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Abstract This paper presents a novel memetic algorithm,

named as IWO_DE, to tackle constrained numerical

and engineering optimization problems. In the proposed

method, invasive weed optimization (IWO), which pos-

sesses the characteristics of adaptation required in memetic

algorithm, is firstly considered as a local refinement pro-

cedure to adaptively exploit local regions around solutions

with high fitness. On the other hand, differential evolution

(DE) is introduced as the global search model to explore

more promising global area. To accommodate the hybrid

method with the task of constrained optimization, an

adaptive weighted sum fitness assignment and polynomial

distribution are adopted for the reproduction and the local

dispersal process of IWO, respectively. The efficiency and

effectiveness of the proposed approach are tested on 13

well-known benchmark test functions. Besides, our pro-

posed IWO_DE is applied to four well-known engineering

optimization problems. Experimental results suggest that

IWO_DE can successfully achieve optimal results and

is very competitive compared with other state-of-art

algorithms.

Keywords Memetic algorithm � Invasive weed

optimization � Differential evolution � Constrained

optimization � Multi-objective optimization

1 Introduction

Most real world problems are usually subject to various

types of constraints and how to tackle these constrained

optimization problems (COPs) has been extensively raised

concerns. For COPs, constraint satisfaction is a matter of

great account. In most cases, the huge search space but

very narrow feasible space and the optimal solutions that

lie on constraint boundaries all contribute to great diffi-

culties when tackling COPs. COPs, without loss of gener-

ality, can be defined as follows. minimize f ðxÞ; subject to

gjðxÞ� 0; j ¼ 1; . . .; p
hjðxÞ ¼ 0; j ¼ pþ 1; . . .;m

�
ð1Þ

where x is the vector of the solutions ðx ¼ ðx1; x2;

. . .; xnÞÞ and x 2 X � W; X is the set of feasible

solutions that satisfy p inequality constraints and (m-p)

equality constraints and W is an n-dimension rectangular

space confined by the lower boundary and upper boundary

of x as follows.

lk� xk � uk; 1� k� n ð2Þ

where lk and uk are the lower boundary and upper boundary

for a decision variable xk, respectively. Usually, equality

constraints are transformed into inequality form as follows.

jhjðxÞj � �� 0; j ¼ pþ 1; . . .;m ð3Þ

where � is an allowed positive tolerance value.

Over recent years, there have been reports on the per-

formance improvements of using hybrid algorithms in
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context of constraint optimization (Barkat Ullah et al.

2009; Liu et al. 2007; Singh et al. 2010). This type of

hybrid approaches is usually categorized as memetic

algorithms (MAs) (Moscato 1989; Neri and Cotta 2012;

Ong et al. 2010), which is the combination between a

population-based global search and a heuristic local search.

With the local refinement procedures, the efficiency of a

population-based global search algorithm could be enhanced

considerably. Usually, the hybridization of the global and

local search is considered as a balance between exploration

and exploitation in the evolutionary process.

Besides remarkable success of MAs in a wide range

of application domains, emerging field of adaptive MAs

has also attracted great amount of attention. In a recent

survey (Chen et al. 2011), Chen et al. summarized the

adaption of MAs into several core designs issues,

including the frequency of refinements, selection of

individual subset to undergo refinement, intensity of

refinement, and choice of procedures to conduct refine-

ment. For instance, Nguyen et al. (2007) investigated the

impact of refinement frequency, selection of individual

subset and intensity of refinement on MAs through

empirical experiments. Ong and Keane (2004) proposed

a type of Meta-Lamarckian learning in which refinement

procedures are cooperative and competitive according to

adaptive strategies. Krasnogor and Gustafson (2004)

presented a self-generating mechanism by which various

local search mechanisms to be used in memetic algo-

rithm is conducted adaptively.

On the contrary, adaptation issues of MAs in the

context of constrained optimization has attracted far less

attention, though it plays an even more important role in

many difficult constrained optimization problems due to

the fact that such problems usually have huge search

space but very narrow feasible space. A proper adaptive

local search can avoid the waste of computational

resources in the undesirable infeasible region and thus

make the algorithm more efficient. Motivated by this,

IWO is firstly considered as a local refinement procedure

in this paper due to its intriguing characteristics of

adaptation as follows. In IWO, (1) only individuals sat-

isfying a certain fitness degree are permitted to reproduce

offspring, and (2) the number of offsprings each indi-

vidual reproduces is determined by the fitness value

adaptively. With these two characteristics, IWO is able to

control the refinement frequency, selection of individual

subset and intensity adaptively in different stages of

evolution. To the best of our knowledge, there is barely

any research that considers IWO as a separate local

search model though it owns these attractive characteris-

tics of adaptation. Under these circumstances, the inves-

tigation of IWO as a local search model in the context of

constrained optimization becomes very meaningful.

To complement with IWO as the local search, DE is

used as the population-based global search model. DE is an

emerging optimization algorithm that has been extensively

investigated and surveyed in (Das and Suganthan 2011;

Mezura-Montes et al. 2010). By adding the weighted dif-

ference between two randomly selected individuals to a

third one, DE possesses a simple yet effective and efficient

global optimization ability (Price et al. 2005). Therefore,

DE is employed as global search models of MAs in liter-

atures (Gong et al. 2010; Wang and Cai 2012b). In the

context of constrained optimization, it is indispensable for

exploring the search space effectively, especially when the

feasible region is much small. With this consideration and

previous researches on DE, we use DE as the global search

model to locate the feasible region promptly. Besides,

when finding feasible solutions, a suitable local search

model to exploit the neighborhood areas nearby feasible

solutions becomes necessary.

Unlike unconstrained optimization problems, both con-

straints and optimizing function of a solution need to be

considered in COPs. Especially at the beginning of the

search process, population may contain both feasible and

infeasible solutions. One simple way to address this is to

prioritize feasible solutions. However, on the other hand,

some good infeasible solutions, especially solutions close

to the constraint boundaries, may carry useful information

which could steer the population toward feasible regions.

Thus, an adaptive fitness assignment to compromise

between feasibility and optimizing function in order to

attain satisfactory results is another important issue in our

work. This issue is much closely related to the efficiency of

the local search, as the adaptation mechanism of IWO

tends to allocate solutions with higher assigned fitness

more computational resources.

With the analysis above, the main contributions of this

paper are as follows.

– A novel constrained optimization memetic algorithm

IWO_DE, which first considers IWO as a local

refinement procedure, is proposed to tackle constrained

optimization problems. To accommodate IWO within

the constrained optimization, an adaptive weighted sum

fitness assignment and polynomial distribution are

adopted for reproduction and local dispersal process

of IWO, respectively.

– The effectiveness and efficiency of IWO as the local

refinement procedure is studied and the intrinsic

mechanism of IWO is preliminarily investigated

through experiments.

– The proposed hybrid algorithm is tested and compared

with other state-of-art algorithms on 13 well known

benchmark test functions (Liang et al. 2006) and four

engineering optimization problems.
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The remainder of this paper is organized as follows.

Since the focus of this paper is on dealing with constrained

optimization problems under the concept of memetic

algorithm, Sect. 2 reviews related works on constraint-

handling techniques and MAs. Subsequently, a brief

overview of IWO as well as DE is presented in Sect. 3.

Section 4 presents the proposed IWO_DE in detail. The

experimental results are reported in Sect. 5. Further dis-

cussion of IWO as the local refinement procedure is given

in Sect. 6. Finally, Sect. 7 draws the conclusion.

2 Related works

2.1 Review on constraint-handling techniques

Recent years a great deal of efforts has already been made

on constraint-handling techniques and an elaborate survey

of various constraint-handling techniques is referred to in

(Coello 2002; Mezura-Montes and Coello 2011). In gen-

eral, constraint-handling techniques can be classified

into (1) penalty functions; (2) special representations and

operators; (3) repair algorithms; (4) separate objective and

constraints; and (5) hybrid methods.

Penalty functions are the most simple and common

approaches for solving COPs so far. In static penalty function

methods, such as (Homaifar et al. 1994), the penalty factors

constant during the entire evolutionary process. Dynamic

penalty function (Joines and Houck 1994), however, com-

putes the penalty factors based on the generation of the

evolutionary process. In adaptive penalty function methods

such as (Farmani and Wright 2003) and (Woldesenbet et al.

2009), evolutionary information is fed back to determine the

amount of penalty added to the infeasible individuals for the

preferable selection of better infeasible individuals.

In addition to penalty function approaches, other con-

straints handling approaches have been proposed. Runarsson

and Yao (2000) proposed a stochastic ranking (SR) method

to alleviate the shortcomings associated with penalty fac-

tors. In SR, a probability parameter pf is introduced as the

comparison criterion to determine the rank of each indi-

vidual. Takahama and Sakai (2006) proposed the e con-

strained method which coverts a constrained optimization

problem into an unconstrained one through defining an

order relation with the e level comparison. In this method,

the authors defined the e level comparison as an new order

relation that is relevant to the objective function value and

the constraint violation.

More recently, using Pareto dominance under multi-

objective optimization concept to solve COPs has become

increasingly popular. For COPs, constraints are regarded as

one or more objective, and then COPs can be redefined as a

multi-objective unconstrained optimization problems.

Zhou et al. (2003) used the Pareto strength approach

(Zitzler et al. 2001) to rank individuals for the better

selection of individuals. The rank between Individuals is

determined in the following rules: (1) the higher Pareto

strength value of the individual is preferable; (2) if strength

value is equal, the one with lower sum amount of constraint

violation is better.

Venkatraman and Yen (2005) presented a generic frame-

work consisted of the following two phases. In the first phase,

the goal is to find at least one feasible solution and the com-

parison of individuals only depends on the sum amount of

constraint violation. In the second phase, COPs is considered

as a bi-objective unconstrained optimization problems and

both objectives (the original objective and the sum amount of

constraint violation) are optimized and ranked by non-dom-

inated sorting which is proposed in (Deb et al. 2002).

Wang and Cai (2012b) proposed a dynamic hybrid

framework which comprises two main component: global

search model and local search model. In this framework,

the selection mechanism of these two models is carried out

under pareto-dominance concept. The proposed framework

has the advantage of implementing global and local search

dynamically according to the feasibility proportion in the

current population.

In this paper, we also use the concept of multi-objective

optimization to address COPs. Under this circumstance, a

single-objective constrained optimization problem can be

redefined as follows:

minimize

FðxÞ ¼ ðf ðxÞ;GðxÞÞ ð4Þ

where GðxÞ ¼
Pm

j¼1 GjðxÞ denotes the total amount of

constraint violation of a variable x and GjðxÞ is the amount

of constraint violation of solution x on the j-th constraint,

calculated as follow.

GjðxÞ ¼
maxð0; gjðxÞÞ; j ¼ 1; . . .; p
maxð0; jhjðxÞj � �Þ; j ¼ pþ 1; . . .;m

�
ð5Þ

Thus, a single objective constrained optimization

problem is converted into a bi-objective unconstrained

one. The first objective is the original objective function

f ðxÞ; and the second is the total amount of constraint

violation GðxÞ:

2.2 Review on MAs

In memetic algorithm(MAs), two or more methods were

incorporated for the purpose of use of their advantages to

cope with optimization problems. MAs can be considered

under the name of hybrid algorithms and be regarded as the

combination of population-based global search and local

refinement procedures.
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Various forms of MAs have already been reported

among a wide variety of optimization problems. Barkat

Ullah et al. (2009) proposed a new agent based on memetic

algorithm for dealing with COPs. Four types of local search

techniques are adaptively selected through learning. Liu

et al. (2007) proposed a co-evolutionary differential algo-

rithm under the concept of MAs for COPs, in which two

population are built and evolved cooperatively by inde-

pendent differential algorithm. Singh et al. (2010) pre-

sented a memetic algorithms in which the strength of

evolutionary algorithm and a local search strategy were

incorporated to tackle COPs. Gong et al. (2010) pre-

sented a hybrid algorithm based on differential evolution

and biogeography-based optimization (BBO) for global

numerical optimization problems. Kelner et al. (2008)

presented a new coupling optimization approach where a

local search strategy based on the interior point method

was integrated into genetic algorithm. More recently,

Wang et al. (2012) proposed a memetic particle swarm

optimization for tackling multi-modal optimization prob-

lems. In his work, two different local search techniques are

used in a cooperative way. Wang et al. (2009) proposed an

adaptive hill climbing strategy. The greedy crossover-

based hill climbing and steepest mutation-based hill

climbing were incorporated and used as the local search

procedure within the framework of MAs for solving

dynamic optimization problems. Tang et al. (2007) pre-

sented a diversity-based adaptive local search strategy

based on parameterized Gaussian distribution. The local

search strategy is integrated into the framework of the

parallel memetic algorithm to address large scale combi-

natorial optimization problems. Molina et al. (2010) pro-

posed a intense continuous local search in the framework

of MAs.

In the above reviews, MAs exhibit very promising

performance in various optimization problems. Therefore,

a similar hybrid idea is presented in this paper.

3 Overview of invasive weed optimization

and differential evolution

3.1 Invasive weed optimization

IWO is first presented by Mehrabian and lucas (2006) to

solve numerical optimization problems. IWO simulates the

nature principles and behaviors of weedy invasion and

colonization in the shifting and turbulent environment.

Later, Kundu et al. (2011) proposed a variant of IWO that

extends the original IWO to handle multi-objective opti-

mization problems. Generally speaking, there are four steps

of IWO.

1. Initialize a population: solutions are initialized and

dispersed in the given n dimensional search space

uniformly and randomly.

2. Reproduction: each individual of the population is

permitted to reproduce seeds according to its own

fitness, the colony’s lowest and highest fitness, in this

situation, the fitness of each individual is normalized

and the number of seeds each individual reproduces

depends on a given minimum and maximum and

increases linearly.

3. Spatial dispersal: offspring are randomly distributed

over the n dimensional search space by normally

distributed random numbers with mean equal to

zero; but varying variance. Through this, a group of

offspring are produced around their parent individual and

thus weed colony is formed to enhance the search ability.

Furthermore, standard deviation (sd) of the normally

distributed random function will be reduced from a

predefined initial value, sdmax, to a final value, sdmin, over

every generation. the value of sd for a given generation is

computed as follows.

sd ¼ ðsdmax � sdminÞ � ðitermax � iterÞm

iterm
max

þ sdmin ð6Þ

where itermax is the maximum number of generations,

iter is the current number of generation and m is the

nonlinear modulation index.

4. Competitive exclusion: with the growth and reproduc-

tion of weeds, after passing several generation, the

number of weeds in a colony will reach its maximum.

Therefore, an essential exclusion mechanism is needed

among weeds. The exclusion mechanism is applied to

eliminate weeds with low fitness and select good

weeds that reproduce more than undesirable ones.

Subsequently, the selected ones will be preserved into

the next generation and then the steps I-IV are repeated

until termination criterion is reached.

3.2 Differential evolution

DE, proposed by Storn and Price (1995), is a powerful

search algorithm in the optimal problems, and uses the

vector differences of individuals for perturbing the popu-

lation members.

Initially, DE comprises a population of N and every

individual is an n-dimensional vectors xi ¼ fx1; x2; . . .;

xng: These vectors are randomly generated in the search

space and in the process of evolution, individuals will be

tackled by the operations of mutation, crossover and

selection.

Mutation operation: in this operation, with the different

mutant strategies, the generated way of a mutant vector vi

1896 X. Cai et al.
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is different and the weighted vector difference of individ-

uals is various. The popular mutant strategies are summa-

rized (Das and Suganthan 2011) as follows.

– DE/rand/1: vi ¼ xr1
þ Fðxr2

� xr3
Þ

– DE/rand/2: vi ¼ xr1
þ Fðxr2

� xr3
Þ þ Fðxr4

� xr5
Þ

– DE/best/1: vi ¼ xbest þ Fðxr1
� xr2

Þ
– DE/best/2: vi ¼ xbest þ Fðxr1

� xr2
Þ þ Fðxr3

� xr4
Þ

– DE/current to best/1: vi ¼ xi þ Fðxbest � xiÞþ
Fðxr1

� xr2
Þ

where the subscript r1, r2, r3, r4, r5, which are all different

from the index i, are not equal to each other and selected

uniformly and randomly from the range [1, N]. xbest is the

best individual of the current population, F is a scaling

factor that measure the scale of the difference of vectors.

Crossover operation: with the mutant vector vi and the

target vector xi; the trial vector ui is generated by binomial

crossover as follows.

ui;j ¼
vi;j; if randj�Cror j ¼ jrand

xi;j; otherwise

�
ð7Þ

where i ¼ 1; 2; . . .;N; j ¼ 1; 2; . . .; n; jrand is a selected

integer randomly from [1, n] which ensures ui inherits at least

one component from the mutant vector vi; randj is a uniform

random number between 0 and 1. Cr is the crossover prob-

ability parameter and its value is within [0, 1].

Selection operation: to keep better individual into next

generation, the generated trial vector ui is compared with the

target vector xi:The selection operation is described as follows.

xi;Gþ1 ¼
ui;G; if f ðui;GÞ� f ðxi;GÞ
xi;G; otherwise

�
ð8Þ

4 Proposed approach

This section presents IWO_DE in details. In this method,

the refinement procedures of IWO is incorporated before

the population-based search algorithm DE. In addition,

single-objective COPs are transformed into bi-objective

ones, that is, the first objective is the original objective and

the second the sum amount of constraint violation, as

described by the formula (4). We minimize these two

objectives simultaneously and the concept of pareto dom-

inace is adopted as a measurement criteria to decide which

individual to survive in the next generation.

The definition of Pareto dominance is as follows.

Definition (Pareto Dominance) a vector x1
i is said to

Pareto dominance another vector x2
i (denoted by x1

i � x2
i ),

if and only if 8i 2 f1; 2; . . .; ng; x1
i � x2

i ^ 9i 2 f1; 2;
. . .; ng; x1

i \x2
i

The following sections explain the components of

IWO_DE one by one.

4.1 The local refinement procedure—IWO

From the overview of IWO, we can obtain the idea that

every weed will reproduce seeds in a distributional manner

around parent weeds. If seeds are distributed close to their

parent weeds to a certain extent, the behavior can lead to a

local search ability in the weed evolution precess and

therefore result in exploiting the local areas effectively.

In this section, we explain the general steps of IWO, as

described in Sect. 3.1. However, to accommodate IWO in

the context of COPs, an adaptive weighted sum fitness

assignment mechanism is adopted to determine the

amount of the reproduction for each weed in the Repro-

duction step, and the polynomial distribution function is

employed in the Spatial dispersal step. Furthermore, we

use non-dominated sorting (Deb et al. 2002) in the com-

petitive exclusive step.

4.1.1 Adaptive weighted sum fitness assignment

In IWO, the number of seeds each weed generates reflects

the ability of reproduction of each weed and better fitness

indicates more offspring.

Generally, One simple way to address COPs in local

search is to prefer feasible solutions first. However, under

this mechanism, much computational resource is allocated

to the undesirable feasible solutions with worse objective

function values, and the infeasible solutions that lie near

the constraint boundaries are barely allocated any compu-

tational resource during the local search process, although

they are more likely to lead the local search to the optimal

solutions.

For the sake of balance between feasibility and objective

function for local search of IWO, an adaptive fitness

assignment mechanism is adopted to determine the repro-

duction ability of each weed. Under this adaptation

mechanism, we weigh the single objective and the amount

of constraint violations adaptively through a weight factor

x, which is the percentage of feasible solutions. The

descriptive form of the adaptive fitness assignment formula

is following.

fitnessðxiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xf 0ðxiÞ2 þ ð1� xÞG0ðxiÞ2

q
ð9Þ

and

x ¼ the number of feasible individuals

the population size
ð10Þ
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and f 0ðxÞ and G0ðxÞ are the normalization results of the

objective function f ðxÞ and the sum amount of constraint

violation GðxÞ respectively, described as follows.

f 0ðxiÞ ¼ f ðxiÞ�min fðxÞ
max fðxÞ�min fðxÞ

G0ðxiÞ ¼ GðxiÞ�min GðxÞ
max GðxÞ�min GðxÞ

(
ð11Þ

With the above analysis, in this paper, the number of

seeds reproduced by a weed is formulated as follows.

seednum ¼ floorðSmax � ðSmax � SminÞfiÞ ð12Þ

and

fi ¼
fitnessðxiÞ � min fitnessðxÞ

max fitnessðxÞ � min fitnessðxÞ ð13Þ

where Smax denotes the permissible maximum number of

seed and Smin the permissible minimum number of seed.

Besides, fi is the normalized fitness function and the

better fi (without loss of generality, to a minimization

problem) of one weed is, the more number of seeds it

reproduces.

4.1.2 Polynomial distribution function

Need to point out that in the optimal process of the original

IWO (Mehrabian and Lucas 2006), normal distribution

function is used as spatial dispersal operator to preserve the

ability of exploration and exploitation, but it is very hard

for various forms of problems to find out an appropriate

consistent initial value of standard deviation and then how

to effectively and efficiently decide the step-size of stan-

dard deviation of normal distribution function at every

generation is problem-dependent. With these consider-

ations, polynomial distribution function is adopted as the

spatial dispersal operator.

The polynomial distribution is used as mutation operator

in (Deb and Goyal 1996), but we use the polynomial

probability distribution to generate whole distribution val-

ues on the decision variable space to reproduce offspring

around the parent individuals under the IWO framework.

The polynomial distribution has its mean at the current

variable and its variance depending on a parameter n. This

parameter will provide the degree that how far the dis-

tributed variables are apart from the current variable.

Besides, The polynomial distribution depends on a

perturbance factor d for calculate distributed values, which

is defined as follows.

PðdÞ ¼ 0:5ðnþ 1Þð1� jdjÞn; d 2 ð�1; 1Þ ð14Þ

First, to get distributed values, a random number u 2 ð0; 1Þ
is needed to be generated. Thereafter, the perturbance

factor d corresponding to u is calculated using the above

formula.

�d ¼ ð2uÞ1=ðnþ1Þ � 1; if u\0:5

1� ½2ð1� uÞ�1=ðnþ1Þ; if u	 0:5

(
ð15Þ

Finally, the distributed variable is calculated as follows.

c ¼ pþ �dDmax ð16Þ

where c is the distributed variable and Dmax is the maxi-

mum perturbance value from the parent variable p.

If the parameter n is larger enough, the distributed

variable can be very close to its parent variable. Therefore,

polynomial probability distribution function is embedded

in the framework of IWO to achieve the local search ability

for refining better solutions.

4.1.3 Exclusion mechanism of IWO

Under the framework of IWO, the worse individuals will be

eliminated when the population size reaches the maximum. In

this paper, nondominated sorting (Deb et al. 2002) is adopted

to rank each individual for eliminating the worse individuals.

In non-dominated sorting algorithm, each individual is

assigned to a non-dominated front it belongs to. Accordingly,

the exclusion mechanism of IWO is described as follows.

1. if individuals lie on different non-dominated front,

then the individuals lying on lower non-dominated

front win;

2. if individuals have the same non-dominated front, then

the ones with smaller constraint violation win.

Through the above sorting, better individuals both in

terms of the objective value and the amount of constraint

violation are obtained and kept for the next generation.

As described in (Deb 2000), diversity is an important

aspect in a population and there are several popular ways to

maintain diversity, such an niching methods (Deb and

Goldberg 1989) and usage of mutation (Goldberg 1989). In

this paper, we use polynomial mutation (Deb and Goyal

1996) to maintain the diversity of population.

The pseudocode of the local refinement procedures of

IWO is presented in Algorithm 1.
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4.2 The global search model—DE

After the refinement procedures of IWO, the elitist indi-

viduals are picked out. Therefore, the operations of DE are

applied among the selected elitist individuals to explore

more promising space for the aim of finding out more

promising solutions to be refined by IWO. In this paper, we

simply adopt the classical version of DE—‘‘DE/rand/1/

bin’’ that has been described in Sect. 3.2.

The operations of mutation and crossover are the same as

that are described in Section 3.2 and only the operation of

selection is modified to meet needs, described as follows.

1. if the generated trial vector is feasible, then it is

compared with all the feasible solutions of population

and if the generated trial vector is better than all the

feasible solution, then the worse feasible solution is

replaced with the generated trial vector;

2. if the generated trial vector is infeasible, then it is

compared with the all infeasible solutions of popula-

tion with the concept of Pareto dominance and if the

generated trial vector dominates every infeasible

solution, then the all infeasible solutions are ranked

with the mechanism as described as Sect. 4.1.3 and the

individual with the last rank is selected to be compared

with the generated trial vector, if the amount of

constraint violation of the generated trial vector is

lower than that of the selected individual, then the

selected individual is replaced with the generated trial

vector.

From the above operations, as for the non-dominated

trial vectors, the one with lower amount of constraint

violation is preferable.

The pseudocode of the global search model—DE is

presented in Algorithm 2.

As explained above, for each component of IWO-DE, the

attracting characteristics of IWO and DE is merged. That is,

for IWO, the characteristics refers to the point that each

individual fully exploits the useful information around it and

for DE, the excellent characteristics refers to making full use

of information provided by IWO to find out more valuable

individuals which are to be refined, in return, by IWO.

The whole framework of IWO_DE is presented in

Algorithm 3.

5 Experimental analysis

In this section, IWO_DE is performed on test functions and

compared with six state-of-the-art algorithms.

5.1 Benchmark test functions and experiment Setups

The performance of IWO_DE is tested on the 13 well-

known benchmark test functions (Liang et al. 2006) and

the summary of these test functions is detailed in Table 1.

In Table 1, it is obvious to see that various types of

functions have been contained as the benchmark test

functions, including quadratic, nonlinear, polynomial,

cubic and linear. These functions have not only various

number of decision variables n and constraints, but also

different types of constraints, such as linear equality con-

straints (LE), linear inequality constraints (LI), nonlinear

equality constraints (NE) and nonlinear inequality con-

straints (NI). In the table, q is the estimated ratio of the

feasible space out of the whole search space and a is the

number of active constraints at the best known optimal

solution.

IWO_DE adopts the following parameters. For DE, the

scaling factor F, and the crossover probability parameter

Cr. For IWO, the maximum of population, the initial

number of population, the minimum/maximum number of

seed, the polynomial distribution index, the polynomial

mutation index and mutant probability. Details of the

parameter values are listed in Table 2.

5.2 Experimental results

According to the suggestion in (Liang et al. 2006), we

perform 25 independent runs on IWO_DE for each test

function, using 500,000 function evaluations (FEs) at

maximum and the tolerance value e is set to 0.0001.

The experimental results are shown in Table 3 where the

best known optimal solution and the best, median, mean,

worst as well as standard deviation of the obtained
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objective function values over 25 runs have been listed

under the given parameter settings.

As shown in Table 3, the best solution obtained is very

approximate to the known optimal value and the global

optimal solution has been found consistently on test func-

tions except for g02 and g13. For g02, the best solution

can’t be found consistently but the near-optimal solutions

have been obtained in 16 runs out of 25 runs and the mean

result of the obtained objective function value is also very

approximate to the known global optimal value. Similarly,

IWO_DE can’t find the global optimal solution in all 25

runs for g13 since IWO_DE falls the local optimum in 1

run out of 25 runs.

Furthermore, it can be observed from the standard

deviation for the test functions in Table 3 that IWO_DE is

stable and robust for solving these problems. Finally, for all

the test functions, IWO_DE is capable of obtaining feasible

solutions in all test runs.

5.3 Performance analysis of IWO_DE

Several performance evaluation criteria suggested in

(Liang et al. 2006) have been introduced to further dem-

onstrate the performance of IWO_DE on test functions.

5.3.1 Efficiency analysis of IWO_DE

Tables 4 and 5 present the function error value (f(x) -

f(x*)) (x is the obtained best feasible solution and x� is the

best known solution) after different FEs for each run, and

with the suggestion in (Liang et al. 2006), Tables 4 and 5

record error value after 5 9 103, 5 9 104, 5 9 105 FEs.

In Tables 4 and 5, the statistical measures, such as the best,

median, mean, worst and standard deviation of the error

values, are listed. Besides, the number of violated con-

straint that cannot satisfy the feasible condition is com-

puted and presented in the parenthesis near by the best,

median and worst of the error values. Similarly, in Tables 4

and 5, the symbol c denotes the number of violated con-

straint for the median solution obtained by IWO_DE and it

has three values. The sequence of the c indicates the

number of constraint violations whose amount is more than

0.1, 0.01 and 0.0001 respectively. The symbol �v denotes

the mean value of the constraint violations for the median

solution obtained by IWO_DE. Note that for convenience,

the error value is recorded as zero when less than 1E-10.

Furthermore, Table 6 has recorded performance evalu-

ation criteria value of the obtained experimental results,

such as feasible rate, success rate, success performance and

the number of FEs needed to find a solution satisfying the

given condition: f ðxÞ � f ðx�Þ� 0:0001: Feasible rate is the

percentage of feasible runs out of total runs, and feasible

run is referred to a run during which one feasible solution is

found under the maximum FEs. Similarly, success rate is

the percentage of successful runs out of total runs, but

successful run is referred to a run during which the algo-

rithm obtains a feasible solution x satisfying the given

condition: f ðxÞ � f ðx�Þ� 0:0001:

As presented in (Liang et al. 2006), success perfor-

mance is defined as follows:

success performance ¼
meanð # of FEs for successful runsÞ 
 ð# of total runsÞ

ð# of successful runs)

ð17Þ

It is shown from Tables 4 and 5 that except for g05 and

g13, the feasible solutions of the remaining test functions

are found by IWO_DE before 5 9 103 FEs. Furthermore,

IWO_DE is able to achieve the known optimal solution

before 5 9 104 FEs in 25 runs for test functions except for

g02, g10 and g13. For g13, IWO_DE is able to obtain the

optimal solution in 24 out of 25 runs and 16 out of the total

25 runs for g02 before 5 9 104 FEs. Finally, the proposed

algorithm is able to find the optimal solution for g10 before

the allowed maximum FEs. Therefore, the results show that

IWO_DE is able to converge to the optimal solution

efficiently within the acceptable FEs.

From Table 6, we can see that IWO_DE can achieve

100% feasible rate for all of the test functions, which

means IWO_DE can find feasible solutions in all 25 runs

consistently. Besides, IWO_DE obtains 100 % success rate

for 11 out of 13 test functions, which means IWO_DE have

the ability of finding the satisfactory solutions in all runs

under the given accuracy level, but for g02 and g13,

IWO_DE can’t obtain solutions of the given condition

consistently within the total runs. Furthermore, we can

observe through further analysis from Table 6 that

Table 1 Summary of 13 benchmark test functions

f n Type q (%) LI LE NI NE a

g01 13 Quadratic 0.0111 9 0 0 0 6

g02 20 Nonlinear 99.9971 0 2 0 0 1

g03 10 Polynomial 0.0000 0 0 0 1 1

g04 5 Quadratic 52.1230 0 6 0 0 2

g05 4 Cubic 0.0000 2 0 0 3 3

g06 2 Cubic 0.0066 0 2 0 0 2

g07 10 Quadratic 0.0003 3 5 0 0 6

g08 2 Nonlinear 0.8560 0 2 0 0 0

g09 7 Polynomial 0.5121 0 4 0 0 2

g10 8 Linear 0.0010 3 3 0 0 6

g11 2 Quadratic 0.0000 0 0 0 1 1

g12 3 Quadratic 4.7713 0 1 0 0 0

g13 5 Nonlinear 0.0000 0 0 0 3 3
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IWO_DE needs only at most 2 9 105 to find the satisfac-

tory solutions under the given condition.

5.3.2 Convergence analysis of IWO_DE

In order to visualize the convergence in the search process,

the convergence plots of every test functions have been

illustrated in Figs. 1, 2, 3, 4. The convergence plots depict

the average convergence rate of each test function within

the allowed maximum FEs over total runs. Two axes of the

figures demonstrate log10ðf ðxÞ � f ðx�ÞÞ vs FEs where x is

the best obtained solution corresponding to a certain

number of FEs. Note that the solutions which satisfy f ðxÞ �
f ðx�Þ� 0 have not been plotted, since zero or negative

number for log10 is incalculable.

It can be observed from Figs. 1, 2, 3, 4 that the con-

vergence rate of most test functions is very fast and this

observation is consistent with the observed success per-

formance and function error value of each test functions in

Tables 4, 5 and 6. Hence IWO_DE is very efficient in

tackling the test functions.

5.4 Comparisons with other state-of-the-art algorithms

IWO_DE is compared against six high-performance algo-

rithms under three performance evaluation criteria: feasible

rate, success rate and success performance. These selected

state-of-the-art algorithms are PSO (Zielinski and Laur

2006), eDE (Takahama and Sakai 2006), GDE (Kukkonen

and Lampinen 2006), MDE (Mezura-Montes et al. 2006),

jDE-2 (Brest et al. 2006) and PCX (Sinha et al. 2006). The

comparative results have been shown in Tables 7, 8 and 9.

In Table 7, the average of feasible rate and success rate

have been listed respectively. With respect to the average

of feasible rate, IWO_DE has very similar performance to

that of PSO, eDE, MDE, jDE-2 and PCX but IWO_DE

achieves better performance than GDE. In terms of the

average of success rate, as shown in Table 8, the perfor-

mance of IWO_DE is worse than eDE and PCX, but

superior to PSO, GDE, MDE and jDE-2.

As analysed in Wang and Cai (2012b), success performance

can be used to reflect the efficiency of a method to a certain

extent under the given condition. In Table 9, we have listed

the success performance of these six algorithms and have

computed the sum success performance to be used for

measuring the efficiency of these algorithms. In Table 9, NA

denotes that the satisfactory solution can’t be obtained under

the given condition. From Table 9, IWO_DE exerts higher

performance when compared against these six algorithms

with the total of success performance. Specifically, for g02,

g03, g11 and g13, the success performance of IWO_DE

is better than all of the compared algorithms. In the

remaining test functions (g01, g04, g05, g06, g07, g08,

Table 3 Experimental results of IWO_DE on the 13 well-known benchmark test functions

f Optimum Best Median Mean Worst SD

g01 -15.0000000000 -15.0000000000 -15.0000000000 -15.0000000000 -15.0000000000 0

g02 -0.8036191042 -0.8036191040 -0.8036191006 -0.7989322351 -0.7783222501 7.1e-03

g03 -1.0005001000 -1.00050010001 -1.00050010001 -1.00050010001 -1.00050010001 3.5e-16

g04 -30665.53867178332 -30665.53867178332 -30665.53867178332 -30665.53867178332 -30665.53867178332 3.7e-12

g05 5126.4967140071 5126.4967140071 5126.4967140071 5126.4967140071 5126.4967140071 2.0e-12

g06 -6961.8138755802 -6.961813875580167 -6.961813875580167 -6.961813875580167 -6.961813875580167 0

g07 24.30620906818 24.30620906818 24.30620906818 24.30620906818 24.30620906818 9.9e-15

g08 -0.0958250414 -0.0958250414 -0.0958250414 -0.0958250414 -0.0958250414 1.1e-15

g09 680.6300573744 680.6300573744 680.6300573744 680.6300573744 680.6300573744 4.1e-13

g10 7049.2480205287 7049.2480205287 7049.2480205287 7049.2480205287 7049.2480205287 2.7e-12

g11 0.7499000000 0.7499000000 0.7499000000 0.7499000000 0.7499000000 1.1e-16

g12 -1.0000000000 -1.0000000000 -1.0000000000 -1.0000000000 -1.0000000000 0

g13 0.0539415140 0.053941514042 0.053941514042 0.069335957792 0.438802607794 7.7e-02

Table 2 Parameter values of IWO_DE

Symbol Description Value

F Scaling factor 0.7

Cr Crossover probability parameter Between 0.9 and 1

Pinit Initial number of population 20

Pmax Maximum number of population 60

Smin Minimum number of seed 0

Smax Maximum number of seed 2

pd Polynomial distribution index 100

pm Polynomial mutation index 1

Mp Mutation probability 1/g

g Denotes the number of decision variables
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Table 4 Function error values obtained when 5 9 103 FEs, 5 9 104 FEs and 5 9 105 FEs for test functions g01–g07

FEs g01 g02 g03 g04 g05 g06 g07

5 9 103

Best 0.9988(0) 0.0748(0) 0.0077(0) 1.6001(0) 5.1262E?03(3) 0.1949(0) 4.3707(0)

Median 2.2461(0) 0.1273(0) 0.0854(0) 6.6813(0) 5.1253E?03(3) 1.5841(0) 11.2875(0)

Worst 3.4988(0) 0.2465(0) 0.4132(0) 20.4654(0) 5.1239E?03(3) 5.0059(0) 21.0487(0)

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 1, 3, 3 0, 0, 0 0, 0, 0

v 0 0 0 0 0.04850 0 0

Mean 2.2161 0.1440 0.1066 7.7189 5.1252E?03 1.9623 11.5714

SD 0.5886 0.0484 0.1047 4.3668 0.6391 1.4562 4.2724

5 9 104

Best 5.2143E-05(0) 3.2367E-06(0) 1.5584E-09(0) 0(0) 0(0) 0(0) 8.9631E-04(0)

Median 1.9878E-04(0) 1.2462E-05(0) 2.1669E-08(0) 0(0) 0(0) 0(0) 3.1670E-03(0)

Worst 4.5413E-04(0) 2.5310E-02(0) 5.9553E-07(0) 0(0) 0(0) 0(0) 2.9905E-02(0)

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 0 0 0 0 0 0 0

Mean 1.9614E-04 6.1079E-03 6.7135E-08 0 0 0 7.6068E-03

SD 1.1329E-04 7.8231E-03 1.2535E-07 0 0 0 8.7596E-03

5 9 105

Best 0(0) 1.8157E-10(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Median 0(0) 3.5592E-09(0) 0(0) 0(0) 0(0) 0(0) 0(0)

Worst 0(0) 2.5297E-02(0) 0(0) 0(0) 0(0) 0(0) 0(0)

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 0 0 0 0 0 0 0

Mean 0 4.6869E-03 0 0 0 0 0

SD 0 7.1443E-03 0 0 0 0 0

Table 5 Function error values obtained when 5 9 103 FEs, 5 9 104 FEs and 5 9 105 FEs for test functions g08–g13

FEs g08 g09 g10 g11 g12 g13

5 9 103

Best 7.2256E-09(0) 0.9583(0) 1.4065E?03(0) 1.7317E-09(0) 4.3718E-11(0) 7.7577E-06

Median 5.0106E-07(0) 3.1668(0) 4.1108E?03(0) 2.5274E-08(0) 7.2385E-10(0) 3.4213E-05

Worst 7.2304E-05(0) 9.1730(0) 1.7241E?04(0) 4.1938E-04(0) 2.5238E-08(0) 0.3871

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 0 0 0 0 0 0

Mean 5.7752E-06 3.9780 4.9869E?03 1.7391E-05(0) 2.1437E-09 0.0156

SD 1.5532E-05 2.1832 3.8765E?03 8.3797E-05(0) 5.0228E-09 0.0774

5 9 104

Best 0(0) 3.9379E-09(0) 1.3802(0) 0(0) 0(0) 4.5647E-11

Median 0(0) 5.0507E-08(0) 6.0090(0) 0(0) 0(0) 6.5623E-11

Worst 0(0) 4.9097E-07(0) 100.9495(0) 0(0) 0(0) 0.3849

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 0 0 0 0 0

Mean 0 7.2777E-08 12.5363 0 0 0.0154

SD 0 9.5074E-08 20.1177 0 0 0.0770

5 9 105

Best 0(0) 0(0) 0(0) 0(0) 0(0) 4.1898E-11

Median 0(0) 0(0) 0(0) 0(0) 0(0) 4.1898E-11

Worst 0(0) 0(0) 0(0) 0(0) 0(0) 0.3849

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

v 0 0 0 0 0 0

Mean 0 0 0 0 0 0.0154

SD 0 0 0 0 0 0.0770
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g09, g10 and g12), the success performance of IWO_DE is

better than more than half of the compared algorithms. Fur-

thermore, as for PSO and jDE-2, there are several functions,

i.e. g02, g03 and g13 for PSO, and g03 and g13 for jDE-2,

which can’t be solved to get satisfactory solutions, but

IWO_DE is able to solve all of the test functions within

allowed maximum FEs.

5.5 Engineering optimization problems

In this section, we apply IWO_DE to solving four engi-

neering optimization problems to further evaluate its per-

formance. The detailed descriptions of these four problems

can be found in (Aguirre et al. 2007; Cagnina et al. 2008)

and in this paper, these problems are denoted as follows.

Table 6 Number of FEs to achieve the given accuracy level, feasible rate, success rate and success performance

f Best Median Mean Worst SD Feasible rate (%) Success rate (%) Success performance

g01 44,855 54,129 53,634 63,309 4,885.7 100 100 53,634

g02 24,220 31,545 42,683 162,074 35,041.3 100 64 66,692

g03 12,391 16,044 16,484 23,891 2,883.0 100 100 16,484

g04 19,233 22,605 22,537 25,955 1,787.6 100 100 22,537

g05 20,356 25,178 25,025 29,983 2,040.2 100 100 25,025

g06 9,438 10,804 10,770 11,967 615.0 100 100 10,770

g07 77,381 91,345 93,403 134,319 12,424.9 100 100 93,403

g08 1,838 2,838 2,990 4,367 661.4 100 100 2,990

g09 19,218 23,721 23,990 27,058 1,953.2 100 100 23,990

g10 158,667 180,886 182,112 215,739 15,068.3 100 100 182,112

g11 1,419 2,014 1,976 2,538 325.4 100 100 1,976

g12 919 1,422 1,402 2,076 310.6 100 100 1,402

g13 12,633 16,353 17,114 35,830 4,787.7 100 96 17,827

0 1 2 3 4 5
x 105

−14

−12

−10

−8

−6

−4

−2

0

2

4

FEs

lo
g1

0(
f(

x)
−

f(
x*

))

g08
g09
g10

Fig. 3 convergence graph for g07, g08, g09 and g10

0 1 2 3 4 5
x 105

−15

−10

−5

0

5

FEs

lo
g1

0(
f(

x)
−

f(
x*

))

g05
g06
g07

Fig. 2 Convergence graph for g04, g05, and g06

0 1 2 3 4 5
x 105

−16

−14

−12

−10

−8

−6

−4

−2

FEs

lo
g1

0(
f(

x)
−

f(
x*

))

g11
g12
g13

Fig. 4 convergence graph for g11, g12, and g13

0 1 2 3 4 5
x 105

−20

−15

−10

−5

0

5

FEs

lo
g1

0(
f(

x)
−

f(
x*

))

g01
g02
g03
g04

Fig. 1 Convergence graph for g01, g02, and g03

A novel memetic algorithm 1903

123



– Welded beam design problem.

– Pressure vessel design problem.

– Tension/compression Spring design problem.

– Speed reducer design problem.

For convenience, these engineering problems are

abbreviated as WBP, PVP, T/CSP and SRP respectively.

5.5.1 Experimental results of engineering problems

We perform IWO_DE in 150,000 FEs for WBP, T/CSP and

SRP and 40000 FEs for PVP with 30 runs. The parameters

have been set as the same values as that have been used in

benchmark test functions and listed in Table 2. The

experimental results have been presented in Table 10.

From the statistic measures listed in Table 10, we can

conclude that IWO_DE has successfully solved all the

engineering optimization problems efficiently.

5.5.2 Convergence analysis of IWO_DE for engineering

problems

Figures 5, 6, 7, 8 illustrate the convergence situation of

IWO_DE when solving WBP, PVP, T/CSP and SRP,

respectively.

From these convergence plots, it can be observed that

IWO_DE rapidly converges to the best currently known

objective function values in all of the four engineering

problems, which makes us to believe that IWO_DE is able

to tackle real-world engineering problems effectively and

efficiently.

5.5.3 Comparison of algorithms on engineering

optimization problems

In Table 11, the experimental results of IWO_DE are com-

pared with other state-of-art algorithms, taken from litera-

tures (Aguirre et al. 2007; Cagnina et al. 2008; He and Wang

2007; Mezura-Montes and Coello 2005). For convenience,

we regard these state-of-art approaches as COPSO (Aguirre

et al. 2007), SiC-PSO (Cagnina et al. 2008), Mezura (Mezura-

Montes and Coello 2005) and HPSO (He and Wang 2007). It is

important to mention that, in Table 11, the experimental results

are regained through rerunning IWO_DE with 30 runs within

24,000 FEs at maximum.

Table 7 Comparison among algorithms in terms of feasible rate

f Feasible rate

PSO (%) eDE (%) GDE (%) MDE (%) jDE-2 (%) PCX (%) IWO_DE (%)

g01 100 100 100 100 100 100 100

g02 100 100 100 100 100 100 100

g03 100 100 96 100 100 100 100

g04 100 100 100 100 100 100 100

g05 100 100 96 100 100 100 100

g06 100 100 100 100 100 100 100

g07 100 100 100 100 100 100 100

g08 100 100 100 100 100 100 100

g09 100 100 100 100 100 100 100

g10 100 100 100 100 100 100 100

g11 100 100 100 100 100 100 100

g12 100 100 100 100 100 100 100

g13 100 100 88 100 100 100 100

mean 100 100 98.46 100 100 100 100

Table 8 Comparison among algorithms in terms of success rate

f Success rate

PSO

(%)

eDE

(%)

GDE

(%)

MDE

(%)

jDE-2

(%)

PCX

(%)

IWO_DE

(%)

g01 72 100 100 100 100 100 100

g02 0 100 72 16 92 64 64

g03 0 100 4 100 0 100 100

g04 100 100 100 100 100 100 100

g05 24 100 92 100 68 100 100

g06 100 100 100 100 100 100 100

g07 72 100 100 100 100 100 100

g08 100 100 100 100 100 100 100

g09 100 100 100 100 100 100 100

g10 8 100 100 100 100 100 100

g11 100 100 100 100 96 100 100

g12 100 100 100 100 100 100 100

g13 0 100 40 100 0 100 96

Mean 59.69 100 85.23 93.54 81.23 97.23 96.92
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In Table 11, It is obvious to see that IOW_DE reports

better performance on mean and standard deviation, com-

pared with COPSO, Sic-PSO, Mezura and HPSO for PVP,

T/CSP and SRP. For WBP, IWO_DE has slightly worse

performance on the best result than COSPO, Sic-PSO,

Mezura and HPSO, but the FEs of IWO_DE is less than

that of COPSO, Mezura and HPSO. Furthermore, IWO_DE

provides better performance on mean results than Sic-PSO,

Mezura and HPSO for WBP.

It is worth to note that with the increase of FEs, the

performance of IWO_DE on engineering optimization

problems remains improving (see Table 10). Another

interesting finding is that, IWO_DE obtains an even better

solution for SRP than what’s been reported so far. This new

optimal solution for SRP found by the proposed IWO_DE

is x ¼ ð3:5; 0:7; 17; 7:3; 7:715319911478246; 3:350214

666096448; 5:286654464980222Þ with the corresponding

f ðxÞ ¼ 2994:471066146820:

Table 9 Comparison among algorithms in terms of success performance

f Success performance

PSO eDE GDE MDE jDE-2 PCX IWO_DE

g01 101,825 59,308 40,519 75,373 50,386 55,204 53,634

g02 NA 149,825 149,561 96,222 145,899 127,900 66,692

g03 NA 89,407 3,577,150 44,988 NA 34,937 16,484

g04 37,802 26,216 15,281 41,562 40,728 30,989 22,537

g05 1528,433 97,431 193,503 21,306 446,839 94,765 25,025

g06 37,946 7,381 6,503 5,202 29,488 33,821 10,770

g07 562,717 74,303 123,996 194,202 127,744 117,121 93,403

g08 3,656 1,139 1,469 918 3,236 2,826 2,990

g09 103,677 23,121 30,230 16,152 54,919 46,527 23,990

g10 6,094,056 105,234 82,604 16,4160 146,150 89,028 182,112

g11 33,073 16,420 8,460 3,000 53,928 38,688 1,976

g12 6,906 4,124 3,149 1,308 6,356 8,960 1,402

g13 NA 34,738 840,766 21,732 NA 53,735 17,827

Sum 8,510,091?3*NA 688,647 5,073,191 686,125 1,105,673?2*NA 734,501 518,842

Bold values indicate the performance of the proposed algorithms, where it is the best compared with that of other approaches on the corre-

sponding benchmark functions
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Table 10 Experimental results of IWO_DE on engineering optimization problems

f Best Median Mean Worst SD FEs

WBP 1.724852308597365 1.724852308597365 1.724852308597364 1.724852308597365 1.1e-15 150,000

PVP 6059.714335048436 6059.714335048436 6059.714335048435 6059.714335048436 9.3e-13 40,000

T/CRP 0.012665232788319 0.012665232788319 0.012665232788319 0.012665232788319 1.2e-17 150,000

SRP 2.994471066146820 2.994471066146820 2.994471066146822 2.994471066146820 1.9e-12 150,000
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6 Discussion

This paper presents IWO_DE as a hybrid model in which

IWO is acted as the local refinement procedure to exploit

the regions around elite individuals and DE is used as the

global search algorithm to explore more promising regions.

Thus, this section is dedicated to the discussion on the

intrinsic mechanism of IWO_DE.

6.1 DE as the global search model

In context of COPs, how to explore feasible solution

promptly is of great importance, especially when the fea-

sible search space is extremely small. DE possesses a

simple yet effective and efficient global optimization

ability (Price et al. 2005) and there have been reports on

successful application of DE for global optimization

problems, referred to in Gong et al. (2010), Qin et al.

(2009), Wang and Cai (2012a) etc. Among them, DE was

reported to be considered as the global search model

and local search model simultaneously in tackling COPs in

Wang and Cai (2012b). Hence we adopt DE as global

search model in our proposed method based on the

observations of previous empirical study.

Table 11 Comparison among algorithms on engineering problems

f COPSO Sic-PSO Mezura HPSO IWO_DE

WBP

Best 1.724852 1.724852 1.724852 1.724852 1.724865

Mean 1.724881 2.0574 1.777692 1.749040 1.725046

SD 1.27E-05 2.15E-01 8.8E-2 4.0E-02 1.7E-04

FEs 30,000 24,000 30,000 81,000 24,000

PVP

Best 6059.714335 6059.714335 6059.7143 6059.7143 6059.71433505

Mean 6071.013366 6092.0498 6379.938037 6099.9323 6059.71433522

SD 15.10 12.17 2.1E?2 86.20 7.4E207

FEs 30,000 24,000 30,000 81,000 24,000

T/CRP

Best 0.012665 0.012665 0.012689 0.0126652 0.012665233

Mean 0.012666 0.0131 0.013165 0.0127072 0.012665244

SD 1.28E-06 4.1E-04 3.9E-4 1.58E-05 3.6E208

FEs 30,000 24,000 30,000 81,000 24,000

SRP

Best 2996.372448 2996.348165 2996.348094a – 2994.473177

Mean 2996.408525 2996.3482 2996.348094a – 2994.483853

SD 2.87E-02 0 0 – 8.3E203

FEs 30,000 24,000 30,000 – 24,000

Bold values indicate the performance of the proposed algorithms, where it is the best compared with that of other approaches on the corre-

sponding benchmark functions

– Denotes not available
a Denotes infeasible solution
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Furthermore, as previously presented in Sect. 5.3.1,

IWO_DE can obtain the satisfactory solutions before

2 9 105 FEs under the given condition. Therefore, in order

to check the efficiency of DE on the ability of global

search, we compare IWO_DE with IWO_non-DE in which

the component of DE isn’t considered and only run

IWO_DE and IWO_non-DE under the maximum 2 9 105

FEs and the other experimental conditions are the same in

Sect. 5.1. Note that, for clarity, we only summarize the

experimental results in Table 12 which cause significant

difference on the compared methods.

It is obvious from Table 12 that IWO_non-DE can’t get

the satisfactory solutions before the given FEs, and for

g05,there are only 5 feasible runs out of total 25 runs.

Besides, from the Table 12, it is also demonstrated that DE

indeed search more promising region and provides more

competitive solutions. Thus in terms of experiments, DE

does play an important role of achieving good performance

for the proposed IWO_DE.

6.2 Effectiveness of the local search ability of IWO

Similarly, in the context of COPs, when finding feasible

solutions, how to exploit the feasible solutions effectively

is also important. This paper firstly adopts IWO as the local

refinement procedures and in order to demonstrate the local

search ability of IWO, we compare IWO_DE with itself

only when no refinement procedures of IWO is incorpo-

rated. For the convenience, IWO_DE without local search

is denoted as non-IWO_DE here. In non-IWO_DE, the

number of population is set to equal to Pmax described in

Table 2 and the remaining experimental conditions are the

same as that is described in Sect. 5.1 so that we can have a

fair comparison. Note that, for clarity, we only summarize

Table 12 Comparison of IWO_DE and IWO_non-DE

Function g01 g05 g07 g09 g10 g13

Optimum –15.000 5126.496714 24.306209 680.630057 7049.24802 0.0539415

Best

IWO_DE –15.0000 5126.496714 24.306209 680.630057 7092.81990 0.0539415

IWO_non-DE –14.9983 5128.066747 24.4555 680.6411 7163.36559 0.0539449

Mean

IWO_DE –15.0000 5126.496714 24.306209 680.630057 7049.24802 0.0693360

IWO_non-DE –14.9956 5205.599381 25.0084 680.6761 8720.83632 0.0994170

Worst

IWO_DE –15.000000 5126.496714 24.306209 680.630057 7049.24802 0.4388026

IWO_non-DE –14.9900 5334.249436 25.8530 680.7462 10721.00698 0.7060011

Infeasible run

IWO_DE 0 0 0 0 0 0

IWO_non-DE 0 20 0 0 0 0

Table 13 comparison of IWO_DE and non-IWO_DE

Function g01 g02 g03 g05 g07 g09 g10 g13

Optimal –15.000 –0.8036191 –1.0005001 5126.496714 24.306209 680.630057 7049.24802 0.0539415

Best

IWO_DE –15.000000 –0.8036191 –1.0005001 5126.496714 24.306209 680.630057 7049.24802 0.0539415

Non-IWO_DE –14.945468 –0.7296201 –0.9784715 5126.496714 24.839557 680.967584 7163.36559 0.0539449

Mean

IWO_DE –15.000000 –0.7989322 –1.0005001 5126.496714 24.306209 680.630057 7049.24802 0.0847304

Non-IWO_DE –13.100752 –0.6070030 –0.7273365 5139.645461 28.180487 690.079299 7902.33239 0.1799978

Worst

IWO_DE –15.000000 –0.7783223 –1.0005001 5126.496714 24.306209 680.630057 7049.24802 0.4388026

Non-IWO_DE 10.294968 –0.4431408 –0.2704784 5405.657932 34.289398 714.263329 9391.89257 0.8748623

Infeasible run

IWO_DE 0 0 0 0 0 0 0 0

Non-IWO_DE 0 0 0 3 0 0 0 6
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the experimental results in Table 13 which cause signifi-

cant difference on the compared methods.

Based on the results from Table 13, non-IWO_DE has

obtained much worse performance on all test functions

when compared with IWO_DE. Although the results of

non-IWO_DE for g05 is very close to that of IWO_DE, the

number of infeasible runs of non-IWO_DE for g05 is 3 out

of 25 runs and as well for g13, the infeasible runs of non-

IWO_DE is 6 out of 25 runs. Furthermore, we can notice

that the best results obtained by non-IWO_DE of each test

function are very close to that of IWO_DE, and thus we

can speculate that if non-IWO_DE exploits solutions suf-

ficiently around the best solutions, it also can obtain the

same results as IWO_DE. Therefore, this situation vali-

dates that the local search ability of IWO plays an impor-

tant role on refining good solutions within local areas in the

process of evolution.

6.3 Contribution of the local refinement procedure

of IWO

The search ability of IWO has been demonstrated in above

section, but the internal mechanisms of IWO in which how

the colonization and invasion of IWO is operated should be

observed. In this section, we try to plot figures to show how

weeds reproduce seeds according to ones own fitness for

survival and further to illustrate the process of colonization

and invasion of weeds.

We describe four states of reproduction of IWO in the

evolution process for test functions g01, g02, g07 and g10

to show the ability of colonization and invasion of weeds in

Fig. 9 and there are one state corresponding to test function

g01, g02, g07 and g10 respectively. For Fig. 9a, the parent

weed generates two offspring seeds where one is better in

terms of the amount of constraint violation but worse with

respect to objective function value and another is better in

terms of objective function value and worse with respect to

the amount of constraint violation. For Fig. 9b, the parent

weed reproduces two offspring seeds where two seeds are

both better in terms of the amount of constraint violation

and both worse with respect to the objective function value.

For Fig. 9c, the parent weed generates two offspring seeds

where two seeds are both worse in terms of the amount of

constraint violation and both better with respect to the

objective function value. For Fig. 9d, the parent weed

reproduces two offspring seeds where two seeds are both

better in terms of the amount of constraint violation and the

objective function value.

After explaining the four representative states in

Fig. 9a–d, we can come to the conclusion that IWO indeed

plays a role in the local search ability and with the char-

acteristics of colonization and invasion, weeds refine better

seeds in the neighborhood of them in terms of either or

both of the amount of constraint violation and the objective

function value and then the better seed will replace parent

weed to capture the suitable space for growth and repro-

duction. Therefore, the local refinement procedures of IWO
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Fig. 9 The state of reproduction of IWO in the evolution process
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plays an important role on the performance of hybrid

algorithm IWO_DE.

7 Conclusions

This paper presents a novel memetic algorithm, which

combines the intriguing characteristics of Invasive Weed

Optimization with Differential evolution to deal with

COPs. The proposed method regards IWO as the refine-

ment procedures to adaptively exploit the promising local

region during the optimization process. Through experi-

mental analysis, we can make the conclusion that IWO

does play an indispensable role in local exploitation. On

the other hand, the use of DE as the global search model

aims to finding more promising solutions among elitist

solution refined by IWO. The efficiency and effective-

ness of IWO_DE is demonstrated by experiments on the

well-known benchmark test functions and engineering

optimization problems. Experimental results show that the

efficiency of IWO_DE is prominent for achieving the

known optimal solution.

Future works include the further investigation on the

intrinsic mechanism of IWO so that improved variant of

IWO with more powerful local search ability can be

proposed.
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