross-
entropy loss function and the dice loss function, respectively.
As seen from Table VII, when only the weighted binary cross-
entropy loss function or the dice loss function is utilized,
respectively, their Fl-scores are 0.9260 and 0.9022, which
are lower than 0.9318 when both are used simultaneously.
These results indicate that superior results can be obtained
by integrating the two loss functions.

6) Running Efficiency: From Table VIII, the proposed
model gets the lowest FLOPs and ranks second in terms of
Params after DeepCrack_Liu. The FPS of the proposed model
also gets the second highest among the crack segmentation
task-specific models, with FCN and HED achieving higher
FPS because they have fewer network layers and convolution
parameters. DeepCrack_Liu achieves the highest Params and
FPS. The proposed model gets the best performance with a
small model size, thanks to the fact that we do not simply
pile up modules or feature maps, but take advantage of
multi-frequency feature representation, and carefully design
a network that both improves the model performance and
reduces the model size.

7) The Performance Comparison of Different o Values:
To compare the impact of different o values on the proposed
model’s performance, we design an experiment in which all the
influencing factors are the same except for the hyperparameter
«, which determines the ratio of the number of low-frequency
feature channels to the total number of channels. The exper-
imental results of the OUR-Net with different o values are
shown in Table IX. The table demonstrates that the best
Fl-score is obtained for OUR-Net with «=0.5. The FPS
of OUR-Net with «=0.5 significantly improves compared to
OUR-Net with «=0.25. Although the FPS of OUR-Net with
a=0.75 is slightly higher than that of OUR-Net with «=0.5,
its Fl-score is lower by 0.87%.

8) The Lightweight Model: We constructed a lightweight
model (OUR-Net*) in which we replaced all convolution oper-
ations with depthwise separable convolution, and meanwhile,
replaced the number of channels in each layer of the original
model from [3, 64, 128, 256, 512, 512] to [3, 32, 64, 128, 256,
256]. From Table X, the learnable parameter of our lightweight
model reaches 0.88M, and meanwhile, the F1 score and mloU
still reach 0.9211 and 0.8537, respectively. Compared with the
current state-of-the-art lightweight models (MobileNetV3 [59],
BiSeNetV2 [60], LinkCrack [61], and RHACrackNet [15]),

both the Fl-score and the mloU reach the best with minimal
learnable parameters.

9) Performance in Real World Experiments: Figure 12
shows images of actual road surfaces captured by a smartphone
with features such as lettering, anti-skid stripes, shadows,
leaves, and maintenance hole covers, besides partial pictures
of cracks with the environment as a background. We use the
models trained from the above four datasets to predict these
real images. In particular, the ECDFFNet model is chosen
as the compared model. As depicted in Figure 12(a), the
proposed method can effectively eliminate the effect of traffic
fonts on the road surface. Figure 12(b) demonstrates the effect
of segmenting cracks with skidproof stripes. Although the
skidproof stripes and the cracks are similar, the proposed
method can accurately differentiate between the two. Crack
segmentation of the images in Figure 12(c) is extremely
challenging due to the presence of environmental backgrounds.
The proposed method can eliminate the interference of the
background environment well. Figure 12(d) shows features
such as shadows or leaves on the road surface, which the
proposed model proves to be insensitive to, according to the
results. The crack images in Figure 12(e) contain at least two
disturbances, which can be observed to have little effect on
our method.

V. CONCLUSION

Pavement cracks accelerate damages to the road. There-
fore, pavement crack segmentation is of great importance
in road maintenance. As a result, an OctConv-based multi-
frequency encoder-decoder network is proposed to improve
the performance of pavement crack segmentation in this
paper. The main contribution of the proposed method is
the implementation of multi-scale feature fusion using multi-
frequency feature representation instead of stacked feature
maps. Therefore, the high- and low-frequency information of
the crack images is fully taken advantage of to improve model
accuracy further and reduce spatial redundancy. In particular,
an Octave Convolution Residual Block (OCRB) is proposed
to construct a multi-frequency feature encoder. In addition,
we design a novel up-sampling operation called Octave Max
Unpooling (OMU) to decode multi-frequency features. The
proposed method achieves an impressive balance between seg-
mentation performance and model efficiency, as demonstrated
by comprehensive experiments, that confirm its superiority.
Finally, a lightweight version of the proposed network is
constructed using depthwise separable convolution with only
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0.88M parameters. In the future, we will investigate the
performance of the model in a larger database including
more challenging cases encountered in real world experiments,
and attempt to design models with better performance and
improved robustness.
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