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ABSTRACT
Because swarm robots have been applied widely in various fields, the evolution capability and
search space of their strategy have become of primary interest; therefore, the evolution method of
swarm robots’ strategy has attracted attention in both industry and academia, especially for complex
applications owing to their varied task scenes. Large amounts of researches have been conducted
to realize strategy evolution in swarm robotics systems. However, there are few studies on the
strategy evolution sufficiently examining the simultaneous improvement of evolutionary and search
performance, which are two key demands of swarm robots. Besides, the strategy that evolved under the
global information is difficult to fully adapt to the distributed task scenarios. To address these issues,
this study presents a heterogeneous-homogeneous swarm coevolution method known as TORCH to
improve the evolution capability of swarm robots. The method uses a swarm coevolution mechanism
to accelerate the evolution. For the first time, we employ a behaviour expression tree in TORCH
which expands the strategy search space of the evolved strategies. TORCH makes the swarm robots’
strategies evolve under local information conditions; hence, the evolutionary strategies are more
adaptable to the distributed task scenarios. Extensive experiments have been conducted to verify
the proposed TORCH, including a comparison with three methods based on the homogeneous swarm
evolution method and parameter expression. The results demonstrate the superiority of the TORCH
in terms of evolutionary efficiency improvement and strategy performance enhancement.

1. Introduction
Recently, the development of robot systems has brought

significant changes to human society [53]. It is predicted
that a number of robot systems will be applied in the
entertainment industry [24], sports [6], and work [29]
in the near future. In addition, many characteristics of
robot systems inspire studies in the field of information
and communication technologies [4], thereby promoting
the development of industrial information integration en-
gineering. Considering the development of science and
technology, robot systems are expected to accomplish more
complex tasks [5]. Whereas robot systems enjoy numerous
advantages, a single robot incurs a high failure probability
because of its internal complexity; it is difficult to repair
after damage, expensive, etc. [21]. Consequently, swarm
robotics systems (SRSs) have gradually become the research
focus [19][46]. The SRSs have strong robustness [41] and
can emerge intelligent behaviours [35] that a single robot
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system does not have because of the individuals perform
tasks autonomously. Currently, SRSs have been applied
to applications, including object transportation [3], region
coverage [39], and fire detection [40].

A swarm robot system consists of several individual
robots with their strategies. A strategy is the corresponding
relationship between the state and action and determines the
robot’s ability to complete tasks. According to the different
types of member robots, a swarm can be divided into
homogeneous and heterogeneous swarms. A homogeneous
swarm is defined as a robot swarm with the same hardware
structure, control module, and behaviour strategy [8]. This
indicates that the individual robots will make consistent
decisions and behaviours in the same environment. A
heterogeneous swarm is a robot swarm in which each
individual has different strategies; therefore the individuals
choose different behaviours in the same environment. In
this study, we focus on the homogeneous swarm because it
comes from the behavioural models of natural systems [7],
and it is robust, invulnerable, and scalable compared to the
heterogeneous swarm [1][15]. It can also promote the study
on swarm systems as part of the heterogeneous swarm [9].

Considering the development of robot technology and
increase in people’s needs, the task scenarios of swarm
robots are expected to be diversified and dynamic such as
various task scenario maps [51] and dynamic task targets
[32]. The robot systems for a single taskwill be difficult to be
widely used because of their limited application scenarios.
With the in-depth study, the single robot with the ability of
online rule generation is designed in a mobile robot control
application [20]. However, most of the current SRSs are
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designed for specific scenes, whereas making the swarm
robots complete tasks accurately after switching scenes is
impractical in most cases. Therefore, the SRSs are expected
to evolve strategies autonomously to adapt to the various
task scenarios. Being a key technology, swarm robots’
strategy evolution ability directly affects the function and
universal applicability of an SRS in reality. In swarm robot
applications, the problem of swarm autonomous strategy
evolution has been widely studied nonetheless, there are still
many challenges [30][55].

• In general, the efficiency of strategy evolution in
an SRS is low. This is because the evaluation of
the behaviour strategy of an SRS is a very time-
consuming process, and it usually needs to complete
a task on the simulator to obtain the evaluation results
of the behaviour strategy. In addition, to achieve a
better behaviour strategy, it usually needs thousands
of times of behaviour strategy evaluation to obtain
a satisfactory result. This leads to repeated task
execution and consumes lots of computing resources.

• Many strategy evolution methods depend on the
control centre and require an overall understanding of
the scenarios in the evolution process [28]. However,
it is often difficult for an SRS to obtain the global
environment’s information in advance in the actual
task process. Therefore, the evolved behaviour
strategies of swarm robots are difficult to apply to
actual task scenarios.

• The existing design of swarm behaviour strategy
usually adopts the strategy expression method based
on the parametric equations. This indicates that the
behaviour strategy of the swarm robots is weighted by
the pre-set weights. The optimization of a behaviour
strategy is only the weight-parameters’ optimization.
Owing to the limitation of search space, the strategies
based on the parametric equations are often difficult
to apply to complex task scenarios.

To address the aforementioned challenges, we pro-
pose TORCH, i.e., heterogeneous-homogeneous swarm
coevolution method, which aims to coordinate the strategy
evolution and distributional characteristic of behaviour
strategies. TORCH includes a swarm coevolution mech-
anism to accelerate the evolution process and a novel
strategy expression method (behaviour expression tree)
to interpret the strategy. It is worth noting that the
proposed method uses only the local information obtained
by environment perception and neighbour communication to
evolve the strategy, without the need of accessing the global
information. To verify the effectiveness and feasibility of
our method, the flocking task scene of swarm robots is
constructed. The flocking problem is a classic problem
in which the swarm robots are expected to complete the
position transfer at a fast speed and high density. In this
task, each robot in the swarm is required to adopt the
same strategy. Based on the TORCH, the swarm can

independently evolve a structured strategy to adapt to the
task scenarios through the feedback of the environment in
executing the tasks.

The main contributions of this study are as follows:
• A heterogeneous-homogeneous swarm coevolution

mechanism is devised to improve the efficiency of
strategy evolution. The proposed method can simul-
taneously evaluate n behaviour strategies (n is the
scale of a swarm) in a single task execution. This
greatly improves the evolutionary efficiency of swarm
behaviour strategies.

• Based on the proposed TORCH, the swarm robots
can optimize behaviour strategies by interacting with
the environments. The strategy evolution of swarm
robots using the TORCH method requires only the
local information. Thus, the evolved strategies are
more applicable to distributed actual task scenarios.

• A new flexible behaviour strategy search space for
swarm robots is designed, improving the ability of
swarm robots to perform complex tasks. Specifically,
considering the behaviour strategy expression of the
swarm robots, compared to the strategy expression
method based on the parametric equations, the be-
haviour expression tree method has a more flexible
behaviour strategy search space and can be applied to
complex task scenarios.

The rest of this study is organized as follows: Sec-
tion II reviews the related studies. The mechanism of
heterogeneous-homogeneous coevolution is presented in
Section III. Section IV introduces the structure and evolution
method of the behaviour expression tree. Section V demon-
strates the simulation results and conducts the performance
analysis. Finally, the study is concluded with a discussion
on future studies in Section VI.

2. Ralated work
Strategy evolution is an important research topic in

the applications of swarm robots, and several studies have
focused on enabling the swarm to evolve new strategies
automatically, improving its intelligence. Two fundamental
technologies are widely applied to achieve this goal: heuris-
tic algorithm (HA) and reinforcement learning (RL) [27].
Heuristic algorithms for search problems can be considered
as classical methods to solve this problem. Yu et al. [56]
used a super hyper-heuristic algorithm to evolve the build-
cleaning strategies of swarm robots. The swarm scores the
behaviours in the heuristic repository through interaction
and selects the most suitable behaviour for the current
environmental state that has the highest score. Heuristic
algorithms are also used to sort behaviours to find the
best sequence of behaviours for a specific task [28]. To
find the appropriate intelligent algorithms to solve specific
complex problems, Tao et al. [48] proposed a new dynamic
configuration method of intelligent algorithm. However,
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these methods only aim at the specific and known task
scenarios and have to start learning again when the scenarios
change. Zou et al. [58] proposed a dynamic multi-objective
evolutionary algorithm to help the population adapt to
the new environment by building a dynamic evolutionary
environmental model. However, the algorithm relies on
centralized control and is not suitable for distributed tasks.
In addition, the mechanism of cell growth inspired studies
in robotics [14][33]. By coding behavioural strategies into
artificial chromosomes, the evolution of strategies is realized
by simulating Darwinian evolution in biology. The method
of generating behavioural strategies in robotics is defined
as evolutionary robotics (ER) [31]. In addition to solving
single-agent problems [23], evolutionary computation is
also beneficial to the generation of swarm behaviour[52]
such as object transport [13], aggregation [11], and swarm
foraging [2]. Pugh et al. [36] used genetic algorithm
(GA) and particle swarm optimization (PSO) to make robots
learn to avoid obstacles. Takadama et al. [47] applied
evolutionary robotics to a task scheduling problem, making
the robots learn the correct behavioural order in a space truss
construction task. However, these methods often require a
long time for learning, and it is not easy to evolve an effective
strategy within a short period of time. Therefore, this study
investigates the strategy evolution method in a swarm based
on the coevolution mechanism, aiming to enhance the speed
and improving the efficiency of the evolution.

Moreover, reinforcement learning (RL) has been applied
to swarm robots [18][54]. Multi-agent reinforcement
learning (MARL) is based on multi-agent systems and
aims to investigate the algorithm design for generating
adaptive agents. Reinforcement learning allows individuals
to learn behaviour through repeated experiments with the
environment and other factors. Many problems such as
odour localization robots [16] and RoboCup Soccer [38] are
solved by MARL. Iima et al. [17] used MARL to solve the
formation problem, where agents update the Q-table value
through information exchange so that all robots in a swarm
can reach the target positions in the shortest time. Zhang
et al. [57] also applied MARL to swarm confrontation
environments to make agents learn to cooperate and compete
with one another. The scenario-transfer training method
and the self-play training method were proposed to improve
the model’s convergence speed and the combat capability
of agents. Gebhardt et al. [12] used the reinforcement
learningmethod tomake the swarm complete assembly tasks
automatically and applied the evolved strategy to a kilobot
robot swarm, practically verifying the effectiveness of their
evolved strategy. However, reinforcement learning often
needs a long time of training, which usually requires offline
learning and a substantial computing power. Therefore,
heuristic methods were used to speed up the convergence
of reinforcement learning. For instance, Shi et al. [44]
used the pheromone mechanism of ant colony algorithm
to accelerate the path selection of swarm robots. Seo
et al. [43] used the reinforcement learning method with
the support vector machine (SVM) based on structural

risk minimization and distributed genetic algorithms for
behaviour learning and evolution of collective autonomous
mobile robots. Most of the strategies evolving from MARL
are represented by neural networks, making it difficult to
be interpreted and adjusted artificially. In this study, we
hope that the proposed evolutionary method can effectively
coordinate the evolutionary performance and strategy space
for the swarm robots to evolve effective and well-structured
strategies within a short period of time.

Flocking is a primary technology for many applications
of SRSs. A troop of robots may be ordered to move to
a specific place to perform combat operations and tasks
in an obstacle task environment. During this process,
the speed of the troop transfer is considered to make a
surprise attack and gain an advantage in a confrontation
[42]. Kumar et al. [22] designed a Lyapunov-based
path planner that organizes vehicles by formations that
ensure a safe collision-free path for the swarm to its target.
However, the rules designed artificially can only adapt
to one environment. Therefore, flocking was chosen to
verify the feasibility and effectiveness of the proposed
strategy evolution method. In swarm robots, flocking
is a fundamental operation in which a troop of robots
moves from a source to a destination in an aggregation.
The flocking model was first studied in the pioneering
work of Reynolds [37] who demonstrated the flocking
behaviour from a set of simple rules, namely collision
avoidance, velocity matching, and cluster centring. Based
on these general rules, several models have been designed
to describe the biological phenomena and cell migration
[26][34]. Considering the practicability, several studies are
devoted to enhancing the performance of flocking. Ma
et al. [25] designed a control model and optimized it to
make the swarm robots move smoothly. Vásárhelyi et al.
[50] established a real UAV swarm model and designed
an evolutionary optimization framework to optimize the
parameters. Nevertheless, the expressions of flocking
behavioural strategies are primarily based on parameter
expressions, and the corresponding optimization process is
the adjustment process of the parameters. The parameter
expressions lead to the lack of clear structures and flexible
behavior control of the evolved strategies. The proposed
method is expected to express the behaviour strategies of
swarm robots more clearly, expand the strategy search space
and is beneficial to further studies.

3. Heterogeneous-homogeneous swarm
coevolution method
The swarm for strategy evolution is composed of several

robots, and each robot chooses a behaviour strategy (that
is, the robot’s gene). Because the standard robot swarm is
supposed to be homogeneous [15], the goal of the evolution
is to find the best strategy for a homogeneous swarm. When
all the robots in a swarm execute the strategy, the swarm
will obtain the highest evaluation and complete the task as
expected. Many studies have focused on strategy evolution
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Figure 1: Gene selections of swarm robots in the
heterogeneous-homogeneous swarm coevolution method.

Figure 2: Strategy evolution model of an individual robot in a
swarm.

while requiring multiple iterations, and usually one strategy
will be evaluated in each iteration [25]. Compared to
serial evolutionary algorithms, parallel methods are proven
to have better performances [49]. Therefore, we designed
TORCH in which the heterogeneous-homogeneous swarm
coevolution mechanism could evaluate multiple strategies
in parallel to improve the evolution speed and provide the
possibility for online evolution.

Fig. 1 shows the gene selections of the proposed
heterogeneous-homogeneous swarm coevolution mechanis-
m. In the evolution process of the TORCH, the individuals
in the swarm choose different strategies and the same
strategies alternatively. Thus, this mechanism is named
heterogeneous-homogeneous coevolution. At the heteroge-
neous stage, each individual in the swarm carries different
gene sequences. This indicates that the genome carried
by the swarm robots are G = {Gene1, Gene2,… , Genen}.Through the interaction between the robots and environ-
ment, the estimations of genes carried by the robots are
given separately. At the homogeneous stage, the swarm will
accurately evaluate the genes with high evaluation selected
at the heterogeneous stage. Each robot in the swarm carries
the same gene, indicating that the genome carried by the

swarm robots are G = {Genem, Genem,… , Genem}. In
each iteration, m changes from 1 to mmax, where mmax is
the number of the genes with high evaluation selected at the
heterogeneous stage, and it is also the number of iterations
at the homogeneous stage. We evaluate the genes as
swarm strategies to obtain accurate gene evaluations through
the interaction between the swarm and environment. The
accurately evaluated gene sequence will be used as the next
heterogeneous stage’s input in the robots’ local memory pool
to guide a new cycle of the heterogeneous-homogeneous
coevolution process. Using this mechanism, swarm robots
can obtain the estimated evaluations of multiple strategies
by one task execution, but not only one strategy, so as to
accelerate the evolution process.

This paper focuses on the strategy evolution of swarm
robots. After gene selections, swarm robots need to interact
with the task environment to evaluate the genes, so as
to evolve the genes. Thus, it is important to study the
strategy evolution process of individual robots in the swarm.
Therefore, we model the swarm as R = {R1, R2, ..., Rn},where Ri (i ∈ [1, n]) represents different individual robots.
It is assumed that the strategy of the individual robot Ri inthe swarm is represented byGi. In the process of swarm task
execution, a single robot realizes strategy evolution through
interaction with the environment, and the process is shown
in Fig. 2.

All robots in the swarm are in the task scene, and they
get rewards through their interaction with the environment.
Each robot has a gene, and the gene is also the strategy
used to decide the behaviour. To evaluate the strategy
comprehensively, a reward value which includes swarm
evaluations and individual evaluations is employed. The
robot’s current gene and reward value are linked and stored
in the local memory pool. Meanwhile, the pairs of a
neighbour’s gene and reward value are obtained through
communication interaction and stored in the robot’s local
memory pool. At different stages according to the TORCH,
the pairs are stored in differentmemory pools, and new genes
are evolved in different ways. At the heterogeneous stage,
fitness is stored in the memory pool (heterogeneous), and
the pool is used to support the generation of new genes.
At the homogeneous stage, the high-fitness genes retained
at the heterogeneous stage were added to the memory pool
(homogeneous) and accurately evaluated in sequence. At the
end of the homogeneous phase, these genes and their exact
evaluations are returned to the memory pool (heterogeneity)
as the basis for a new heterogeneous evolution. The new
gene interacts with the environment to generate the new
reward value and enters the next iteration. The gene
evaluation, local memory pool, and communication between
the robots are introduced in the following subsections.
3.1. Gene evaluation

The evaluation function of a gene usually includes fitness
and reward functions. The fitness function, which is usually
used in the evolutionary algorithm, gives a comprehensive
evaluation of a gene by integrating the swarm and individual
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Table 1

Metrics of the �ocking task

Metrics Type
Category
of metrics

Name Content Function

f1 Reward Individual
Distance variation
to target area

The distance variation to
the target area before and
after a period of time.

dtargeti (t2) − d
target
i (t1)

f2 Reward Individual Obstacle distance [50]

The cumulative distance
between an individual and
the nearest obstacle in a
period of time.

dobstaclei (t2)

f3 Reward Individual
Speed direction
smoothness [50]

The deviation between
the previous and the
current speed direction of
a single individual.

|�i(t2) − �i(t1)|

f4 Reward Swarm Aggregation degree [50]
The distance from an
individual to the centre of
the swarm.

distance((xi, yi),
∑ni

j=1(xj , yj)∕ni)

f5 Reward Swarm Speed correlation [50]

The deviation between
the individual's speed
direction and the swarm's
average direction.

|�i(t2) −
∑ni

j=1 �j(t2)∕ni|

f6 Fitness Individual
Time to reach the
target area

The time consumption of
a single individual from
the initial position to
the target area.

Ti

f7 Fitness Swarm Swarm average time
The average time taken
by the swarm to reach the
target area.

∑n
j (Tj)∕n

f8 Fitness Individual Gene complexity
The longer the behaviour
expression the more complex
the gene.

Lengtℎ(Gi)

metrics at the end of the task execution. In contrast, the
reward function is calculated in each step during the swarm
tasks to evaluate the individual’s single-step action. The
reward is an important part of reinforcement learning, which
guides the whole process of training. To achieve more
accurate gene evaluations, we designed the reward value
feedback obtained by interacting with the environment to
assist the evaluation of the genes to accurately guide the
direction of evolution. As a result, in our proposed strategy
evolution method, the fitness and reward functions are both
used to assist the evolution.

The swarm obtains some attribute metrics in the process
of task execution, and these attributes can be used to evaluate
the gene from various aspects. The attributes of metrics are
divided into two categories: swarm metrics and individual
metrics. Considering the flocking task, the attribute metrics
we selected are shown in Table 1. Regarding the task
execution, the robot will calculate the step-by-step reward
to calculate the fitness function of its gene.
3.1.1. Step-by-step reward

Limited by hardware and software conditions, the in-
teractions between individuals and environment are usually
discretized. Regarding the reinforcement learning algorith-
m, the individuals obtain rewards from the environment at

each step in the process of interacting with the environment.
Similarly, the step-by-step reward is set in the process of
strategy evolution. An individual calculates the reward
by combining the changes of its internal state and the
environment (including the states of the neighbours) each
time it interacts with the environment. The rewards are
recorded within the individuals as the basis for evaluating
their genes.

Considering the flocking task, the attributes of metrics
we selected are shown in Table 1, where the metrics f1-f5are step-by-step rewards. Regarding robot Ri, the functionsof the step-by-step reward from t1 to t2 are listed, where
t2 represents the current time and t1 is the time of the last
step. dtarget is the distance to the target area, dobstacle is
the distance to the nearest obstacle, and � is the velocity
direction. (xi, yi) is the current position of robot Ri inthe coordinate system, and ni represents the number of
neighbours of robot Ri within its communication range.
(xj , yj) and �j are the current position and velocity directionof the neighbour Rj , respectively.It is worth noting that owing to the genetic inconsistency
of individuals in the process of heterogeneous evolution,
the distribution of rewards should reduce the interference of
neighbours as much as possible. Therefore, the weight of the
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swarmmetrics should be reduced. In addition, since the goal
of the evolution is to make the robot learn to avoid obstacles,
the position of the robot will be judged in each step. If the
robot is inside the obstacle, a huge negative reward will be
given to the robot.
3.1.2. Fitness function

After an iteration of a task, the individuals will com-
prehensively evaluate the task execution and calculate the
fitness value of the genes. This evaluation represents the
fitness of the gene to the current task scenario. Regarding
the flocking task, the time consumption to complete the task
is added to the fitness as shown as f6 and f7 in Table 1,
where Ti is the time taken by robot Ri to reach the target
area, and n is number of robots in the swarm.

Furthermore, the genetic complexity of the robot is set
as f8 because the evolved strategy is expected to be simple.
The gene complexity is simply calculated using the length
of the behaviour expression.

Individual and swarm metrics have different weights,
namely � and �. In the process of heterogeneous evolution, �
is a small value to reduce the influence of the swarmmetrics.
The fitness f is designed as Eq. (1).

f =
[

�(f ∗
1 + f ∗

2 + f ∗
3 ) + �(f

∗
4 + f ∗

5 )
]

×(�f ∗
6 +�f

∗
7 )×�f8,

(1)
where * represents the normalization of the metric.
3.2. Local memory pool

Because there is no centralized control in the strategy
evolution process of a swarm, an individual’s local memory
pool is an important part of the realization of swarm
cooperation, which plays the same role as the population
in the traditional genetic algorithms. An individual’s local
memory pool stores its gene and gene fitness, as well as the
pairs of genes and gene fitness obtained from neighbours
through communication. Each pair of gene and gene fitness
is stored as a memory in the local memory pool. Owing to
the weak storage capacity of swarm robots, the individual
local memory pool is utilized. The mechanism of increasing
and deleting memory is explained as follows:
3.2.1. Increase of memory

When a new pair of gene and gene fitness is obtained,
it needs to be added to the local memory pool. It is first
determined whether the gene has been stored in the memory
pool. If it already exists, the gene fitness is replaced by the
average of the old and the new gene fitness. If it does not
exist, it is added to the memory pool as a new memory.
3.2.2. Deletion of memory

At the end of an iteration of the task execution, the
memory in the individual’s local memory pool is arranged
in a descending order according to the gene fitness. The
maximum storage capacity is specified, and the memory that
does not exceed the maximum storage capacity is retained.
The rest is deleted.

3.2.3. Transfer of memory
Robots have different memory pools at different stages

in the TORCH. At the heterogeneous stage, the robot widely
acquires the pairs of a neighbour’s genes and fitness and
stores them in the local memory pool (heterogeneous). This
memory pool stores the estimated fitness of the genes,
and the new genes evolve based on this memory pool.
At the homogeneous stage, the high-fitness genes in the
memory pool (heterogeneous) are transferred to the memory
pool (homogeneous). As the evolution iterates, accurate
evaluations of the genes in this pool are obtained.

In the transition of homogeneous and heterogeneous
stages, the memories in the robot memory pool is trans-
ferred. When a robot enters the homogeneous stage from
the heterogeneous stage, the memories in the memory pool
(heterogeneous) is sorted according to the gene fitness.
Thereafter, the selected mmax high-quality memories are
copied to the memory pool (homogeneous). At the end
of the homogeneous stage, the memories in the memory
pool (homogeneous) with accurate fitness are returned to
the memory pool (heterogeneous) to update the gene’s
evaluations.
3.3. Gene generation

Before entering a new iteration, the individual robots
in the swarm generate new genes from their current genes.
There are different ways by which the robots generate new
genes at the heterogeneous and homogeneous stages.
3.3.1. Heterogeneous stage

The current gene is defined as the basic gene, the mem-
ory pool (heterogeneous) is considered as the "population",
and the new genes are generated through the evolutionary
operations. Different basic genes and random evolutionary
operations lead to gene diversity, and similar memory pools
(heterogeneity) ensure the convergence of the evolution.
3.3.2. Homogenous stage

The genes in the memory pool (homogenous) are select-
ed in order. After obtaining the accurate evaluation value of
the selected gene, the evaluation of this gene is replaced, and
the next gene in the memory pool (homogenous) is selected
as the current gene.
3.4. Communication

Owing to no centralized control in the process of strategy
evolution, communication is a necessary method to achieve
the cooperation of individuals in the swarm. The main goal
of communication in this method is to reach a consensus of
strategy in the swarm. This method requires the swarm to
obtain the genes and gene fitness from neighbours as much
as possible.

Therefore, the local communication of individuals is
ensured by setting themaximum communication rangeCmax
and calculating the neighbour communication proximity
matrix. The content of the communication in the proposed
TORCH is the pair of gene and gene fitness. It is assumed
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Figure 3: Example of the structure of a behaviour expression
tree.

that the communication bandwidth of the individual robot is
enough for the transmission of the content.

4. Robot control structure: behaviour
expression tree
In the strategy evolution of swarm robots, each robot

corresponds to a gene which is evolved to adapt to the
environment. This gene is also the behavioural strategy for
the robot which is evolvable. Inspired by the expression tree,
we proposed the behaviour expression tree as the control
structure to express the strategies of the robots in a swarm
in the TORCH. The behaviour expression tree is a kind of
hierarchical and structured expression of robot control using
a tree. The advantages of the behaviour expression tree
include: 1) the behaviour expression tree has a wide range
of applications which can be applied to a variety of tasks by
adjusting the content of the nodes in the tree; 2) a behaviour
expression tree can be encoded through a specific coding
method which reduces the communication complexity in the
robot evolution; 3) the behaviour expression tree has a clear
structure and changes on a larger strategy space. An example
of the structure of a behaviour expression tree is shown in
Fig. 3.

Fig. 3 shows a complete behaviour expression tree that is
composed of nodes and lines, in which the nodes include leaf
and middle nodes. The leaf nodes are either the behaviours
that the robot can perform or the parameters affiliated to the
function nodes and are represented by squares. The middle
nodes are the functions that combine these leaf nodes and
are represented by circles. The number of child nodes to the
function nodes is set to three. Starting from the root node,
the final action of the robot can be obtained by recursively
traversing all the nodes of the tree. The structure, encoding,
decoding, and evolution of a behaviour expression tree are
detailed in the following subsections.
4.1. Nodes

Nodes are important parts of a behaviour expression
tree and are divided into function, parameter, and behaviour
nodes, where the function nodes are intermediate nodes,
and the others are leaf nodes. A behaviour expression
tree is a structured combination of behaviour, function, and

Figure 4: Speci�c directions of meta-actions of a robot in the
�ocking task.

parameter nodes.
4.1.1. Behaviour nodes

The behaviour nodes are the terminal nodes of a be-
haviour expression tree, and the degree of all the behaviour
nodes is zero. The behaviour nodes contain the meta-actions
that a single robot can perform in a task scene.

Considering the flocking task of swarm robots, we set
the meta actions that a single robot can perform using
the actuator as directions of movement, including “t”- the
direction toward the target area, “i”- the direction toward
the initial position, “o”- the direction toward the nearest
obstacle, “n”- the direction toward the nearest neighbour,
“c”- the direction toward the centre of the neighbours,
and “s”- the direction toward the average speed of the
neighbours. The specific directions of the meta-actions of
a robot are shown in Fig. 4.
4.1.2. Function nodes

The function nodes are the middle nodes of a behaviour
expression tree. These are used to combine the actions of
leaf nodes, and the degree of a function node cannot be
zero. Each function node is represented by a symbol and
performs different functions. Considering the flocking task,
the function nodes are defined as the vector sum of the
direction vector. The weights of the vectors are also set
as leaf nodes. In this task, we define several functions to
operate the unit direction vector. The function nodes are
shown in Table 2. For a function node, the number of its
child nodes is three; nonetheless, the number of inputs is two
or three. This is because when there is no parameter node in
the child nodes of a function node, the parameter � is set
to the default value of one. In this situation, the behaviour
nodes are the first two child nodes orderly selected, and the
third child node is not calculated.
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Table 2

Function nodes in the �ocking task

Symbol
Number
of Inputs

Inputs
Function
Operation

�&� 3
DirectionD1, D2,
Parameter � D1 +D2 × �

�#� 3
DirectionD1, D2,
Parameter � D1 −D2 × �

�$� 3
DirectionD1, D2,
Parameter � D1 +D2∕�

�@� 3
DirectionD1, D2,
Parameter � D1 −D2∕�

4.1.3. Parameter nodes
The parameter nodes are affiliated to the function, which

should be able to be adjusted according to the task scenario.
Thus, three distances are set as the parameter nodes in the
flocking task, including “T ”- the distance from the target
area, “O”- the nearest distance from the obstacles, and “N”-
the distance from the nearest neighbour.
4.2. Encoding and decoding of the behaviour

expression tree
The genetic material of an organism is stored in chro-

mosomes. A chromosome is composed of gene fragments
which determine the genetic information carried by the
chromosome. Considering the biological evolution theory,
each individual of a population carries a chromosome,
and the evolution of the population is realized through
the crossover and mutation of gene fragments in the
chromosome. To benefit the variation and evolution of
swarm robots, the behaviour expression tree can be encoded
into a chromosome to simulate the genetic evolution process
of an organism. The transformation between the behaviour
expression tree and chromosome is realized by encoding and
decoding.
4.2.1. Encoding

The behaviour expression tree is encoded in a hier-
archical order. There is one root node in the first layer
of a behaviour expression tree. This is encoded as the
first symbol of the behaviour expression tree. Thereafter,
the behaviour expression tree is traversed according to the
breadth-first principle, and the traversal sequence of the
nodes is the symbol sequence of the chromosome.

As shown in Fig. 5, the root node of the behaviour
expression tree is “&”, which is the first node of behaviour
expression. The first node of the second level is “o”;
therefore, the behaviour expression tree can be coded as
“&oT$&Nonic” chronologically.
4.2.2. Decoding

The purpose of coding the behaviour expression trees
into chromosomes is to simplify the communication and
facilitate evolution. When the robots need to choose actions
based on genes, the chromosome needs to be decoded to the

Figure 5: Process of encoding a behaviour expression tree.

Figure 6: Process of decoding a behaviour expression tree.

behaviour expression tree structure.
In the designed behaviour expression tree, the number

of input variables of function nodes is two. According to
the steps in Fig. 6, the chromosome is decoded into the
behaviour expression tree.
4.3. Legality inspection

Variation can occur anywhere within the genes. How-
ever, the structural organization of genes must remain legal.
Since the mutation may convert a leaf node into a function
node, there may be no enough leaf nodes to ensure that
the behavior expression tree is complete. Therefore, after
the mutation operation, gene legalization is required to
ensure that the generated new gene is complete. Due to
the limitation of communication bandwidth, we expect to
simplify the behavior expression of a robot. Therefore, after
the legalization of a gene, a gene simplification operation is
applied, so that the shortest gene used to generate a complete
behavior expression tree is retained. Finally, a new legal
gene with shortest length is generated.

A behavioural expression is considered as a gene which
consists of a head and a tail. The head consists of middle and
leaf nodes, whereas the tail contains only leaf nodes. For
each problem, the length ℎ of the gene’s head is determined
by the length of the expression sequence before the last
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middle node. To limit the complexity of the problem, we
need to limit the maximum length ℎmax of the head. After
deciding on the length ℎ of the head, the minimum length
of the tail tmin required to build a complete tree is a function
of ℎ and k, where k is the number of inputs (also known
as the maximum number of operands) of the function with
the largest number of variables. The size of tmin is obtainedusing the following equation:

tmin = ℎ ∗ (k − 1) + 1. (2)
Therefore, after the behaviour expression chromosome

is evolved, the generated new behaviour expression chromo-
some should meet the following requirements:

ℎ < ℎmax, (3)

t > ℎ ∗ (k − 1) + 1. (4)
If the length ℎ of the gene’s head does not satisfy Eq. (3),

the redundant fragments of the head after ℎmax will be
removed. If the tail’s length t of the gene does not satisfy
Eq. (4), the gene will be supplemented with random gene
fragments to meet the requirement of the length.

In addition, because each function node requires a fixed
number of inputs, its leaf nodes must meet this requirement.
The gene whose root node is a leaf node is also illegal
because it indicates that the robot only performs a meta-
action, making it difficult to produce effective behaviours.
When a gene is detected as illegal, it needs to re-evolve and
generate a new gene.
4.4. Evolution of a behaviour expression

In processing a task, each robot has its own action
strategy as the gene, which is interpreted by the behaviour
expression tree. Therefore, a robot’s action strategy can
evolve through the evolution of the behaviour expression
tree.

In the genetic evolution stage of swarm robots, individu-
als select the geneswith the highest fitness values as the basic
genes by combining the gene information obtained from the
local memory pools, and make evolutionary operations to
generate new genes. In this process, the gene evolutionary
operations include replication, single-point mutation, two-
point mutation, single-point recombination, fragment re-
combination, single-point insertion, and fragment insertion
[10]. The probabilities of these evolutionary operations are
set as Pr, Psm, Ptm, Psr, Pfr, Psi, and Pfi, respectively.Among them, the single-point and two-point mutations only
occur in a gene, and there is no need to select another gene
in the memory pool to assist the evolution process. On
the contrary, insertion and recombination operations need
to select another gene to assist the evolutionary operations.

Figure 7: Processes of single-point and two-point mutations.

4.4.1. Replication
Individuals have a probability to directly copy the basic

gene into the new one without the evolutionary operation
to avoid the displacement of high-quality genes as much as
possible.
4.4.2. Mutation

The single-point mutation is one of the most efficient
operators, considering its modification ability which makes
a point in a gene to be mutated into any symbol in the
symbol dictionary. Similarly, a mutation operation in which
two points mutate simultaneously is known as a two-point
mutation.

Fig. 7 illustrates the behaviour expression tree of a basic
gene before and after mutation under single-point and two-
point mutations. Considering the single-point mutation, we
note that there is only one-point mutation in the process of
basic gene replication, that is, the “b” of Position 4 mutates
to “+”. Regarding the process of the two-point mutation,
there are two-point mutations in the gene: the “b” of Position
4 mutates to “c”, and the “c” of Position 5 mutates to “b”.
The effect of the mutation may be trivial in some particular
cases. For instance, a two-point mutation only changes the
order of two-leaf nodes as shown in Fig. 7. Considering
other instances, although the mutation may only change
a point, it can cause obvious changes in the structure of
the behaviour expression tree. For example, the single-
point mutation shown in Fig. 7 leads to the addition of
one more layer to the structure of the behaviour expression
tree. The mutation operation in the coding sequence mostly
dramatically changes the shape of a behaviour expression
tree, which is essential for the evolutionary ability.
4.4.3. Recombination

Recombination refers to the pairing of two randomly
selected parent chromosomes and the exchange of some
fragments. Here, two kinds of recombination are mainly
considered: single-point and two-point recombinations.
Recombination always involves two parent genes and the
generation of two new genes. Therefore, in the recombi-
nation operation of a behaviour expression tree, the parent
genes are designated as a basic gene and a reference gene.

Single-point recombination: the parent genes pair with
each other and exchange the parts after the recombination
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Figure 8: Processes of single-point and two-point
recombinations.

points. To demonstrate the working mechanism of the
single-point recombination, the recombination of a basic
gene is shown in Fig. 8 as an illustration. In the process
of single-point recombination, the basic and reference genes
exchange the whole gene fragments after the recombination
point. In this example, the recombination point of the
basic gene is after “a”, and the recombination point of the
reference gene is after “d”. Therefore, the gene fragment
“bc” of the basic gene is replaced by fragment “+ebe” after
the recombination point of the reference gene, resulting in a
new gene.

Two-point recombination: The parent genes pair with
each other, and two recombination points are randomly
selected from the genes to cut off the genes. The two
genes exchange the parts between the two recombination
points and form two new child genes. Fig. 8 shows the
working process of two-point recombination. The fragment
“∗ ab” of the basic gene is replaced by the segment “d+”
between the recombination points of the reference gene.
The recombination results in the addition of new function
nodes. In the process of gene legalization, new leaf nodes
are randomly generated, and effective leaf nodes are retained
in the process of gene simplification. Finally, a new gene
“+d + ca” is generated.
4.4.4. Insertion

Insertion refers to randomly selecting a single gene
point or fragment in one parent gene and inserting it into
the selected positions of the other parent gene. Similar
to recombination, insertion involves two parent genes and
produces two new children. The parent genes are designated
as a basic gene and a reference gene.

Single-point insertion: This involves selecting a gene
point from one of the parent genes, selecting an insertion
position from the other gene, and inserting a single gene unit
into the position. Fragment insertion: This also includes
selecting a gene fragment from one of the parent genes,
selecting an insertion position from the other gene, and
inserting the gene fragment into the selected position. Fig. 9
illustrates the insertion process. In the single-point insertion,
the gene point “+” of the reference gene is inserted between
the gene points “a” and “b” of the basic gene. In the
fragment insertion, the gene point “d+” of the reference

Figure 9: Process of single-point and fragment insertions.

gene is inserted between the gene points “+” and “∗” of the
basic gene to obtain a new gene.

5. Experimental results
In this section, four experiments are designed to verify

the proposed TORCH. First, to verify that the proposed
method is feasible, the TORCH effectively evolves a strategy
for the flocking task. Thereafter, we apply the evolved
strategy in a changed task scenario to verify the method’s
adaptability to different task scenarios. Finally, comparative
experiments are designed to verify the evolutionary efficien-
cy improvement of the proposed method and performance
enhancement of the evolved behaviour model.

Considering the flocking task, swarm robots are expect-
ed to move from the initial position to the target area in an
environment with obstacles. The task area size is 50m×50m.
In this scene, swarm robots are expected to reach the target
position, that is, within the radius of 10m with [50,50] as
the centre). Swarm robots have no centralized control, and
each robot decides its own subsequent action according to
its genes and the current scenario. The speed of the robots
in the swarm is fixed at 1m/s. The maximum simulation step
given to the task is 200, i.e., even if the swarm does not reach
the task area within 200 steps, the task will stop.

Other parameters are set as follows: the maximum
communication range is Cmax = 5m, the weight � = 1,
� = 1 is in the homogeneous evolution stage, and the
weight � = 1, � = 0.1 is in the heterogeneous evolution
stage. The evolution probabilities of behaviour expression
chromosomes are set as Pr = 0.1, Psm = 0.1, Ptm = 0.2, Psr= 0.2, Pfr = 0.1, Psi = 0.1, and Pfi = 0.1. In the case where
a reference gene is required, the probability is set as Pr =0.1, Psm = 0.5, Ptm = 0.4, Psr = 0, Pfr = 0, Psi = 0, and Pfi= 0 with an empty local memory pool.
5.1. Correlation experiments

In this experiment, we explored the correlation between
the fitness function values of the homogeneous and hetero-
geneous genomes in different swarms.

The experiment was conducted in swarms with sizeN =
10, 20, 30, and 40. First, a genome G = {G1, G2,… , Gnr}is randomly generated, and the number of genes in the
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Figure 10: Correlation between the estimated and accurate
�tness of homogeneous and heterogeneous swarm robots with
di�erent scales.

genome is equal to the swarm size N , that is, nr = N .
Thereafter, these genes are assigned to the homogeneous and
the heterogeneous swarm robots, respectively. Regarding
the homogeneous swarm robots, each robot selects the same
gene, and the swarm evaluates a gene accurately through
one task execution to evaluate the nr random genes using
nr flocking task executions. Considering the heterogeneous
swarm robots, each robot selects a gene in the genome, and
the swarm estimates all the genes in the genome through one
task execution.

The correlation between the estimated and accurate
fitness of the homogeneous and heterogeneous swarm
robots under different scales is shown in Fig. 10. The
horizontal coordinate is the estimated evaluation value of
the genes obtained by a heterogeneous swarm, whereas the
vertical coordinate is the accurate evaluation value of genes
obtained by a homogeneous swarm. The similarity between
the fitness is measured using the Spearman correlation
coefficient [45]. The correlation between them is calculated
as r (r ∈ [−1, 1]), according to Eq. (5). The output range of
r is -1 to +1, 0 represents no correlation; a negative value
indicates a negative correlation, whereas a positive value
represents a positive correlation. The line with a correlation
of 1 is shown. The closer the points are to the line, the
greater the correlation is. This indicates that the estimated
evaluation is approximately equal to the accurate evaluation.

r = 1 −
6
∑

d2

n
(

n2 − 1
) , (5)

where d is the difference between the ranks of the two
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Figure 11: Fitness correlation coe�cient of 120 genes
calculated using the heterogeneous and homogeneous swarms
of di�erent sizes. The evaluated �tness of the heterogeneous
and homogeneous swarms are indicated as S

hete
and S

homo
,

respectively. The swarm sizes are 10, 20, 30, and 40. S
hete

-10
is the �tness of a heterogeneous swarm, including ten robots.

columns of fitness and n is the length of each column.
Considering Fig. 10 the swarms of different sizes have

the values of correlation r as 0.90303, 0.91237, 0.85042,
and 0.9474, respectively. The values of correlation are in
the range [0.8,1], indicating that there is a strong correlation
between the estimated evaluation of the heterogeneous
swarm and the accurate evaluation of the homogeneous
swarm. Therefore, we can evaluate the fitness of genes with
the help of the estimated evaluation of the heterogeneous
swarm.

We evaluated a genome with 120 genes in different
swarms of N = 10, 20, 30,, and 40 and calculated their
estimated and accurate fitness. The correlation coefficient
is shown in Fig. 11. The fitness correlation of all the
swarms fluctuates at approximately 0.9. This demonstrates
that there is a little difference in the calculation results of
the gene fitness among different swarms. Therefore, the
heterogeneous swarm evolution can be used to speed up gene
evaluation. Among them, the correlation of Shete is close toone in different sizes of the heterogeneous swarm, indicating
that the size of the heterogeneous swarm has a little effect
on the gene’s fitness evaluation. Therefore, we can flexibly
set the size of the heterogeneous swarms. Considering the
computational efficiency, in the following experiments, the
swarm scaleN is fixed at ten.
5.2. Effectiveness experiments

Based on the calculated correlation in the previous
experiments, the feasibility of the proposed TORCH is
verified. To verify the effectiveness of the proposed method,
it is applied to evolve the strategy of a swarm of ten robots
to perform the flocking task. The optimal fitness and its
corresponding gene changes during the evolution are shown
in Fig. 12.
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Figure 12: Optimal �tness and its gene changes during the
evolution of a �ocking task.
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Figure 13: Behaviour expression tree of the gene
�@tO@@tNoT s� obtained in the evolution process and the
trajectories of the swarm robots under this gene: (a) behaviour
expression tree (b) trajectories of the swarm robots.

With the increase of iterations in the evolutionary pro-
cess, the fitness of the optimal gene is gradually improved.
When the evolutionary generation reaches 1200, the process
of the strategy evolution of the swarm has almost converged.
We focus on the two genes obtained in the evolution process,
which are also the strategies for swarm robots to perform the
flocking task.

At the early stage of the evolution process, the behaviour
expression of the optimal gene is “@tO@@tNoT s”, and
the fitness is calculated as 1.1148. The specific structure
after decoding it into a behaviour expression tree and the
trajectories of the swarm robots under this gene are shown
in Fig. 13. By decoding the behaviour expression tree,
the behaviour strategy of the swarm robots (i.e., the next
movement direction) is shown as Eq. (6).

�i = t − 1∕O × ((o − s∕T ) − t∕N) , (6)
where, �i is the next movement direction of robot Ri. O,
N , and T are the parameters, which are the distance toward
the nearest obstacle, nearest neighbour, and target area,
respectively. t, o, and s are the vectors pointing to the
target area, nearest obstacle, and average velocity of the
neighbours.

Under this evolved behaviour model, the swarm robots
reach the terminal area stably. However, the swarm does
not achieve smooth obstacle avoidance. In addition, the
aggregation degree and speed smoothness of the swarm
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Figure 14: Behaviour expression tree of the gene �@toO�
when �tness = 1.5219 and the trajectories of the swarm robots
under this gene: (a) behaviour expression tree (b)trajectories
of swarm robots.

need to be improved. When the evolutionary generation
reaches 2600, the optimal strategy evolves to “@toO” and
1.5219 fitness. The specific structure after decoding into
the behaviour expression tree and trajectories of the swarm
robots are shown in Fig. 14. The behaviour strategy
expression of the swarm robots is shown as Eq. (7).

�i = t − 1∕O × o, (7)
where �i is the next movement direction of robotRi. O is the
distance toward the nearest obstacle. t and o are the vectors
pointing to the target area and nearest obstacle, respectively.

The expression clearly shows the main factors that need
to be considered most in the swarm robots flocking task:
the direction toward the target area, the direction toward the
nearest obstacle, and the nearest distance from the obstacles.
The functionD1−1∕�×D2 is used to connect these factors.A clear strategy expression will contribute to a systematic
andmore structured analysis and further research of the task.
The evolved strategy shows that the target area is the main
direction, and the closer the robot is to the obstacle, the
larger deflection is needed to keep it away from the nearest
obstacle. Fig. 14(b) shows the trajectories of the swarm
robots. The evolved gene guides the swarm robots to reach
the target area more quickly with more intensive format,
while the obstacle avoidance is smoother and the evolved
behavior expression is simpler.
5.3. Adaptability experiments

The goal of strategy evolution is to evolve a strategy that
can be applied to a class of scenario rather than a specific
task scenario. Therefore, in order to verify the adaptability
of our evolved strategy to different task scenarios, we adjust
the shape and position of obstacles in the task scenario
to generate new complex task scenarios. We make the
swarm to perform the flocking task in the new complex task
scenarios with the evolved gene “@toO”.

The trajectories of the swarm under the evolved gene
are shown in Fig. 15. In different scenes, the swarms can
avoid obstacles smoothly. The fitness in Fig. 15(b) is less
than Fig. 15(a) because the time to reach the target area is
increased with changed obstacles.
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Figure 15: Trajectories of swarm robots in the newly set task
scenes.
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Figure 16: Trajectories of swarm robots in task scenes with
narrow channels.

To further increase the complexity of the scene, we use
the combination of two obstacles to set up a narrow channel
in the task scene. In the complex scene, the swarm is
requested to pass through the narrow channel to reach the
target area in time. Fig. 16 shows the trajectories of swarm
robots in the task scenes with narrow channels. Under the
evolved strategy, swarm robots can still pass through the
narrow channels and reach the target area in a short period of
time despite the fluctuation in the motion. The fitness of the
gene reduced owing to the movement of the swarm robots in
the narrow channels.
5.4. Superiority experiments

In this section, we quantitatively compare the TORCH
to the traditional homogeneous swarm evolution method to
verify the performance improvement of the TORCH. The
proposed TORCH uses the behaviour expression tree as the
expression of strategy which has a larger strategy search
space than the traditional parameter expression. Therefore,
we compare the behaviour expression tree to the parameter
expression. Details of the two methods in the comparison
are given as follows:

• Homogeneous swarm evolution method: All the
individuals of the swarm follow the same behavioural
model. The swarm obtains a gene evaluation in each
iteration, and the whole genome evaluations are ob-
tained through multiple iterations. After calculating
the evaluation values of the genes, a new genome is
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Figure 17: Fitness of the four methods under 3000 iterations.
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Figure 18: Paths of the swarm �ocking under the optimal
strategies of the four methods.

evolved and iterates for several iterations to obtain the
evaluation value of the new genome.

• Parameter expression: When an individual chooses
an action, all the possible motion directions are
calculated, and the next motion direction in the
current state is obtained using the weighted average of
these motion directions. Only the parameters of these
weights need to be optimized in the evolution process.

We quantitatively compare the four methods to verify
the advantages of the proposed method. The three com-
pared methods are briefly described as follows: Parameter
Expression based Heterogeneous-Homogeneous swarm co-
evolution method (PEHH), Behaviour Expression Tree
based Homogeneous swarm coevolution method (BETH),
and Parameter Expression based Homogeneous swarm co-
evolution method (PEH).
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The experiments were conducted with the same initial
task scene and the setting of the evolution parameters.
Fig. 17 shows the optimal gene fitness of the four methods
under 3000 iterations. The TORCH improves the fitness
at the fastest speed and keeps it at a high value. The
search speed of the BETH is second to the TORCH, and the
optimal gene fitness is higher than the other methods. This
indicates that the behaviour expression tree method can not
only expand the strategy search space but also improve the
flocking performance of the evolved strategies. The TORCH
is superior to other methods in terms of performance and
search speed.

After 3000 iterations, the paths of the swarm flocking
under the optimal strategies of each method are shown in
Fig. 18. It is shown that the approximate optimal strategies
can be found using the method of the behaviour expression
tree. In Fig. 18(a) and (c), the trajectories of swarm robots
are similar; nonetheless, because of the long strategy of the
robots, the calculated fitness is lower in Fig. 18(c). However,
the evolved strategies cannot achieve obstacle avoidance
using the parameter expression. This is because the strategy
search space of the parametric strategy expression method is
small, and it is unable to find a better strategy to complete
the flocking task. In Fig. 18(b), the swarm reaches the
target area quickly and reduces the time inside the obstacles;
nevertheless, it does not avoid obstacles reliably. Moreover,
in Fig. 18(d), the swarms move around the initial area
because they do not find a way to reach the target area
without obstacles. Because of the negative reward for
entering the obstacles, hovering around the initial area is an
effective way to avoid a low reward value.

6. Conclusion and future work
In this study, we propose an effective strategy evolution

method, TORCH. The TORCH uses the heterogeneous-
homogeneous swarm coevolution mechanism to improve
the performance and convergence speed of the strategy
evolution method. Furthermore, TORCH is based on a
novel strategy expression method known as the behaviour
expression tree which is an extension of the conventional
expression tree to enhance the performance of the evolved
strategy. The proposed TORCH only uses local information
in the evolution process; thus, the evolved strategies are
more suitable for distributed task scenarios. The TORCH is
a method that can be applied to solve a variety of problems
of swarm robots. Considering the designed experiments,
the TORCH successfully addresses the issue of autonomous
obstacle avoidance in the flocking task of swarm robots. It
can also achieve super performance and efficient strategy
search. In addition, the strategy expression method based
on the behaviour expression tree results in a larger strategy
search space. Extensive experiments demonstrate that
TORCH can improve the efficiency of strategy evolution and
enhance the performance of the evolved strategy effectively.

The following issues will be addressed in our future
studies. First, we will take the communication instability

of swarm robots’ tasks into consideration to improve the
robustness of the model to consider more challenging
task scenes. Second, we will extend our heterogeneous-
homogeneous swarm coevolution method to enable online
strategy evolution of the swarm. Third, we plan to
implement the TORCH in a real SRS to further test its
performance. Finally, it is expected that the evolved
strategies can inspire an artificial strategy design, and
better artificial strategies design can inspire the evolutionary
process to obtain strategies beyond expectation.
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