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Abstract

This paper proposes a push and pull search (PPS) framework for solving constrained multi-objective optimization problems
(CMOPs). To be more specific, the proposed PPS divides the search process into two different stages: push and pull search
stages. In the push stage, a multi-objective evolutionary algorithm (MOEA) is used to explore the search space without considering
any constraints, which can help to get across infeasible regions very quickly and to approach the unconstrained Pareto front. Fur-
thermore, the landscape of CMOPs with constraints can be probed and estimated in the push stage, which can be utilized to conduct
the parameter setting for the constraint-handling approaches to be applied in the pull stage. Then, a modified form of a constrained
multi-objective evolutionary algorithm (CMOEA), with improved epsilon constraint-handling, is applied to pull the infeasible indi-
viduals achieved in the push stage to the feasible and non-dominated regions. To evaluate the performance regarding convergence
and diversity, a set of benchmark CMOPs and a real-world optimization problem are used to test the proposed PPS (PPS-MOEA/D)
and state-of-the-art CMOEAs, including MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, MOEA/D-SR, C-MOEA/D and
NSGA-II-CDP. The comprehensive experimental results show that the proposed PPS-MOEA/D achieves significantly better per-
formance than the other six CMOEAs on most of the tested problems, which indicates the superiority of the proposed PPS method
for solving CMOPs.

Keywords: Push and Pull Search, Constraint-handling Mechanisms, Constrained Multi-objective Evolutionary Algorithms,
Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D)

1. Introduction

Many real-world optimization problems can be summarized
as optimizing a number of conflicting objectives simultaneously
with a set of equality and/or inequality constraints. Such prob-
lems are called constrained multi-objective optimization prob-
lems (CMOPs). Without lose of generality, a CMOP considered
in this paper can be defined as follows [1]:

minimize F(x) = ( f1(x), . . . , fm(x))T

subject to gi(x) ≥ 0, i = 1, . . . , q
h j(x) = 0, j = 1, . . . , p
x ∈ Rn

(1)

where F(x) = ( f1(x), f2(x), . . . , fm(x))T is an m-dimensional ob-
jective vector, and F(x) ∈ Rm. gi(x) ≥ 0 is an inequality con-
straint, and q is the number of inequality constraints. h j(x) = 0
is an equality constraint, and p represents the number of equal-
ity constraints. x ∈ Rn is an n-dimensional decision vector.
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Email address: zfan@stu.edu.cn (Zhun Fan)

When solving CMOPs with inequality and/or equality con-
straints, we usually convert the equality constraints into in-
equality constraints by introducing an extremely small positive
number δ. The detailed transformation is given as follows:

h j(x)′ ≡ δ − |h j(x)| ≥ 0 (2)

To deal with a set of constraints in CMOPs, the overall con-
straint violation is a widely used approach, which summarizes
the violations into a single scalar as follows:

φ(x) =

q∑
i=1

|min(gi(x), 0)| +
p∑

j=1

|min(h j(x)′, 0)| (3)

Given a solution xk ∈ Rn, if φ(xk) = 0, xk is feasible. All
the feasible solutions constitute a feasible solution set S , which
is defined as S = {x|φ(x) = 0, x ∈ Rn}. For any two solutions
xa, xb ∈ S , xa is said to dominate xb if fi(xa) ≤ fi(xb) for each
i ∈ {1, ...,m} and f j(xa) < f j(xb) for at least one j ∈ {1, . . . ,m},
denoted as xa � xb. If there is no other solution in S dominating
solution x∗, then x∗ is called a Pareto optimal solution. All
of the Pareto optimal solutions constitute a Pareto optimal set
(PS ). The mapping of the PS in the objective space is called a
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Pareto optimal front (PF), which is defined as PF = {F(x)|x ∈
PS }.

A key issue in CMOEAs is to maintain a balance between
minimizing the objectives and satisfying the constraints. In fact,
most constraint-handling mechanisms in evolutionary computa-
tion are designed to try to achieve this balance. For example,
the penalty function approach adopts a penalty factor λ to main-
tain the balance between minimizing the objectives and satisfy-
ing the constraints. It converts a CMOP into an unconstrained
MOP by adding the overall constraint violation multiplied by a
predefined penalty factor λ to each objective [2]. In the case
of λ = ∞, it is called a death penalty approach [3], which
means that infeasible solutions are totally unacceptable. If λ
is a static value during the search process, it is called a static
penalty approach [4]. If λ is changing during the search pro-
cess, it is called a dynamic penalty approach [5]. In the case in
which λ is changing according to the information collected dur-
ing the search process, it is called an adaptive penalty approach
[6, 7, 8, 9].

In order to avoid the need to tune the penalty factors, another
type of constraint-handling method is also in use, which com-
pares the objectives and constraints separately. Representative
examples include the constraint dominance principle (CDP)
[10], epsilon constraint-handling method (EC) [11], stochastic
ranking approach (SR) [12], and so on. In CDP [10], three ba-
sic rules are adopted to compare any two solutions. In the first
rule, given two solutions xi, x j ∈ Rn, if xi is feasible and x j

is infeasible, xi is better than x j. If xi and x j are both infeasi-
ble, the one with a smaller constraint violation is better. In the
last rule, xi and x j are both feasible, and the one dominating the
other is better. CDP is a popular constraint-handling method, as
it is simple and has no extra parameters. However, it is not suit-
able for solving CMOPs with very small and narrow feasible
regions [13]. For many generations, most or even all solutions
in the working population are infeasible when solving CMOPs
with this property. In addition, the diversity of the working pop-
ulation can hardly be well maintained, because the selection of
solutions is only based on the constraint violations according to
the second rule of CDP.

In order to solve CMOPs with small and narrow feasible re-
gions, the epsilon constraint-handling (EC) [11] approach has
been suggested. It is similar to CDP except for the relaxation of
the constraints. In EC, the relaxation of the constraints is con-
trolled by the epsilon level ε, which can help to maintain the
diversity of the working population in the case when most solu-
tions are infeasible. To be more specific, if the overall constraint
violation of a solution is less than ε, this solution is deemed fea-
sible. The epsilon level ε is a critical parameter in EC. In the
case of ε = 0, EC is the same as CDP. Although EC can be
used to solve CMOPs with small feasible regions, controlling
the value of ε properly is not at all trivial.

Both CDP [10] and EC [11] first compare the constraints,
then compare the objectives. SR [12] is different from CDP and
EC in terms of the order of comparison. It adopts a probability
parameter p f ∈ [0, 1] to decide if the comparison is to be based
on objectives or constraints. For any two solutions, if a ran-
dom number is less than p f , the one with the non-dominated

objectives is deemed better—i.e., the comparison is based on
objectives. On the other hand, if the random number is greater
than p f , the comparison is based first on the constraints, then
on the objectives, as is the case with CDP. In the case of p f = 0,
SR is equivalent to CDP.

In recent years, much work has been done in the field
of many-objective evolutionary algorithms (MaOEAs) [14],
which gives us new ways to solve CMOPs. In order to bal-
ance the constraints and the objectives, some researchers adopt
multi-objective evolutionary algorithms (MOEAs) or MaOEAs
(when the number of objectives is greater than three) to deal
with constraints [15]. For an M-objective CMOP, its constraints
can be converted into one or k extra objectives. Then the M-
objective CMOP is transformed into an (M + 1)- or (M + k)-
objective unconstrained MOP, which can be solved by MOEAs
or MaOEAs. Representative examples include Cai and Wang’s
Method (CW) [16], the infeasibility driven evolutionary algo-
rithms (IDEA) [17], and dynamic constrained multiobjective
evolutionary algorithms [18].

To maintain a good balance between minimizing the ob-
jectives and satisfying the constraints, some researchers com-
bine several constraint-handling mechanisms, which can be fur-
ther divided into two categories, including adopting different
constraint-handling mechanisms in either different evolution-
ary stages or in different subproblems. For example, the adap-
tive trade-off model (ATM) [19] uses two different constraint-
handling mechanisms, including a multi-objective approach
and adaptive penalty functions, in different evolutionary stages.
The ensemble of constraint-handling methods (ECHM) [20]
uses three different constraint-handling techniques, including
epsilon constraint-handling (EC) [11], self-adaptive penalty
functions (SP) [9] and superiority of feasible solutions (SF)
[21]. Three subpopulations are generated in ECHM, and each
subpopulation uses a different constraint-handling method.

In this paper, we propose a biphasic CMOEA, namely push
and pull search (PPS), to balance objective minimization and
constraint satisfaction. Unlike the above-mentioned constraint-
handling methods, the PPS divides the search process into two
different stages. In the first stage, only the objectives are opti-
mized, which means the working population is pushed toward
the unconstrained PF without considering any constraints. Fur-
thermore, the landscape of constraints in CMOPs can be esti-
mated in the push stage, which can be applied to conduct the
parameter setting of the constraint-handling approaches to be
applied in the pull stage. In the pull stage, an improved ep-
silon constraint-handling approach is adopted to pull the work-
ing population to the constrained PF. In summary, it provides a
new framework and has the following potential advantages.

1. It has the ability to get across large infeasible regions of
the constrained PF. Since the constraints are ignored in the
push stage, any infeasible regions encountered before the
true PF present no barriers for the working population.

2. It facilitates the parameter setting in the constraint-
handling methods. Since the landscape of constraints has
already been explored by the push process, much informa-
tion has been discovered and gathered to guide the param-
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eter setting for the pull stage.

The rest of the paper is organized as follows. Section 2 in-
troduces the general idea of PPS. Section 3 gives an instan-
tiation of PPS in the framework of MOEA/D, called PPS-
MOEA/D. Section 4 designs a set of experiments to compare
the proposed PPS-MOEA/D with six other CMOEAs, including
MOEA/D-IEpsilon [22], MOEA/D-Epsilon [23], MOEA/D-SR
[24], MOEA/D-CDP [24], C-MOEA/D [25] and NSGA-II-
CDP [10]. Then, a real-world optimization problem, namely
the robot gripper optimization, is used to test the performance
of PPS-MOEA/D and the other six CMOEAs in Section 5. Fi-
nally, conclusions are drawn in section 6.

2. The General Framework of Push and Pull Search

Constraints define infeasible regions in the decision space,
and sometimes are defined in such a way that they have an effect
on the PF in the objective space. The influence of infeasible
regions on PFs can be generally classified into three different
situations. For each situation, the search behavior of PPS is
illustrated by Fig. 1-3, respectively, which can be summarized
as follows.

1. Infeasible regions block the way towards the PF, as illus-
trated by Fig. 1(a). In this circumstance, the unconstrained
PF is the same as the constrained PF, and PPS has signifi-
cant advantages compared with other CMOEAs. Since the
constraints are ignored in the push stage of PPS, the infea-
sible regions have no effect on the searching of PPS. Fig.
1(a)-(e) show the push process at various stages, showing
that the working population crosses the infeasible regions
in this case without any extra effort. Because the con-
strained PF is the same as the unconstrained PF, the true
PF has already been approximated by the working popula-
tion in the push process, so the pull search has no effect on
the working population, as shown in Fig. 1(f).

2. The unconstrained PF is covered by infeasible regions and
all of it is infeasible. Every constrained Pareto optimal
point thus lies on some constraint boundary, as illustrated
by Fig. 2(a). In this circumstance, PPS first approaches the
unconstrained PF by using the push strategy as illustrated
by Fig. 2(a)-(c). After the working population approaches
the unconstrained PF, the pull strategy is applied to pull
the working population towards the true (constrained) PF,
as illustrated by Fig. 2(d)-(f).

3. Infeasible regions make the original unconstrained PF par-
tially feasible, as illustrated by Fig. 3(a). In this situation,
some parts of the true PF have already been achieved dur-
ing the push search, as illustrated by Fig. 3(c). In the pull
stage, infeasible solutions are pulled to the feasible and
non-dominated regions, as illustrated by Fig. 3(d)-(f). Fi-
nally, the entire true PF has been found by PPS. It is worth
noting that infeasible regions may reduce the dimension-
ality of the PF in this situation.

From the above analysis, it can be observed that PPS can
deal with CMOP situations with all types of interactions among
constraints and the unconstrained PF.

The main steps of PPS includes the push and pull search pro-
cesses. However, the decision as to when to switch from the
push to the pull search process is very critical. A strategy for
when to switch the search behavior is suggested as follows.

rk ≡ max{rzk, rnk} ≤ ε (4)

where rk represents the max rate of change between the ideal
and nadir points during the last l generations. ε is a user-defined
parameter; for the examples in this paper, we have set ε = 1e−3.
The rates of change of the ideal and nadir points during the last
l generations are defined in Eq. (5) and Eq. (6), respectively.

rzk = max
i=1,...,m

{
|zk

i − zk−l
i |

max{|zk−l
i |,∆}

} (5)

rnk = max
i=1,...,m

{
|nk

i − nk−l
i |

max{|nk−l
i |,∆}

} (6)

where zk = (zk
1, . . . , z

k
m), nk = (nk

1, . . . , n
k
m) are the ideal and nadir

points in the k-th generation, and zk
i = min j=1,...,N fi(x j), nk

i =

max j=1,...,N fi(x j). N is the population size. zk−l =

(zk−l
1 , . . . , zk−l

m ), nk−l = (nk−l
1 , . . . , nk−l

m ) are the ideal and nadir
points in the (k − l)-th generation. rzk and rnk are two points
in the interval [0, 1]. ∆ is a very small positive number, which
is used to make sure that the denominators in Eq. (5) and Eq.
(4) are not equal to zero. In this paper, ∆ is set to 1e − 6.

At the beginning of the search, rk is initialized to 1.0. At
each generation, rk is updated according to Eq. (4). If rk is less
than or equal to the predefined threshold ε, the search behavior
is switched to the pull search.

To summarize, PPS divides its search process into two differ-
ent stages: push search and pull search. During the first stage,
push search, which disregards the constraints, is adopted to ap-
proximate the unconstrained PF. Once Eq. (4) is satisfied, pull
search is used to pull any infeasible solutions to the feasible and
non-dominated regions—constraints are fully considered. PPS
terminates when a predefined halting condition is met. In the
following section, we will describe the instantiation of the push
and pull strategy in a MOEA/D framework in detail.

3. An Instantiation of PPS in MOEA/D

This section describes the details of an instantiation of the
push search method and the pull search method in the frame-
work of a particular type of MOEA/D search, thus capturing
the entire PPS method.

3.1. The push search

In the push search stage, an unconstrained MOEA/D is used
to search for non-dominated solutions without considering any
constraints. When solving a MOP by using MOEA/D, we de-
compose the MOP into a set of single optimization subproblems

3
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Figure 1: Infeasible regions block the way towards the PF, and the unconstrained PF is the same as the constrained PF. (a)-(e) show the various stages of the
push search process, and show the working population getting across the infeasible regions without any extra efforts dealing with constraints. (f) shows the pull
search process, which is the same as (e) in this particular case, since the true PF is the same as the unconstrained PF, and has already been achieved by the working
population in the push search process.
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Figure 2: The unconstrained PF is covered by infeasible regions and all of it is infeasible. The true PF thus lies on some constraint boundaries. (a)-(c) show the
push search process, in which the working population crosses the infeasible regions without any barriers. (d)-(f) show the pull search process, in which the infeasible
solutions in the working population are gradually pulled to the feasible and non-dominated regions.
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Figure 3: Infeasible regions make the original unconstrained PF partially feasible. (a)-(c) show the push search process, and some parts of the true PF have been
found in this process. In the pull stage, infeasible solutions are gradually pulled to the feasible and non-dominated regions, as shown in (d)-(f).

and optimize them simultaneously in a collaborative way. Each
subproblem is associated with a decomposition function by us-
ing a weight vector λi. In the decomposition-based selection
approach, an individual is selected for survival into next gener-
ation based on the value of the decomposition function.

There are three popular decomposition approaches, includ-
ing weighted sum [26], Tchebycheff [26] and boundary inter-
section approaches [27]. In this paper, we adopt the Tcheby-
cheff decomposition method, with the detailed definition given
as follows.

gte(x, λi, z∗) = max
j=1,...,m

1
λi

j

(| f j(x) − z∗j |) (7)

where λi is a weight vector, and
∑

j=1,...,m λ
i
j = 1, λi

j ≥ 0. z∗ is
the ideal point, and z∗j = mink=1,...,N f j(xk).

In the push search stage, a newly generated solution x is re-
tained into the next generation based on the value of gte as de-
scribed in Algorithm 1.

Algorithm 1: Push Subproblem

1 Function result = PushSubproblems(x j,yi,z∗)
2 result = f alse
3 if gte(yi|λ j, z∗) ≤ gte(x j|λ j, z∗) then
4 x j = yi

5 result = true
6 end
7 return result
8 end

3.2. The pull search
In this process, infeasible solutions are pulled to the feasi-

ble and non-dominated regions. To achieve this, a constraint-
handling mechanism is adopted to punish the infeasible solu-
tions in the pull search stage. An improved epsilon constraint-
handling to deal with constraints is proposed, with the detailed
formulation given as follows.

ε(k) =

(1 − τ)ε(k − 1), if r fk < α
ε(0)(1 − k

Tc
)cp, if r fk ≥ α

(8)

where r fk is the ratio of feasible to infeasible solutions in the
k-th generation. τ is the parameter to control the speed of re-
ducing the relaxation of constraints in the case of r fk < α, and
τ ∈ [0, 1]. α is to control the searching preference between the
feasible and infeasible regions, and α ∈ [0, 1]. cp is to control
the speed of reducing relaxation of constraints in the case of
r fk ≥ α. ε(k) is updated until the generation counter k reaches
the control generation Tc. ε(0) is set to the maximum overall
constraint violation of the working population at the end of the
push search. Compared with the ε setting in [28], the proposed
method in Eq. (8) has an exponential decreasing speed to set
ε(k) in the case of r fk < α, which can help to find feasible so-
lutions more quickly and efficiently. In the case of r fk ≥ α, the
Eq. (8) is the same as the ε setting in [28].

In the pull stage, a newly generated solution x is selected
for survival into the next generation based on the value of gte,
the overall constraint violation φ(x) and the value of ε(k), as
illustrated by Algorithm 2. In the case of ε(k) = 0, it is the
same as the constraint-handling method proposed for MOEA/D
in [29].
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Algorithm 2: Pull Subproblem

1 Function result = PullSubproblems(x j,yi,ε(k),z∗)
2 result = f alse
3 if φ(yi) ≤ ε(k) and φ(x j) ≤ ε(k) then
4 if gte(yi|λ j, z∗) ≤ gte(x j|λ j, z∗) then
5 x j = yi; result = true
6 end
7 else if φ(yi) == φ(x j) then
8 if gte(yi|λ j, z∗) ≤ gte(x j|λ j, z∗) then
9 x j = yi; result = true

10 end
11 else if φ(yi) < φ(x j) then
12 x j = yi; result = true
13 end
14 return result
15 end

3.3. PPS Embedded in MOEA/D

Algorithm 3 outlines the pseudocode of PPS-MOEA/D. A
CMOP is decomposed into N single-objective subproblems,
and these subproblems are initialized at line 1. The ideal point
z∗ and the generation counter k are also initialized at line 1.
At line 2, rk, which is the maximum rate of change of ideal and
nadir points, is initialized to 1.0, the flag of search stage is set to
push (PushStage = true), and the maximum overall constraint
violation found so far is initialized to -1 (maxViolation = -1).
The ideal and nadir points at k-th generation are set at line 3,
and the details can be found in Algorithm 4. maxViolation is
updated at line 3, and the details can be found in Algorithm 5.

Then, the algorithm repeats lines 4-38 until Tmax generations
have been reached. The value of ε(k) and the search strategy
are set at lines 5-16 based on Eq. (4) and Eq. (8). At line 5,
the maximum rate of change of ideal and nadir points rk is cal-
culated, and the details can be found in Algorithm 6. ε(k) and
ε(0) are initialized at line 9. Lines 18-34 show the process of
updating subproblems. At line 18, S represents the neighbor
indexes of solution xi. Lines 19-20 perform a DE operator to
generate a new solution y. Line 21 takes a polynomial mutation
on y, and generates a new solution yi. Then the new solution yi

is repaired as follows: If an element of yi is less than its lower
boundary, it is reset to its lower boundary. If an element of yi

is great than its upper boundary, it is reset to its upper bound-
ary. The ideal point z∗ is updated at line 22, and the details
can be found in Algorithm 7. At line 23, the maximum overall
constraint violation—maxViolation is updated.

From line 27 to 31, it can be seen that different search strate-
gies are used to update subproblems. When PushStage = true,
the push search is adopted (line 28); otherwise, the pull search
is used (line 30). At line 36, the generation counter k is up-
dated. The ideal and nadir points at k-the generation are also set
at this line, and the setting method can be found in Algorithm
4. Finally, the set of feasible and non-dominated solutions NS
is updated according to the non-dominated ranking as given in
NSGA-II [10] at line 37. The updating method can be found in

Algorithm 8.
Algorithm 4 shows the process to set ideal and nadir points at

k-th generation. At lines 2-5, the ideal and nadir points zk, nk are
initialized. Lines 9-11 update each element of the ideal point zk,
and lines 12-14 update each element of the nadir point nk.

Algorithm 5 shows the process to update the maximum over-
all constraint violation found so far. The updating process is
performed at lines 2-4. If the newly generated solution yi has
a larger overall constraint violation (φ(yi)) than maxViolation,
maxViolation is set to φ(yi).

Algorithm 6 shows the pseudocode of calculating the maxi-
mum rate of change of ideal and nadir points rk. At lines 2-3,
rzk and rnk are calculated according to Eq. (5) and Eq. (6)
respectively. At lines 4, rk is calculated according to Eq. (4).

Algorithm 7 shows the pseudocode of updating the ideal
point z∗. If the j-th objective of the newly generated solution
yi has a smaller value ( f j(yi)) than z∗j , then z∗j is set to f j(yi).

Algorithm 8 shows the pseudocode of selecting feasible and
nondominated solutions. At lines 2-3, the number of feasible
solutions (N f s) and the set of feasible solutions (P f s) are cal-
culated. If N f s is smaller than the population size (N), the re-
sult is set to P f s, as shown at lines 4-5. Line 7 performs non-
dominated ranking on P f s, and solutions in P f s are classified
into q different fronts. Lines 9-12 add the first k−1 fronts to the
result until the size of result is greater than (N − P f s[k].size()).
Lines 13-16 select the N−result.size() solutions front k-th front
(P f s[k]) according to the crowding distance. The more details
can be found in [10].

Remark: The proposed PPS is a general framework for solv-
ing CMOPs. Even though only PPS-MOEA/D is realized in this
paper, it can be instantiated in many different MOEAs. At each
search stage, a large variety of information can be gathered to
extract useful knowledge that can be used to guide both search
stages. In fact, knowledge discovery can be a critical step in
the PPS framework. In this paper, we only utilize some statisti-
cal information. For example, the maximum overall constraint
violation at the end of the push search stage is adopted to set
the value of ε(0). The ratio of feasible to infeasible solutions
at the pull search stage is used to control the value of ε(k). But
in fact, many data mining methods and machine learning ap-
proaches can be integrated into the PPS framework for solving
CMOPs more effectively and efficiently.

4. Experimental Study

4.1. Experimental Settings
To evaluate the performance of the proposed PPS method, six

other CMOEAs, including MOEA/D-IEpsilon [22], MOEA/D-
Epsilon [23], MOEA/D-SR [24], MOEA/D-CDP [24], C-
MOEA/D [25] and NSGA-II-CDP [10], are tested on LIR-
CMOP1-14 [22], which have large infeasible regions in the
search space. The detailed parameters in each algorithm are
listed as follows:

1. The mutation probability Pm = 1/n (n denotes the dimen-
sion of a decision vector). The distribution index in the
polynomial mutation is set to 20.
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Algorithm 3: PPS-MOEA/D
Input: N: the number of subproblems. Tmax: the

maximum generation. N Weight vectors:
λ1, . . . , λN . T : the size of the neighborhood. δ:
the probability of selection from neighbors. nr:
the maximal number of solutions replaced by a
child. Tc: the control generation for ε(k).

Output: NS : a set of feasible non-dominated solutions
1 Decompose a CMOP into N subproblems associated

with weight vectors. Generate a population
P = {x1, . . . , xN} randomly. For each i = 1, . . . ,N, set
B(i) = {i1, . . . , iT }, where λi1 , . . . , λiT are the T closest
weight vectors to λi. Set the ideal point
z∗j = mini=1,...,N f j(xi). Set k = 1.

2 Set rk = 1.0, PushStage = true, maxViolation = -1;
3 SetIdealNadirPoints(P, k); For each i = 1, . . . ,N,

UpdateMaxViolation(xi,maxViolation);
4 while k ≤ Tmax do
5 if k >= l then Set rk = CalcMaxChange(k) ;
6 if k < Tc then
7 if rk ≤ ε and PushStage == true then
8 PushStage = false;
9 ε(k) = ε(0) = maxViolation;

10 end
11 if PushStage == f alse then
12 Update ε(k) according to Eq. (8);
13 end
14 else
15 ε(k) = 0;
16 end
17 for i← 1 to N do
18 if rand < δ then S = B(i) else S = {1, . . . ,N};
19 Set r1 = i and select two indexes r2 and r3 from

S randomly, and r2 , r3.
20 Generate a new solution y from xr1

, xr2
and xr3

by a DE operator.
21 Perform a polynomial mutation [30] on y to

generate a new solution yi, and repair yi.
22 end
23 UpdateIdealPoint(yi, z∗);
24 UpdateMaxViolation(yi,maxViolation);
25 Set c = 0.
26 while c , nr or S , ∅ do
27 select an element j from S randomly.
28 if PushStage == true then
29 result = PushSubproblems(x j, yi, z∗);
30 else
31 result = PullSubproblems(x j, yi, ε(k), z∗);
32 end
33 if result == true then c = c + 1;
34 S = S \{ j};
35 end
36 k = k + 1; SetIdealNadirPoints(P, k);
37 NS = NDSelect(NS

⋃
P, N);

38 end

Algorithm 4: Set Ideal and Nadir Points at k-th Gener-
ation

1 Function SetIdealNadirPoints(P,k)
2 for j← 1 to m do
3 // m is the number of objective.
4 zk

j = 1e30; nk
j = −1e30;

5 end
6 for i← 1 to N do
7 for j← 1 to m do
8 // P(i) is the i-th solution in the population P
9 if f j(P(i)) < zk

j then
10 zk

j = f j(P(i))
11 end
12 if f j(P(i)) > nk

j then
13 nk

j = f j(P(i))
14 end
15 end
16 end
17 end

Algorithm 5: Update the Maximum Constraint Viola-
tion

1 Function UpdateMaxViolation(yi,maxViolation)
2 if φ(yi) > maxViolation then
3 maxViolation = φ(yi) // according to Eq. (3);
4 end
5 end

Algorithm 6: Calculate the Maximum Rate of Change
of Ideal and Nadir Points rk

1 Function rk = CalcMaxChange(k)
2 Calculate rzk according to Eq. (5).
3 Calculate rnk according to Eq. (6).
4 rk = max{rzk, rnk}, according to Eq. (4).
5 end

Algorithm 7: Update the Ideal Point

1 Function UpdateIdealPoint(yi, z∗)
2 for j← 1 to m do
3 // m is the number of objective.
4 if f j(yi) < z∗j then
5 z∗j = f j(yi)
6 end
7 end
8 end
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Algorithm 8: Select Feasible and Nondominated Solu-
tions.

1 Function result = NDSelect(P,N)
2 Calculate the number of feasible solutions N f s in P.
3 Select a set of feasible solutions P f s from P.
4 if N f s ≤ N then
5 result = P f s

6 else
7 Perform non-dominated ranking on P f s, and

generate q fronts according to [10]. The set of
solutions in the k-th front is denoted as P f s[k].

8 Set k = 1;
9 while (result.size() + P f s[k].size() < N) do

10 result = result
⋃

P f s[k];
11 k = k + 1;
12 end
13 remainNo = N − result.size();
14 Calculate the crowding distance [10] for each

solution in P f s[k];
15 Select top remainNo solutions with the

maximum crowding distance from P f s[k],
denoted as Rsolutions

16 result = result
⋃

Rsolutions;
17 end
18 return result
19 end

2. DE parameters: CR = 1.0, f = 0.5.
3. Population size: N = 300. Neighborhood size: T = 30.
4. Halting condition: each algorithm runs for 30 times inde-

pendently, and stops when 300,000 function evaluations
are reached.

5. Probability of selecting individuals from its neighborhood:
δ = 0.9.

6. The max number of solutions updated by a child: nr = 2.
7. Parameter setting in PPS-MOEA/D: Tc = 800, α = 0.95,

τ = 0.1, cp = 2, l = 20.
8. Parameter setting in MOEA/D-IEpsilon: Tc = 800, α =

0.95,τ = 0.1, and θ = 0.05N.
9. Parameter setting in MOEA/D-Epsilon: Tc = 800, cp = 2,

and θ = 0.05N.
10. Parameter setting in MOEA/D-SR: S r = 0.05.

4.2. Performance Metric
To measure the performance of PPS-MOEA/D, MOEA/D-

IEpsilon [22], MOEA/D-Epsilon [23], MOEA/D-SR [24],
MOEA/D-CDP [24], C-MOEA/D [25] and NSGA-II-CDP
[10], two popular metrics—the inverted generation distance
(IGD) [31] and the hypervolume[32] are adopted.

• Inverted Generational Distance (IGD):

The IGD metric reflects the performance regarding convergence
and diversity simultaneously. The detailed definition is given as

follows: 
IGD(P∗, A) =

∑
y∗∈P∗

d(y∗,A)

|P∗ |

d(y∗, A) = min
y∈A
{

√∑m
i=1(y∗i − yi)2}

(9)

where P∗ denotes a set of representative solutions in the true PF,
and A is an approximate PF achieved by a CMOEA. m denotes
the number of objectives. For two-objective LIR-CMOPs with
continuous PFs, 1000 points are sampled uniformly from the
true PF to construct P∗. For LIR-CMOPs with three objectives,
10000 points are sampled uniformly from the true PF to consti-
tute P∗. It is worth noting that a smaller value of IGD may indi-
cate better performance with regards to diversity and/or conver-
gence. (Note that this measure cannot be used if the true PF is
unknown, so it is used primarily for benchmarking purposes.)

• Hypervolume (HV):

HV reflects the closeness of the set of non-dominated solutions
achieved by a CMOEA to the true PF. The larger HV means
that the corresponding non-dominated set is closer to the true
PF.

HV(S ) = VOL(
⋃
x∈S

[ f1(x), zr
1] × ...[ fm(x), zr

m]) (10)

where VOL(·) is the Lebesgue measure, m denotes the number
of objectives, zr = (zr

1, ..., z
r
m)T is a user-defined reference point

in the objective space. For each LIR-CMOP, the reference point
is placed at 1.2 times the distance to the nadir point of the true
PF (Note that this particular placement of the reference point
also requires knowledge of the true PF). A larger value of HV
may indicate better performance regarding diversity and/or con-
vergence.

4.3. Discussion of Experiments
4.3.1. Comparisons among PPS-MOEA/D and the other six

CMOEAs
The statistical results of the IGD values on LIR-CMOP1-

14 achieved by PPS-MOEA/D and the other six CMOEAs
in 30 independent runs are listed in Table 1. According to
the Wilcoxon-Test in this table, it is clear that PPS-MOEA/D
is significantly better than MOEA/D-Epsilon, MOEA/D-CDP,
MOEA/D-SR, C-MOEA/D and NSGA-II-CDP on all of the
fourteen tested problems in terms of the IGD metric. For LIR-
CMOP1, LIR-CMOP4, LIR-CMOP9-10, and LIR-CMOP13,
there are no statistically significant differences between PPS-
MOEA/D and MOEA/D-IEpsilon. For the rest of nine test
problems, PPS-MOEA/D is significantly better than MOEA/D-
IEpsilon.

The statistical results of the HV values on LIR-CMOP1-14
achieved by PPS-MOEA/D and the other six CMOEAs in 30
independent runs are listed in Table 2. It can be observed that
PPS-MOEA/D is significantly better than MOEA/D-Epsilon,
MOEA/D-CDP, MOEA/D-SR, C-MOEA/D and NSGA-II-
CDP on all the test instances in terms of the HV metric. For
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Figure 4: Illustrations of the feasible and infeasible regions of LIR-CMOP6, LIR-CMOP7 and LIR-CMOP11, corresponding to the three typical situations of
infeasible regions influencing PFs as discussed in Section 2.

LIR-CMOP4, LIR-CMOP9-10, and LIR-CMOP13, there are
no statistically significant differences between PPS-MOEA/D
and MOEA/D-IEpsilon. For the rest of ten test instances, PPS-
MOEA/D performs significantly better than MOEA/D-IEpsilon
on these test problems. From the above observations, it is clear
that the proposed PPS-MOEA/D achieves significantly better
performance than the other six CMOEAs on most of the test
problems.

To further discuss the advantages of the proposed PPS-
MOEA/D, the populations achieved by each tested CMOEAs
on LIR-CMOP6, LIR-CMOP7, and LIR-CMOP11 during the
30 independent runs with the median HV values are plotted in
Fig. 5, Fig. 6 and Fig. 7, respectively. LIR-CMOP6, LIR-
CMOP7 and LIR-CMOP11 are selected because they represent
the three typical situations of infeasible regions influencing PFs
as discussed in Fig. 1, Fig. 2 and Fig. 3, which are discussed in
detail in the Section 2.

In particular, for LIR-CMOP6, there are two large infeasible
regions in front of the PF, and the unconstrained PF is the same
as the constrained PF, as illustrated by Fig. 4(a). In Fig. 5(a)-
(b), we can observe that PPS-MOEA/D and MOEA/D-IEpsilon
can get across the large infeasible regions, while the rest
of CMOEAs, including MOEA/D-Epsilon, MOEA/D-CDP,
MOEA/D-SR, C-MOEA/D and NSGA-II-CDP are trapped in
the boundary of infeasible regions as shown in Fig. 5(c)-(g).
The reason is constraints are ignored in PPS-MOEA/D at the
push stage, and MOEA/D-IEpsilon uses the improved epsilon
constraint-handling method to cross the infeasible regions (by
dynamically adjusting the epsilon level to allow infeasible so-
lutions to enter the population). As a result, the two large infea-
sible regions can not block the populations of PPS-MOEA/D
and MOEA/D-IEpsilon to converge. However, the rest of five
CMOEAs have no special mechanisms to cross large infeasi-
ble regions as illustrated in Fig. 4(a). As a result, the two
large infeasible regions hinder their populations to converge.
Therefore, they are trapped in the boundary of infeasible re-
gions, which can be clearly observed in Fig. 5(c)-(g).

For LIR-CMOP7, there are three large infeasible regions, and
the unconstrained PF is covered by infeasible regions and be-
comes no more feasible, as illustrated by Fig. 4(b). In Fig. 6(a)-
(b), we can observe that PPS-MOEA/D and MOEA/D-IEpsilon

can converge to the true PF, while the rest of five CMOEAs
cannot converge to the true PF as shown in Fig. 6(c)-(g). The
reason is that the three large infeasible regions can not hin-
der the populations of PPS-MOEA/D and MOEA/D-IEpsilon
to converge. For PPS-MOEA/D, the unconstrained PF is first
achieved at the push stage. Then, the population is pulled to the
constrained PF by crossing only one infeasible region. Further-
more, the landscape of constraints has already been explored at
the push process of PPS-MOEA/D. The maximum overall con-
straint violation can be calculated and applied to guide the ε
parameter setting of the constraint-handling method in the pull
stage of the PPS-MOEA/D properly, as defined in Eq. (8). Al-
though MOEA/D-IEpsilon can get across the two large infea-
sible regions occasionally, in many cases, some individuals in
MOEA/D-IEpsilon can not converge to the true PF, as shown in
Fig. 6(b). The reason is that MOEA/D-IEpsilon has no mech-
anisms to explore the landscape of constraints in advance, thus
lacking the potential of setting the ε parameter properly, as what
can be done in PPS-MOEA/D. For the other five CMOEAs,
they have no special mechanisms to cross the large infeasi-
ble regions as illustrated in Fig. 4(b). As a result, the two
large infeasible regions in front of the constrained PF hinder
their populations to converge. Therefore, the proposed PPS-
MOEA/D can find the true PF of LIR-CMOP7 reliably, and
MOEA/D-IEpsilon can find the true PF of LIR-CMOP7 occa-
sionally. However, the rest of five CMOEAs are trapped in the
boundary of infeasible regions, which can be clearly observed
in Fig. 6(c)-(g).

For LIR-CMOP11, infeasible regions make the original un-
constrained PF partially feasible, as illustrated by Fig. 4(c). The
PF of LIR-CMOP11 is disconnected and has seven Pareto op-
timal solutions, among which two of them are located on the
unconstrained PF, and five are not. PPS-MOEA/D can find
all the Pareto optimal solutions as shown in Fig. 7(a), while
the other six CMOEAs can not find all the seven Pareto opti-
mal solutions, as shown in Fig. 7(b)-(g). The reason is that
at the push stage the infeasible regions present no barriers for
the population of PPS-MOEA/D, and the unconstrained PF of
LIR-CMOP11 can be obtained at the push stage. Since two
Pareto optimal solutions are situated at the unconstraint PF,
PPS-MOEA/D can find these two Pareto optimal solutions at
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the push stage instantly. Moreover, the landscape of constraints
has already been explored at the push stage, which can help
the searching of PPS-MOEA/D at the pull stage. The pop-
ulation of PPS-MOEA/D only needs to get cross one single
infeasible region to find the other five Pareto optimal solu-
tions at the pull stage. However, for the other six CMOEAs,
they need to get cross several infeasible and overlapping re-
gions to find the Pareto optimal solutions. Besides, the land-
scape of constraints are not well explored in advance during the
search, which makes it difficult for the other six CMOEAs to set
constraint-handling parameters properly. As a result, the pro-
posed PPS-MOEA/D can find all the seven discrete Pareto op-
timal solutions reliably, while the other six CMOEAs can only
find some Pareto optimal solutions occasionally.

According to the above observations and analysis, we can
conclude that the proposed PPS-MOEA/D performs signifi-
cantly better than the other six CMOEAs on most test cases.
The experimental results demonstrate that the proposed PPS-
MOEA/D can solve CMOPs well by taking advantage of both
the push and pull strategies.

4.3.2. A Comparison between PPS-MOEA/D and its Variant
By replacing the Eq.(8) with that of Takahama’s article [28]

for PPS-MOEA/D, another version of PPS-MOEA/D is ob-
tained, denoted as PPS-MOEA/D1. The same experimen-
tal parameters are adopted to test the performance of PPS-
MOEA/D1.

The statistical results of the IGD values on LIR-CMOP1-14
achieved by PPS-MOEA/D1 and PPS-MOEA/D in 30 indepen-
dent runs are shown in Table 3. According to the Wilcoxon-Test
in this table, it is clear that PPS-MOEA/D is significantly bet-
ter than PPS-MOEA/D1 on LIR-CMOP1-4 and LIR-CMOP7-
8. PPS-MOEA/D1 is significantly better than PPS-MOEA/D
on LIR-CMOP5-6, LIR-CMOP9-10, and LIR-CMOP13. For
LIR-CMOP11-12 and LIR-CMOP14, there are not significant
differences between PPS-MOEA/D and PPS-MOEA/D1.

The statistical results of the HV values on LIR-CMOP1-14
achieved by PPS-MOEA/D1 and PPS-MOEA/D in 30 inde-
pendent runs are listed in Table 4. It can be observed that
PPS-MOEA/D is significantly better than PPS-MOEA/D1 on
LIR-CMOP1-4, LIR-CMOP8, LIR-CMOP13-14, and it is sig-
nificantly worse than PPS-MOEA/D1 on LIR-CMOP5-6, LIR-
CMOP9-10 and LIR-CMOP12. For the rest of test instances,
there are not significant differences between PPS-MOEA/D and
PPS-MOEA/D1.

For LIR-CMOP1-4, PPS-MOEA/D is significantly better
than PPS-MOEA/D1 in terms of both IGD and HV metrics.
A common feature of these problems is that they have narrow
feasible regions, and their constrained PFs are far away from
their unconstrained PFs. At the push stage, PPS-MOEA/D and
PPS-MOEA/D1 both can find the unconstrained PFs. At the
pull stage, since all the solutions are infeasible, PPS-MOEA/D
adopts the first rule in Eq. (8) to decrease the epsilon value
dramatically. Thus, PPS-MOEA/D can quickly get across in-
feasible regions and find feasible solutions efficiently. In con-
trast, PPS-MOEA/D1 decreases the epsilon value much more
slowly as compared with PPS-MOEA/D, which may slow down

the process to get across infeasible regions to a large extent.
When PPS-MOEA/D find enough feasible solutions, it adopts
the second rule in Eq. (8) to decrease the epsilon value slowly,
which leads to a more thorough searching for feasible solu-
tions. Therefore, PPS-MOEA/D performs significantly better
than PPS-MOEA/D1 on LIR-CMOP1-4.

For LIR-CMOP5-6 and LIR-CMOP9-10, PPS-MOEA/D1
performs significantly better than PPS-MOEA/D. A common
feature of LIR-CMOP5-6 and LIR-CMOP9-10 is that their con-
strained PFs are the same as their unconstrained counterparts,
and located right on top of their unconstrained PFs. At the push
stage, PPS-MOEA/D and PPS-MOEA/D1 can both find the un-
constrained PFs. At the pull stage, PPS-MOEA/D1 decreases
the epsilon value much more slowly as compared with PPS-
MOEA/D, which lead to a more thorough searching for fea-
sible solutions by using PPS-MOEA/D1. Therefore, for LIR-
CMOP5-6 and LIR-CMOP9-10, PPS-MOEA/D1 performs sig-
nificantly better than PPS-MOEA/D.

From the above observations and analysis, it is clear that the
proposed PPS-MOEA/D performs better than PPS-MOEA/D1
in more cases. PPS-MOEA/D is more suitable for solving
CMOPs with constrained PFs located far away from their
unconstrained PFs as illustrated in Fig. 2(a), while PPS-
MOEA/D1 is more suitable for solving CMOPs whose con-
strained PFs are located right on top of their unconstrained PFs
as illustrated in Fig. 1(a).

4.3.3. The weakness of PPS-MOEA/D
As illustrated in Section 3, PPS-MOEA/D can be classified

into two different search stages, including the push search and
pull search. If the population of PPS-MOEA/D is converged
to the unconstrained PF with only one point, it is difficult to
pull the population to the constrained PF. Base on the above
hypothesis, we design a CMOP named TNK-v1 which is based
on TNK [33], whose unconstrained PF only has one point. The
detail definition of TNK-v1 is given as follows:



f1(x) = x1 + g1(x)
f2(x) = x2 + g2(x)
g1(x) =

∑
j∈J1

(x j − sin(0.5x2))2

g2(x) =
∑

j∈J2
(x j − cos(0.5x1))2

J1 = {3, 5, . . . , 29}, J2 = {4, 6, . . . , 30}
c1(x) = x2

1 + x2
2 − 1.0 − 0.1 cos (16.0 arctan x1

x2
) ≥ 0

c2(x) = 0.5 − (x1 − 0.5)2 − (x2 − 0.5)2 ≥ 0
x1, x2 ∈ [1e − 4, π] and x3, x4, . . . , x30 ∈ [0, 1]

(11)

We use the same experimental parameters in Section 4.1 to
test the seven CMOEAs on TNK-v1. The statistical results of
the IGD and HV values on TNK-v1 achieved by each CMOEA
are shown in Table 5. From this table, we can observe that PPS-
MOEA/D is significantly worse than the other six CMOEAs on
TNK-v1. In Fig. 8, we can observe that PPS-MOEA/D only
find a part of the true PF. One possible reason is that, at the end
of the push stage, the population of PPS-MOEA/D is converged
to a single unconstrained Pareto optimal point. The diversity of
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Table 1: IGD results of PPS and the other six CMOEAs on LIR-CMOP1-14. To facilitate the display of this table, PPS, IEpsilon, Epsilon, CDP, and SR are short
for MOEA/D-PPS, MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, and MOEA/D-SR respectively. Wilcoxon’s rank sum test at a 0.05 significance level is
performed between PPS-MOEA/D and each of the other six CMOEAs. † and ‡ denote that the performance of the corresponding algorithm is significantly worse
than or better than that of PPS-MOEA/D, respectively. ’S-D-I’ indicates PPS-MOEA/D is superior to, not significantly different from or inferior to the corresponding
compared CMOEAs.

Test Instance PPS IEpsilon Epsilon CDP SR C-MOEA/D NSGA-II-CDP

LIRCMOP1 mean 6.41E-03 7.97E-03 5.74E-02 † 1.11E-01† 1.81E-02† 1.26E-01† 3.23E-01†
std 1.94E-03 3.55E-03 2.89E-02 5.04E-02 1.66E-02 7.03E-02 7.33E-02

LIRCMOP2 mean 4.67E-03 5.23E-03† 5.39E-02† 1.43E-01† 9.63E-03† 1.40E-01† 3.03E-01†
std 7.84E-04 1.01E-03 2.13E-02 5.55E-02 7.23E-03 5.44E-02 7.24E-02

LIRCMOP3 mean 8.55E-03 1.13E-02† 8.81E-02† 2.61E-01† 1.78E-01† 2.80E-01† 4.08E-01†
std 5.18E-03 6.42E-03 4.36E-02 4.33E-02 7.20E-02 4.21E-02 1.15E-01

LIRCMOP4 mean 4.68E-03 4.85E-03 6.51E-02† 2.53E-01† 1.95E-01† 2.59E-01† 3.85E-01†
std 1.12E-03 2.05E-03 3.01E-02 4.34E-02 6.40E-02 3.51E-02 1.35E-01

LIRCMOP5 mean 1.84E-03 2.13E-03† 1.15E+00† 1.05E+00† 1.04E+00† 1.10E+00† 5.53E-01†
std 9.26E-05 3.79E-04 1.98E-01 3.63E-01 3.66E-01 2.99E-01 6.88E-01

LIRCMOP6 mean 2.49E-03 2.33E-01† 1.27E+00† 1.09E+00† 9.43E-01† 1.31E+00† 5.74E-01†
std 3.40E-04 5.06E-01 2.95E-01 5.20E-01 5.90E-01 2.08E-01 4.21E-01

LIRCMOP7 mean 2.80E-03 3.73E-02† 1.51E+00† 1.46E+00† 1.08E+00† 1.56E+00† 2.38E-01†
std 9.85E-05 5.41E-02 5.09E-01 5.58E-01 7.58E-01 4.24E-01 4.06E-01

LIRCMOP8 mean 2.78E-03 2.75E-02† 1.62E+00† 1.38E+00† 1.01E+00† 1.58E+00† 6.02E-01†
std 7.56E-05 5.92E-02 3.05E-01 6.15E-01 7.24E-01 3.71E-01 7.39E-01

LIRCMOP9 mean 9.94E-02 4.98E-03 4.90E-01† 4.81E-01† 4.85E-01† 4.81E-01† 6.44E-01†
std 1.52E-01 1.37E-02 4.22E-02 5.24E-02 4.78E-02 5.24E-02 1.60E-02

LIRCMOP10 mean 2.11E-03 2.11E-03 2.13E-01† 2.16E-01† 1.92E-01† 2.13E-01† 5.97E-01†
std 7.75E-05 7.11E-05 5.32E-02 6.81E-02 6.81E-02 4.63E-02 3.20E-02

LIRCMOP11 mean 2.83E-03 5.81E-02† 3.47E-01† 3.42E-01† 3.16E-01† 3.81E-01† 4.87E-01†
std 1.36E-03 5.79E-02 9.28E-02 9.22E-02 7.49E-02 8.95E-02 1.05E-02

LIRCMOP12 mean 2.70E-02 3.36E-02† 2.52E-01† 2.69E-01† 2.06E-01† 2.50E-01† 5.80E-01†
std 5.00E-02 5.18E-02 8.98E-02 9.06E-02 5.61E-02 9.63E-02 1.17E-01

LIRCMOP13 mean 6.46E-02 6.46E-02 1.20E+00† 1.21E+00† 8.86E-01† 1.18E+00† 1.39E+01†
std 2.18E-03 1.64E-03 3.06E-01 3.17E-01 5.76E-01 3.78E-01 2.26E+00

LIRCMOP14 mean 6.42E-02 6.54E-02† 1.02E+00† 1.11E+00† 1.03E+00† 1.25E+00† 1.36E+01†
std 1.69E-03 2.04E-03 4.86E-01 3.98E-01 4.70E-01 5.30E-02 2.17E+00

Wilcoxon-Test (S-D-I) – 9-5-0 14-0-0 14-0-0 14-0-0 14-0-0 14-0-0
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Table 2: HV results of PPS-MOEA/D and the other six CMOEAs on LIR-CMOP1-14. To facilitate the display of this table, PPS, IEpsilon, Epsilon, CDP, and SR in
this table are short for MOEA/D-PPS, MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, and MOEA/D-SR respectively. Wilcoxon’s rank sum test at a 0.05
significance level is performed between PPS-MOEA/D and each of the other six CMOEAs. † and ‡ denote that the performance of the corresponding algorithm is
significantly worse than or better than that of PPS-MOEA/D, respectively. ’S-D-I’ indicates PPS-MOEA/D is superior to, not significantly different from or inferior
to the corresponding compared CMOEAs.

Test Instance PPS IEpsilon Epsilon CDP SR C-MOEA/D NSGA-II-CDP

LIRCMOP1 mean 1.02E+00 1.01E+00† 9.59E-01† 7.54E-01† 9.96E-01† 7.41E-01† 5.16E-01†
std 1.58E-03 2.43E-03 3.28E-02 8.95E-02 2.91E-02 1.22E-01 5.57E-02

LIRCMOP2 mean 1.35E+00 1.35E+00† 1.28E+00† 1.06E+00† 1.34E+00† 1.07E+00† 8.24E-01†
std 1.01E-03 1.32E-03 2.88E-02 1.08E-01 1.47E-02 9.10E-02 1.15E-01

LIRCMOP3 mean 8.70E-01 8.68E-01† 7.98E-01† 4.86E-01† 5.91E-01† 4.71E-01† 4.08E-01†
std 2.65E-03 3.92E-03 3.93E-02 4.31E-02 1.07E-01 4.09E-02 2.88E-02

LIRCMOP4 mean 1.09E+00 1.09E+00 1.02E+00 7.35E-01† 8.15E-01† 7.31E-01† 6.17E-01†
std 2.47E-03 2.46E-03 4.19E-02 5.44E-02 8.70E-02 5.16E-02 1.06E-01

LIRCMOP5 mean 1.46E+00 1.46E+00† 4.30E-02† 1.63E-01† 1.82E-01† 9.72E-02† 9.39E-01†
std 2.92E-04 1.33E-03 2.35E-01 4.43E-01 4.39E-01 3.70E-01 3.21E-01

LIRCMOP6 mean 1.13E+00 9.26E-01† 5.40E-02† 1.88E-01† 3.02E-01† 2.33E-02† 4.13E-01†
std 1.77E-04 4.23E-01 2.21E-01 3.87E-01 4.62E-01 1.28E-01 1.89E-01

LIRCMOP7 mean 3.02E+00 2.86E+00† 3.03E-01† 3.74E-01† 9.88E-01† 2.04E-01† 2.40E+00†
std 2.66E-03 1.96E-01 9.07E-01 9.58E-01 1.27E+00 7.52E-01 6.52E-01

LIRCMOP8 mean 3.02E+00 2.94E+00† 1.06E-01† 5.17E-01† 1.10E+00† 1.66E-01† 1.90E+00†
std 1.14E-03 1.86E-01 5.49E-01 1.05E+00 1.20E+00 6.11E-01 7.56E-01

LIRCMOP9 mean 3.57E+00 3.71E+00 2.74E+00† 2.77E+00† 2.75E+00† 2.77E+00† 2.06E+00†
std 2.24E-01 1.88E-02 1.48E-01 1.84E-01 1.64E-01 1.84E-01 1.08E-02

LIRCMOP10 mean 3.24E+00 3.24E+00 2.89E+00† 2.88E+00† 2.93E+00† 2.89E+00† 2.04E+00†
std 3.08E-04 2.48E-04 1.02E-01 1.36E-01 1.35E-01 9.77E-02 4.45E-02

LIRCMOP11 mean 4.39E+00 4.23E+00† 3.34E+00† 3.35E+00† 3.38E+00† 3.24E+00† 3.11E+00†
std 2.22E-04 1.84E-01 2.57E-01 2.57E-01 2.90E-01 2.55E-01 1.54E-02

LIRCMOP12 mean 5.61E+00 5.59E+00† 4.88E+00† 4.83E+00† 5.03E+00† 4.89E+00† 3.28E+00†
std 1.53E-01 1.58E-01 3.17E-01 3.28E-01 1.75E-01 3.45E-01 3.61E-01

LIRCMOP13 mean 5.71E+00 5.71E+00 4.55E-01† 4.63E-01† 1.89E+00† 6.29E-01† 0.00E+00†
std 1.27E-02 1.30E-02 1.30E+00 1.42E+00 2.57E+00 1.71E+00 0.00E+00

LIRCMOP14 mean 6.19E+00 6.18E+00† 1.33E+00† 8.81E-01† 1.27E+00† 1.80E-01† 0.00E+00†
std 1.31E-02 1.09E-02 2.45E+00 1.97E+00 2.29E+00 2.60E-01 0.00E+00

Wilcoxon-Test (S-D-I) – 10-4-0 14-0-0 14-0-0 14-0-0 14-0-0 14-0-0
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Figure 5: The non-dominated solutions achieved by each algorithm on LIR-CMOP6 with the median HV values.
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Figure 6: The non-dominated solutions achieved by each algorithm on LIR-CMOP7 with the median HV values.
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Figure 7: The non-dominated solutions achieved by each algorithm on LIR-CMOP11 with the median HV values.

the population in PPS-MOEA/D is lost, and it is difficult to pull
the population to the whole true PF. From the experimental re-
sults, we can find that PPS-MOEA/D is not suitable for solving
CMOPs which have unconstrained PFs with only one point.

5. Robot Gripper Optimization

In this section, a real-world optimization problem—the robot
gripper optimization problem is formulated. Then, the pro-
posed PPS-MOEA/D and the other six CMOEAs are tested on
this optimization problem.

5.1. The formulation of the robot gripper optimization

The robot gripper optimization problem has two objectives
and eight constraints, which is taken from [34]. The second
and the fourth objectives of the original problem are used to
formulate the robot gripper optimization problem in this work,
while the constraints and the ranges of decision variables are
kept the same to those in [34]. In this paper, the first objective
f1(x) represents a force transmission ratio between the actuating
force and the minimum gripping force. We prefer to transform
more actuating force into the gripper force. Thus, this objec-
tive should be minimized. The second objective f2(x) is the
sum of all elements of the robot gripper. It is relevant to the
weight of the robot gripper, and minimizing f2(x) can lead to a
lightweight design.

To study the characteristics of the robot gripper optimization
problem, 3,000,000 solutions are generated as shown in Fig.
9, where 1,500,000 solutions are generated randomly, and the
other 1,500,000 solutions are generated by MOEA/D-IEpsilon.
We can observe that the two objectives are in conflict with each
other.

5.2. Experimental study

5.2.1. Experimental settings
Five CMOEAs, including PPS-MOEA/D, MOEA/D-

IEpsilon [22], MOEA/D-Epsilon [23], MOEA/D-SR [24],
MOEA/D-CDP [24], C-MOEA/D [25] and NSGA-II-CDP
[10], are tested on the robot gripper optimization problem.
The parameters of these five CMOEAs are the same as listed
in Section 4.1 except for the termination conditions. In the
robot gripper optimization problem, each CMOEA stops when
600,000 function evaluations are reached. Since the true PF of
the robot gripper optimization problem is unknown, We use the
hypervolume metric [32] to measure the performance of these
five CMOEAs, and the reference point is set to [5, 800]T .

5.2.2. Analysis of experiments
The statistical results of HV values achieved by PPS-

MOEA/D and the other six CMOEAs are shown in Table 6.
We can observe that PPS-MOEA/D is better or significantly
better than the other six CMOEAs. The non-dominated solu-
tions achieved by each CMOEA with the median HV values
during the 30 independent runs are plotted in Fig. 10(a)-(g).
It is clear that PPS-MOEA/D has better or significantly better
performance than the other six CMOEAs.

Three representative individuals (A, B and C) are selected
from the non-dominated solutions achieved by PPS-MOEA/D
with the best HV value in the 30 independent runs. The con-
figurations of the robot gripper mechanism at each point are
plotted in Fig. 11. We can observe that f1(x) is increasing with
the decreasing of f2(x) from A to C, and each individual has a
different geometrical structure.

The non-dominated solutions achieved by each algorithm on
TNK-v1 with the median HV values.
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Figure 8: The non-dominated solutions achieved by each algorithm on TNK-v1 with the median HV values.

Figure 9: The distribution of solutions of the robot gripper optimization prob-
lem in the objective space.

6. Conclusion

This paper proposes a general PPS framework to deal with
CMOPs. More specifically, the search process of PPS is divided
into two stages—namely, push and pull search processes. At
the push stage, constraints are ignored, which can help PPS to
cross infeasible regions in front of the unconstrained PF. More-
over, the landscape affected by constraints can be estimated dur-
ing the push stage, and this information, such as the ratio of
feasible to infeasible solutions and the maximum overall con-
straint violation, can be applied to conduct the settings of pa-
rameters coming from the constraint-handling mechanisms in
the pull stage. When the max rate of change between ideal and
nadir points is less or equal than a predefined threshold, PPS
is switched to the pull search process. The infeasible solutions
achieved in the push stage are pulled to the feasible and non-
dominated area by adopting an improved epsilon constraint-
handling technique. The value of epsilon level can be set prop-
erly according to the maximum overall constraint violation ob-
tained at the end of the push search stage. The comprehensive
experiments indicate that the proposed PPS-MOEA/D achieves
significantly better results than the other six CMOEAs on most
of the benchmark problems and the robot gripper optimization
problem.

It is also worthwhile to point out that there has been very lit-
tle work regarding using information of landscape affected by
constraints to solve CMOPs. In this context, the proposed PPS
provides a viable framework. Obviously, a lot of work need to
be done to improve the performance of PPS, such as, the strat-
egy of searching around the borders between infeasible and fea-
sible regions, the augmented constraint-handling mechanisms
in the pull stage, the enhanced strategies to switch the search
behavior, and the data mining methods and machine learning
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Figure 10: The non-dominated solutions achieved by each algorithm on the robot gripper optimization problem with the median HV values are plotted in (a)-(g).
The reference PF consists of the non-dominated solutions achieved by each algorithm.

Figure 11: The non-dominated solutions achieved by PPS-MOEA/D with the best HV value in the 30 independent runs.
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Table 3: IGD results of PPS-MOEA/D and PPS-MOEA/D1 on LIR-CMOP1-
14. Wilcoxon’s rank sum test at a 0.05 significance level is performed between
PPS-MOEA/D and PPS-MOEA/D1. † and ‡ denote that the performance of
MOEA/D1 is significantly worse than or better than that of PPS-MOEA/D,
respectively. ’S-D-I’ indicates PPS-MOEA/D is superior to, not significantly
different from or inferior to PPS-MOEA/D1.

Test Instance PPS-MOEA/D PPS-MOEA/D1

LIRCMOP1 mean 6.4134E-03 1.8636E-02†
std 1.9376E-03 8.1958E-03

LIRCMOP2 mean 4.6730E-03 1.2806E-02†
std 7.8443E-04 5.2752E-03

LIRCMOP3 mean 8.5450E-03 4.8558E-02†
std 5.1844E-03 1.5944E-02

LIRCMOP4 mean 4.6773E-03 2.9016E-02†
std 1.1162E-03 9.3604E-03

LIRCMOP5 mean 1.8366E-03 1.4714E-03‡
std 9.2633E-05 4.7991E-05

LIRCMOP6 mean 2.4895E-03 1.4055E-03‡
std 3.3988E-04 3.0117E-05

LIRCMOP7 mean 2.7972E-03 2.9488E-03†
std 9.8535E-05 1.1190E-04

LIRCMOP8 mean 2.7778E-03 2.8915E-03†
std 7.5578E-05 5.3768E-05

LIRCMOP9 mean 9.9401E-02 1.7489E-03‡
std 1.5187E-01 6.3562E-05

LIRCMOP10 mean 2.1081E-03 1.8916E-03‡
std 7.7537E-05 6.8443E-05

LIRCMOP11 mean 2.8318E-03 4.3374E-03
std 1.3587E-03 4.5296E-03

LIRCMOP12 mean 2.7035E-02 2.4070E-03
std 5.0015E-02 4.5167E-04

LIRCMOP13 mean 6.4552E-02 6.2769E-02‡
std 2.1770E-03 1.6426E-03

LIRCMOP14 mean 6.4186E-02 6.3256E-02
std 1.6896E-03 1.2518E-03

Wilcoxon-Test (S-D-I) – 6-3-5

Table 4: HV results of PPS-MOEA/D and PPS-MOEA/D1 on LIR-CMOP1-
14. Wilcoxon’s rank sum test at a 0.05 significance level is performed between
PPS-MOEA/D and PPS-MOEA/D1. † and ‡ denote that the performance of
MOEA/D1 is significantly worse than or better than that of PPS-MOEA/D,
respectively. ’S-D-I’ indicates PPS-MOEA/D is superior to, not significantly
different from or inferior to PPS-MOEA/D1.

Test Instance PPS-MOEA/D PPS-MOEA/D1

LIRCMOP1 mean 1.0157E+00 1.0035E+00†
std 1.5800E-03 7.1734E-03

LIRCMOP2 mean 1.3492E+00 1.3383E+00†
std 1.0095E-03 6.0801E-03

LIRCMOP3 mean 8.7030E-01 8.3638E-01†
std 2.6504E-03 1.5086E-02

LIRCMOP4 mean 1.0927E+00 1.0653E+00†
std 2.4669E-03 1.1221E-02

LIRCMOP5 mean 1.4616E+00 1.4624E+00‡
std 2.9194E-04 3.0454E-04

LIRCMOP6 mean 1.1286E+00 1.1295E+00‡
std 1.7710E-04 1.1887E-04

LIRCMOP7 mean 3.0151E+00 3.0148E+00
std 2.6625E-03 3.6326E-03

LIRCMOP8 mean 3.0166E+00 3.0160E+00†
std 1.1394E-03 8.2996E-04

LIRCMOP9 mean 3.5696E+00 3.7140E+00 ‡
std 2.2415E-01 2.3984E-04

LIRCMOP10 mean 3.2410E+00 3.2417E+00 ‡
std 3.0767E-04 2.6240E-04

LIRCMOP11 mean 4.3897E+00 4.3896E+00
std 2.2165E-04 2.3477E-04

LIRCMOP12 mean 5.6135E+00 5.6884E+00 ‡
std 1.5251E-01 8.4283E-05

LIRCMOP13 mean 5.7100E+00 5.6993E+00†
std 1.2748E-02 1.0445E-02

LIRCMOP14 mean 6.1930E+00 6.1778E+00†
std 1.3097E-02 1.1285E-02

Wilcoxon-Test (S-D-I) – 7-2-5
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Table 5: IGD and HV results of PPS and the other six CMOEAs on TNK-v1. To facilitate the display of this table, PPS, IEpsilon, Epsilon, CDP, and SR are short
for MOEA/D-PPS, MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, and MOEA/D-SR respectively. Wilcoxon’s rank sum test at a 0.05 significance level is
performed between PPS-MOEA/D and each of the other six CMOEAs. † and ‡ denote that the performance of the corresponding algorithm is significantly worse
than or better than that of PPS-MOEA/D, respectively.

Test problem: TNK-v1 PPS IEpsilon Epsilon SR CDP C-MOEA/D NSGA-II-CDP

IGD mean 2.69E-01 5.20E-02‡ 1.33E-01‡ 4.13E-03‡ 1.28E-02‡ 4.03E-03‡ 1.89E-01‡
std 8.28E-02 1.02E-01 1.44E-01 4.53E-04 2.98E-03 5.30E-04 8.11E-02

HV mean 4.03E-01 7.00E-01‡ 5.88E-01‡ 7.57E-01‡ 7.52E-01‡ 7.57E-01‡ 4.52E-01
std 9.69E-02 1.31E-01 1.91E-01 5.49E-04 5.60E-04 5.49E-04 9.86E-02

Table 6: HV results of PPS-MOEA/D and the other six CMOEAs on the gripper optimization problem. To facilitate the display of this table, PPS, IEpsilon, Epsilon,
CDP, and SR in this table are short for MOEA/D-PPS, MOEA/D-IEpsilon, MOEA/D-Epsilon, MOEA/D-CDP, and MOEA/D-SR respectively. Wilcoxon’s rank sum
test at a 0.05 significance level is performed between PPS-MOEA/D and each of the other six CMOEAs. † and ‡ denote that the performance of the corresponding
algorithm is significantly worse than or better than that of PPS-MOEA/D, respectively. The best mean is highlighted in boldface.

Gripper optimization PPS IEpsilon Epsilon SR CDP C-MOEA/D NSGA-II-CDP
mean 1.895E+03 1.893E+03 1.885E+03† 1.864E+03† 1.888E+03† 1.865E+03† 1.742E+03†

std 1.046E+01 4.845E+00 1.342E+01 1.134E+01 8.070E+00 9.435E+00 6.055E+01

approaches integrated in the PPS framework. For another fu-
ture work, the proposed PPS will be implemented in the non-
dominated framework, such as NSGA-II, to further verify the
effect of PPS. More other CMOPs and real-world optimization
problems will also be used to test the performance of the PPS
embedded in different MOEA frameworks.
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