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A B S T R A C T

In dealing with constrained multi-objective optimization problems (CMOPs), a key issue of multi-objective evo-
lutionary algorithms (MOEAs) is to balance the convergence and diversity of working populations. However,
most state-of-the-art MOEAs show poor performance in balancing them, and can cause the working popula-
tions to concentrate on part of the Pareto fronts, leading to serious imbalanced searching between preserving
diversity and achieving convergence. This paper proposes a method which combines a multi-objective to multi-
objective (M2M) decomposition approach with the push and pull search (PPS) framework, namely PPS-M2M. To
be more specific, the proposed algorithm decomposes a CMOP into a set of simple CMOPs. Each simple CMOP
corresponds to a sub-population and is solved in a collaborative manner. When dealing with constraints, each
sub-population follows a procedure of “ignore the constraints in the push stage and consider the constraints
in the pull stage”, which helps each working sub-population get across infeasible regions. In order to evaluate
the performance of the proposed PPS-M2M, it is compared with the other nine algorithms, including CM2M,
MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP, C-MOEA/D, NSGA-II-CDP, MODE-ECHM, CM2M2 and MODE-
SaE on a set of benchmark CMOPs. The experimental results show that the proposed PPS-M2M is significantly
better than the other nine algorithms. In addition, a set of constrained and imbalanced multi-objective optimiza-
tion problems (CIMOPs) are suggested to compare PPS-M2M and PPS-MOEA/D. The experimental results show
that the proposed PPS-M2M outperforms PPS-MOEA/D on CIMOPs.

1. Introduction

Many real-world optimization problems can be formulated as con-
strained multi-objective optimization problems (CMOPs), which can be
defined as follows [1]:⎧⎪⎪⎨⎪⎪⎩

minimize F(x) = (f1(x),… , fm(x))T

subject to gi(x) ≥ 0, i = 1,… , q
hj(x) = 0, j = 1,… , p
x ∈ ℝn

(1)

where F(x) is an m-dimensional objective vector, and F(x) ∈ ℝm.
gi(x) ≥ 0 is an inequality constraint, and q is the number of inequal-
ity constraints. hj(x) = 0 is an equality constraint, and p represents
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the number of equality constraints. x ∈ ℝn is an n-dimensional decision
vector.

In order to solve CMOPs with equality constraints, the equality con-
strains are often transformed into inequality constraints by using an
extremely small positive number as follows:

hj(x)′ ≡ 𝛿 − |hj(x)| ≥ 0 (2)

To deal with a set of constraints in CMOPs, an overall constraint
violation is employed as follows:

𝜙(x) =
q∑

i=1
|min(gi(x),0)| + p∑

j=1
|min(hj(x)′,0)| (3)
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Given a solution xk ∈ ℝn, if 𝜙(xk) = 0, xk is a feasible solution,
otherwise it is infeasible. All feasible solutions form a feasible solution
set.

To deal with constraints, Deb et al.[2] defined a constraint-
domination principle (CDP), that is, if a solution xp is said to constrained-
dominate a solution xq, one of the following conditions must be met:

1. Solution xp is a feasible solution and solution xq is an infeasible
solution.

2. Both solution xp and solution xq are infeasible solutions, and the
overall constraint violation of solution xp is smaller than that of
solution xq.

3. Both solution xp and solution xq are feasible solutions, and solution
xp dominates solution xq in terms of objectives.

A feasible solution set FS = {𝜙(x) = 0, x ∈ ℝn} is constituted by all
feasible solutions. Given a solution x∗ ∈ FS, if there is no any other
solution x∗ ∈ FS satisfying fi(x∗) ≤ fi(x∗)(i ∈ {1,… ,m}), x∗ is called a
Pareto optimal solution. All Pareto optimal solutions constitute a Pareto
set (PS). The set of the mapping vectors of PS in the objective space is
called a Pareto front (PF), which is defined as PF = {F(x) ∣ x ∈ PS}.

Over the past decade, a lot of research has been done in the field
of multi-objective evolutionary algorithms (MOEAs) [3,4]. Recently,
several constrained multi-objective evolutionary algorithms (CMOEAs)
[5–8] have been proposed to solve CMOPs. CMOEAs are particularly
suitable for solving CMOPs, because they can find a number of Pareto
optimal solutions in a single run, and are not affected by the math-
ematical properties of the objective functions. Therefore, the use of
evolutionary algorithms to solve multi-objective optimization problems
[9,10] has become a research hot-spot in recent years.

To better balance minimizing the objectives and satisfying the
constraints for CMOPs, many constraint-handling mechanisms have
been suggested [11], such as penalty function method [12], constraint
dominance principle (CDP) [13], stochastic ranking (SR) [14], multi-
objective concepts [15] and an ensemble of constraint handling meth-
ods (ECHM) [16]. For example, the penalty function methods trans-
form constrained optimization problems into an unconstrained opti-
mization problem by adding constraints multiplied by penalty factors to
the objectives. If penalty factors remain constant throughout the opti-
mization process for a period of time, it is called a static penalty method
[17]. If penalty factors are constructed as a function of the number of
iterations or the iteration time, it is called a dynamic penalty approach
[18]. If penalty factors change according to the feedback information
[19] during the search process, it is called an adaptive penalty approach
[20].

Deb proposed a constraint-handling method called CDP [13], in
which the fitness of a feasible solution is always better than that of
an infeasible solution. Subsequently, CDP was extended to differential
evolution (DE) by Mezura-Montes et al. [21] to select target vectors and
trial vectors. Moreover, CDP was used for designing parameter control
in DE for constrained optimization [22].

In order to overcome the weakness of penalty constraint-handling
methods, stochastic ranking was proposed [14], which uses a bubble-
sort-like process to deal with the constrained optimization problems.
Stochastic ranking uses a probability parameter pf ∈ [0,1] to deter-
mine whether the comparison is based on the objectives or on the con-
straints. In the case of pf = 0, stochastic ranking has a behavior similar
to the feasibility rules. Furthermore, it can couple with various algo-
rithms. For example, stochastic ranking has been combined with DE
[23] and ant colony optimization [24].

Motivated by the no-free-lunch theorem, the MODE-ECHM [16] is
developed. The MODE-ECHM combines three constraint-handling tech-
niques, including epsilon constraint-handling (EC) [25], self-adaptive
penalty functions (SP) [20] and superiority of feasible solutions (SF)
[13]. Each constraint-handling technique is applied to evolve a specific
sub-population in MODE-ECHM, and these sub-populations can closely
communicate to share all of their offsprings, which also means that an

individual discarded by its sub-population may survive in another pop-
ulation [11].

In this paper, we propose a new approach, namely PPS-M2M,
to solve CMOPs, which combines a M2M decomposition approach
[26] with push and pull search (PPS) framework [27]. Unlike other
constraint-handling mechanisms, the PPS-M2M decomposes a CMOP
into a number of simple constrained multi-objective optimization sub-
problems in the initial phase. Each sub-problem corresponds to a sub-
population. During the search process, each sub-population evolves in a
collaborative manner to ensure the diversity of the population. Inspired
by the idea of information feedback model, some information about the
constrained landscape is collected to help the parameters setting in the
constraint-handling mechanisms.

In addition, the PPS-M2M divides the search process into two differ-
ent phases. In the first phase, each sub-population approaches as close
as possible to the unconstrained PF without considering any constraints.
In the second phase, each sub-population is pulled back to the con-
strained PF using some constraint-handling approaches. The pull search
stage is divided into two parts: (1) Only an improved epsilon constraint-
handling mechanism is used [6] to optimize each subproblem for the
first 90% generations; (2) In the last 10% of the generations, all sub-
populations are merged into one population. Then an improved epsilon
constraint-handling mechanism [6] is employed to pull the population
to the feasible and non-dominated regions. In summary, the proposed
PPS-M2M has the following advantages.

1. At the beginning of the search, the method decomposes the popula-
tion into a set of sub-populations, and each sub-population searches
for a different multi-objective sub-problem in a coordinated manner.
In other words, the PFs of all these subproblems constitute the PF
of a CMOP. So the computational complexity is reduced by limiting
the operator to focus on each subpopulation, and the convergence
and diversity of the population are effectively ensured.

2. When dealing with constraints, the method follows a procedure of
“ignore the constraints first and consider the constraints second”,
so that infeasible regions encountered a distance before the true PF
present literally no extra barriers for the working population.

3. Since the landscape of constraints has been probed in the uncon-
strained push searching stage, this information can be employed to
guide the parameter settings for mechanisms of constraint handling
in the pull search stage.

The remainder of this paper is organized as follows. Section 2 intro-
duces the general idea of PPS framework and the M2M decomposi-
tion approach. Section 3 gives an instantiation of PPS-M2M. Section
4 designs a set of experiments to compare the proposed PPS-M2M
with ten state-of-the-art CMOEAs, including PPS-MOEA/D [27], CM2M
[28], MOEA/D-Epsilon [29], MOEA/D-SR [30], MOEA/D-CDP [30], C-
MOEA/D [31], NSGA-II-CDP [2], MODE-ECHM [16], CM2M2 [32] and
MODE-SaE [33]. Finally, conclusions are drawn in section 5.

2. Related work

In this section, we introduce the general idea of PPS framework and
the M2M population decomposition approach, which are used in the
rest of this paper.

2.1. The general idea of PPS framework

The push and pull search (PPS) framework was introduced by Fan
et al. [27]. Unlike other constraint handling mechanisms, the search
process of PPS is divided into two different stages: the push search and
the pull search, and follows a procedure of “push first and pull second”,
by which the working population is pushed toward the unconstrained
PF without considering any constraints in the push stage, and a con-
straint handling mechanism is used to pull the working population to
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the constrained PF in the pull stage.
In order to convert from the push search stage to the pull search

stage, the following condition is applied

rk ≡ max{rzk, rnk} ≤ 𝜖 (4)

where 𝜖 is a threshold, which is defined by users. In Eq. (4), we set
𝜖 = 1e − 3 in this work. During the last l generations, rzk is the rate
of change of the ideal point according to Eq. (5), and rnk is the rate of
change of the nadir point according to Eq. (6).

rzk = max
i=1,…,m

{
|zk

i − zk−l
i |

max{|zk−l
i |,Δ}} (5)

rnk = max
i=1,…,m

{
|nk

i − nk−l
i |

max{|nk−l
i |,Δ}} (6)

where zk = (zk
1,… , zk

m), nk = (nk
1,… , nk

m) are the ideal and nadir points
in the k-th generation. zk−l = (zk−l

1 ,… , zk−l
m ), nk−l = (nk−l

1 ,… , nk−l
m ) are

the ideal and nadir points in the (k − l)-th generation. rzk and rnk
are two points in the interval [0,1]. Δ is a very small positive number,
which is used to make sure that the denominators in Eq. (5) and Eq. (6)
are not equal to zero. In this paper, Δ is set to 1e − 6. When rk is less
than 𝜖, the push search stage is completed and the pull search stage is
ready to start.

The major advantages of the PPS framework include:

1. In the push stage, the working population conveniently gets across
infeasible regions without considering any constraints, which voids
the impact of infeasible regions encountered a distance before the
true PF.

2. Since the landscape of constraints has already been estimated in the
push search stage, valuable information can be collected to guide
the parameter settings in the pull search stage, which not only facil-
itates the parameter settings of the algorithm, but also enhances its
adaptability when dealing with CMOPs.

2.2. The M2M population decomposition approach

Employing a number of sub-populations to solve problems in a col-
laborative way [34] is a widely used approach, which can help an algo-
rithm balance its convergence and diversity. One of the most popular
methods is the M2M population decomposition approach [26], which
decomposes a multi-objective optimization problems into a number of
simple multi-objective optimization subproblems in the initialization,
then solves these sub-problems simultaneously in a coordinated man-
ner. For this purpose, K unit vectors v1,… , vK in ℝm

+ are chosen in the
first octant of the objective space. Then ℝm

+ is divided into K subregions
Ω1,… ,ΩK , where Ωk(k = 1,… ,K) is

Ωk = {u ∈ Rm
+ ∣ ⟨u,vk⟩ ≤ ⟨u,vj⟩ for any j = 1,… ,K} (7)

where ⟨u,vj⟩ is the acute angle between u and vj. Therefore, the pop-
ulation is decomposed into K sub-populations, each sub-population
searches for a different multi-objective subproblem. Subproblem Pk is
defined as:⎧⎪⎪⎨⎪⎪⎩

minimize F(x) = (f1(x),… , fm(x))

subject to x ∈
n∏

i=1
[ai, bi]

F(x) ∈ Ωk

(8)

Altogether there are K subproblems, and each subproblem is solved
by employing a sub-population. Moreover, each sub-population has S
individuals. In order to keep S individuals for each subproblem, some
selection strategies are used. If sub-population Mk has less than S indi-
viduals, then S − |Mk| individuals from Q (the entire population) are
randomly selected and added to Mk.

A major advantage of M2M is that it can effectively balance diversity
and convergence at each generation by decomposing a multi-objective

Fig. 1. The population decomposition manner.

optimization problem into multiple simple multi-objective optimization
problems.

3. An instantiation of PPS-M2M

This section describes the details of an instantiation, which com-
bines the M2M decomposition approach with the PPS framework in a
non-dominated sorting framework to solve CMOPs.

3.1. The M2M decomposition approach

In the initial stage, PPS-M2M uses a decomposition strategy to
decompose a CMOP into a set of sub-problems that are solved in a
collaborative manner with each sub-problem corresponding to a sub-
population. For the sake of simplicity, we assume that all the objective
functions f1(x),… , fm(x) of a CMOP are non-negative. Otherwise, the
objective function fi(x) is replaced by fi(x) − f i, where f i is the mini-
mum value of the objective function fi(x) found so far.

Assuming that the objective function space is divided into K sub-
regions, K direction vectors v1,… , vk are uniformly distributed on the
first octant of the unit sphere, where vk is the center of the kth subre-
gion. Then the objective function space is divided into K non-adjacent
sub-regions Ω1,… ,Ωk, where the kth (k = 1,… ,K) sub-regions can
be obtained by Eq. (8). Through such a decomposition method, the
multi-objective optimization problem (Eq. (1)) can be decomposed into
K simple CMOPs. The procedure is described in Algorithm 1. As an
example when the objective number m = 2 and the number of sub-
regions K = 6, the population decomposition is illustrated in Fig. 1,
where v1,… , v6 are six evenly distributed direction vectors.

Algorithm 1 Allocation of Individuals to Sub-populations.

3.2. The PPS framework

The search process of the PPS framework is divided into two main
search stages: the push search stage and the pull search stage. In the
push search stage, each sub-population uses an unconstrained NSGA-II
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to search for non-dominated solutions without considering any con-
straints. When using unconstrained NSGA-II to solve simple multi-
objective optimization problems, an individual i is measured by two
attributes [2], including the non-domination rank irank and the crowd-
ing distance idistance. Since individuals have two attributes, when an indi-
vidual i is compared to another individual j, if one of the following two
requirements is satisfied, then individual i can enter the descendant
population.

1. If the individual i dominates the individual j, i.e. irank < jrank;
2. If the individual i and the individual j are non-dominated by each

other, then the one with the larger crowding distance is selected, i.e.
the condition irank = jrank is satisfied, and id > jd.

In other words, when two individuals belong to different non-
domination rank, the individual with a lower (better) rank irank is
selected; when the two individuals have the same rank, the one with
less crowding distance is selected.

In the push search stage, a constrained optimization problem is opti-
mized without considering any constraints. The pseudo-code of push
search is given in Algorithm 2. In line 2, non-dominated sorting is car-
ried out on the sub-population Pk. In lines 3–6, a number of solutions
are selected into P′k until the number of solutions in P′k is greater than
Sk. Lines 7–9 select Sk − |P′k| solutions into P′k from Fi. In line 10, the
sub-population Pk is updated by setting Pk = P′k.

Algorithm 2 Push Subproblems.

In the pull search stage, the constrained optimization problem is
optimized by considering constraints, which is able to pull the popu-
lation to the feasible and non-dominated regions. The pseudocode of
push search is given in Algorithm 3.

The mechanism described in Eq. (4) controls the search process to
switch from the push to the pull search. At the beginning of the evolu-
tionary process, the value of rk is initialized to 1.0 in order to ensure
a thorough search in the push stage. The value of rk is updated by Eq.
(4). When the value of rk is less than or equal to the preset threshold 𝜖,
the search behavior is changed.

In the pull stage, we need to prevent the population from falling
into local optimum, and balance evolutionary search between feasi-
ble and infeasible regions. To achieve these goals, an improved epsilon
constraint-handling mechanism [6] is used to balance minimizing the
objectives and satisfying the constraints in the pull search stage, with
the detailed definition given as follows.

An improved epsilon constraint-handling mechanism is defined as
follows:

𝜖(k) =

⎧⎪⎪⎨⎪⎪⎩

𝜙𝜃 if k = 0
(1 − 𝜏)𝜀(k − 1) if rfk < 𝛼

𝜀(0)(1 − k
Tc

)cp if rfk ≥ 𝛼

0 otherwise

(9)

where 𝜖(k) is the value of 𝜖 function, 𝜙𝜃 is the overall constraint viola-
tion of the top 𝜃-th individual in the initial population, rfk is the propor-
tion of feasible solutions in the generation k. 𝜏 controls the speed when
the relaxation of constraints reduces in the case of rfk < 𝛼 (𝜏 ∈ [0,1]).
𝛼 controls the searching preference between the feasible and infeasible
regions. cp is used to control the reducing interval of relaxation of con-
straints in the case of rfk ≥ 𝛼. 𝜀(k) stops updating until the generation
counter k reaches generation Tc. 𝜀(0) is set to the maximum overall con-
straint violation when the push search finishes. In the case of rfk < 𝛼,
Eq. (9) sets 𝜀(k) with an exponential decreasing speed, which has a
potential to find feasible solutions more efficiently than the 𝜀 setting
in Ref. [35]. In the case of rfk ≥ 𝛼, Eq. (9) has the same 𝜀 setting
as adopted in Ref. [35]. In the pull search stage, a new individual is
selected using the constraint handling mechanism described by Algo-
rithm 3.

Algorithm 3 Pull Subproblem.

3.3. M2M embedded in PPS

The pseudo-code of PPS-M2M is introduced in Algorithm 4. The
algorithm is initialized at lines 1–3. At line 2, the population of a
CMOP is divided into K sub-populations, and the number of individ-
uals for each sub-population is equal to S. At line 3, the maximum rate
of change of ideal and nadir points rk is initialized to 1.0, and the flag
of search stage is set to push (PushStage = true). The algorithm runs
repeatedly from line 4 to 38 until the termination condition is met.
Lines 5–13 describe the process of generating new solutions for each
sub-population. A number of new solutions are generated at lines 6–10.
At lines 12–13, The solution set Q is allocated to each sub-population
according to Eq. (7). The max rate of change between the ideal and
nadir points during the last l generations rk is calculated at line 15.
The parameter 𝜀(k) is updated at lines 16–25. The updating process
for each sub-population is described in lines 26–36. If the size of sub-
population Mk is less than S, then S − |Mk| individual solutions are ran-
domly selected from Q and added to Mk. If the size of sub-population
Mk is greater than S, then S solutions are selected out by using the PPS
framework. More specifically, at the push search stage, S individual
solutions are selected out by employing non-dominated sorting method
without considering any constraints, as illustrated in line 31. At the
pull search stage, S individual solutions are selected out by using an
improved epsilon constraint-handling approach, as illustrated in line
33. The generation counter is updated at line 37. At line 39, a set of
non-dominated and feasible solutions is selected out.

As an example, the search behavior of PPS-M2M is illustrated in
Fig. 2, which can be summarized as follows. At first, five direction vec-
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tors v1,… , v5 are uniformly sampled in the objective space, in which 5
non-adjacent sub-regions M1,… ,M5 are constructed. The working sub-
populations have achieved the unconstrained PF without considering
any constraints in the push search, as illustrated by Fig. 2(a)–(c). It is
notable that in this particular case some solutions located on the uncon-
strained PF are feasible. In the pull search stage, the infeasible solutions
are pulled to the feasible and non-dominant regions, as illustrated by
Fig. 2(d)–(f).

Algorithm 4 PPS-M2M.

3.4. The differences between PPS-M2M and PPS-MOEA/D

The proposed PPS-M2M and PPS-MOEA/D are two different instan-
tiations of the PPS framework. The main differences between PPS-M2M
and PPS-MOEA/D are summarized as follows:

1. The proposed PPS-M2M applies a different decomposition method
compared with the PPS-MOEA/D. In PPS-M2M, the M2M decompo-
sition method is applied to decompose a CMOP into a set of simple
CMOPs, while a CMOP is decomposed into a number of single objec-
tive optimization problems in PPS-MOEA/D.

2. PPS-M2M and PPS-MOEA/D use different selection strategies to
select solutions to the next generation. In PPS-M2M, a non-
dominated sorting approach and an improved epsilon (IEpsilon)
constraint-handling method are combined to select solutions, while
a combination of a decomposition and the IEpsilon constraint-
handling approach is used to select offsprings in PPS-MOEA/D.

3. Even though both PPS-M2M and PPS-MOEA/D are effective
CMOEAs, they are suitable for solving CMOPs with different charac-
teristics. PPS-M2M is more suitable for solving CMOPs with imbal-
anced objectives and diversity-hard constraint functions, while PPS-
MOEA/D is more suitable for solving CMOPs with large infeasible
regions. The details can be found in Section 4.4.

4. Experimental study

In this section, the proposed PPS-M2M is compared with the other
nine algorithms (CM2M [28], MOEA/D-Epsilon [29], MOEA/D-SR [30],
MOEA/D-CDP [30], C-MOEA/D [31], NSGA-II-CDP [2], MODE-ECHM
[16], CM2M2 [32] and MODE-SaE [33]) on benchmarking problems.
The chosen algorithms have been shown to be effective in solving
CMOPs. We select benchmarking problems LIR-CMOP1-14 [6] to test
the performance of the selected CMOEAs. The reason is that the feasi-
ble regions of these problems are relatively small, which can effectively
evaluate the performance of the constraint-handling method in the pro-
posed PPS-M2M.

The test instances CF1-10 [36] are also commonly used CMOPs.
However, the feasible regions of them are relatively large, and a
CMOEA can approximate their PFs without encountering any infeasible
obstacles during the entire evolutionary process, which may not be suit-
able to evaluate the performance of the constraint-handling approach
in the PPS-M2M. In fact, the objective functions of CF1-10 are difficult
to be optimized. In the future, we will study CMOEAs which are able to
solve CMOPs with difficult objectives, and employ the CF1-10 [36] to
help evaluate the performance of these CMOEAs.

Furthermore, in order to illustrate the differences between PPS-M2M
and PPS-MOEA/D [27], a set of new constrained and imbalanced multi-
objective optimization problems (CIMOPs) are designed according to
MOPs [26] and DAS-CMOPs [37]. The objective functions of CIMOPs
are the same as those of MOPs [26], which are imbalanced. The con-
straint functions are set with diversity-hardness, which is inspired by
DAS-CMOPs [37]. The suggested CIMOPs have imbalanced objective
functions and diversity-hard constraint functions, which can be used to
effectively evaluate the performance of PPS-M2M.

4.1. Experimental settings

To evaluate the performance of PPS-M2M, we adopts two test
instances, including LIR-CMOP1-14 and CIMOP1-7. For LIR-CMOP1-12
and CIMOP1-5, each of them has two objectives. For LIR-CMOP13-14
and CIMOP6-7, each of them has three objectives. Ten compared algo-
rithms (the proposed PPS-M2M, CM2M [28], MOEA/D-Epsilon [29],
MOEA/D-SR [30], MOEA/D-CDP [30], C-MOEA/D [31], NSGA-II-CDP
[2], MODE-ECHM [16], CM2M2 [32] and MODE-SaE [33]) are inde-
pendently run 30 times on LIR-CMOP1-14. The proposed PPS-M2M,
PPS-MOEA/D [27], CM2M and CM2M2 are independently run 30 times
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Fig. 2. Infeasible regions make the original unconstrained PF partially feasible. The objective space is divided into 5 sub-regions, and 5 direction vector v1,… , v5

are uniformly distributed on the first octant of the unit sphere. The objective space is divided into 5 non-adjacent sub-regions M1,… ,M5. (a)–(c) show the push
search process, in which the working population of each sub-region crosses infeasible regions without any barriers. The pull search process, in which the infeasible
solutions in the working population of each sub-region is pulled to the feasible and non-dominant regions, as shown in (d)–(f).

on CIMOP1-7. The experimental parameters for each algorithm are
explained as follows:

(1) Population size and termination condition: The population size N
is set to 300 in all the algorithms. Furthermore, the ten algorithms are
terminated when 300,000 function evaluations (FEs) are reached.

(2) Parameter settings: These algorithms apply DE operators to gen-
erate offsprings. The crossover and mutation operators are set to the
same controls parameters, as follows: F = 0.5, CR = 1.0, where F
and CR are the values of scale factor and crossover rate, respectively.
Furthermore, we use standard toolkits to implement the peer algo-
rithms, and follow the suggestions in their original study to set algo-
rithmic parameters. Specifically, PPS-M2M and PPS-MOEA/D apply an
improved epsilon constraint-handling method and the related parame-
ters are set to those in Ref. [6], and the details are as follows: 𝛼 = 0.95,
𝜏 = 0.1, Tc = 800 and 𝜃 = 0.05 N. PPS-M2M, CM2M and CM2M2
decompose an objective space into K sub-regions, so their K sub-regions
are the same and K is set to ⌊√N⌋ according to Ref. [32]. MOEA/D-
Epsilon, MOEA/D-SR, MOEA/D-CDP are decomposition-based, and the
neighborhood size T is set to 0.1 N in these algorithms. MODE-
ECHM and MOEA/D-Epsilon both apply the epsilon constraint han-
dling approach, so the speed of reducing relaxation of constraints (cp),
the control generation (Tc) and the top 𝜃th individual of the initial
population are the same in these algorithms, following the practice
in Ref. [29]. According to Ref. [30], the stochastic ranking (Sr) in
MOEA/D-SR is set to 0.05 for balancing objective and penalty func-
tions directly. Following the guidelines in Ref. [32], the infeasible
weights N1 is set to 90 and the feasible weights N2 is set to 210 in
CM2M2.

4.2. Performance metric

In order to evaluate the performance of the proposed algo-
rithm (PPS-M2M) and the nine state-of-the-art CMOEAs (CM2M [28],
MOEA/D-Epsilon [29], MOEA/D-SR [30], MOEA/D-CDP [30], C-
MOEA/D [31], NSGA-II-CDP [2], MODE-ECHM [16], CM2M2 [32] and
MODE-SaE [33]), two performance indicators, including the inverted

generation distance (IGD) [38] and the hypervolume (HV) [39], are
adopted in this paper.

• Inverted Generational Distance (IGD):

Inverted Generational Distance(IGD) is an inverse mapping of Gen-
erational Distance(GD). It is expressed by the average distance from the
individual in Pareto optimal solution set to the non-dominant solution
set PF obtained by the algorithm. Therefore, the calculation formula is

⎧⎪⎪⎨⎪⎪⎩
IGD(P∗,A) =

∑
y∗∈P∗

d(y∗,A)

|P∗|
d(y∗,A) = min

y∈A
{

√√√√ m∑
i=1

(y∗i − yi)2}
(10)

where P∗ is a set of representative solutions in the true PF. d(y∗,A)
represents the minimum Euclidean distance from point y∗i on the Pareto
optimal surface to individual yi in P∗. The smaller the IGD value, the
better the performance of the algorithm.

• Hypervolume (HV):

HV has become a popular evaluation index, which reflects the close-
ness of the set of non-dominated solutions achieved by a CMOEA to
the true PF. The performance of CMOEA is evaluated by calculating the
hypervolume of the space surrounded by the non-dominant solution set
and the reference point. The calculation formula is as follows:

HV(S) = VOL(
⋃
x∈S

[f1(x), zr
1] ×…[fm(x), zr

m]) (11)

where VOL(·) is the Lebesgue measure, m denotes the number of objec-
tives, zr = (zr

1,… , zr
m)T is a user-defined reference point in the objective

space. The bigger the HV value, the better the performance of the algo-
rithm. The reference point is placed at 1.2 times the distance to the
nadir point of the true PF. A larger value of HV indicates better perfor-
mance regarding diversity and/or convergence.
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Table 1
IGD results of PPS-M2M and the other nine CMOEAs on LIR-CMOP1-14. To facilitate the display of this table, Epsilon, CDP, SR, SaE and ECHM in this table
are short for MOEA/D-Epsilon [29], MOEA/D-CDP [30], MOEA/D-SR [30], MODE-SaE [33] and MODE-ECHM [16] respectively. Friedman test at a 0.05
significance level is performed between PPS-M2M and each of the other nine CMOEAs, namely CM2M [28], Epsilon [29], SR [30], CDP [30], C-MOEA/D
[31], NSGA-II-CDP [2], ECHM [16], CM2M2 [32] and SaE [33]. The best mean among the compared algorithms on the test problem is highlighted in
boldface.

Test Instance PPS-M2M CM2M [28] CM2M2 [32] Epsilon [29] CDP [30] SR [30] C-MOEA/D [31] NSGA-II-CDP [2] SaE [33] ECHM [16]

LIRCMOP1 mean 1.330E-02 3.106E-02 1.356E-02 5.74E-02 1.11E-01 1.81E-02 1.26E-01 3.23E-01 2.06E-02 5.429E-01
std 4.407E-03 9.888E-03 2.993E-03 2.89E-02 5.04E-02 1.66E-02 7.03E-02 7.33E-02 1.15E-02 2.193E-01

LIRCMOP2 mean 1.485E-02 2.742E-02 1.167E-02 5.39E-02 1.43E-01 9.63E-03 1.40E-01 3.03E-01 1.51E-02 4.995E-01
std 5.576E-03 8.596E-03 3.021E-03 2.13E-02 5.55E-02 7.23E-03 5.44E-02 7.24E-02 5.041E-03 2.062E-01

LIRCMOP3 mean 1.987E-02 4.383E-02 1.395E-02 8.81E-02 2.61E-01 1.78E-01 2.80E-01 4.08E-01 7.44E-03 7.866E-01
std 7.371E-03 1.445E-02 5.867E-03 4.36E-02 4.33E-02 7.20E-02 4.21E-02 1.15E-01 1.91E-03 2.603E-01

LIRCMOP4 mean 2.504E-02 4.187E-02 1.196E-02 6.51E-02 2.53E-01 1.95E-01 2.59E-01 3.85E-01 9.06E-03 8.266E-01
std 9.030E-03 2.371E-02 5.604E-03 3.01E-02 4.34E-02 6.40E-02 3.51E-02 1.35E-01 2.89E-03 2.754E-01

LIRCMOP5 mean 3.922E-03 2.941E-01 1.181E+00 1.15E+00 1.05E+00 1.04E+00 1.10E+00 5.53E-01 1.07E-01 2.087E+01
std 1.515E-03 5.013E-01 1.826E-02 1.98E-01 3.63E-01 3.66E-01 2.99E-01 6.88E-01 2.00E-03 2.557E+00

LIRCMOP6 mean 5.077E-03 5.356E-01 9.915E-01 1.27E+00 1.09E+00 9.43E-01 1.31E+00 5.74E-01 4.95E-01 2.051E+01
std 1.117E-02 5.509E-01 5.510E-01 2.95E-01 5.20E-01 5.90E-01 2.08E-01 4.21E-01 1.07E-01 2.994E+00

LIRCMOP7 mean 3.711E-03 5.237E-01 7.077E-02 1.51E+00 1.46E+00 1.08E+00 1.56E+00 2.38E-01 7.99E-02 2.824E+00
std 1.993E-03 7.677E-01 5.172E-02 5.09E-01 5.58E-01 7.58E-01 4.24E-01 4.06E-01 4.07E-02 8.474E-01

LIRCMOP8 mean 2.949E-03 7.924E-01 6.582E-02 1.62E+00 1.38E+00 1.01E+00 1.58E+00 6.02E-01 3.31E-01 2.910E+00
std 9.666E-05 7.455E-01 5.937E-02 3.05E-01 6.15E-01 7.24E-01 3.71E-01 7.39E-01 9.38E-01 8.183E-01

LIRCMOP9 mean 3.704E-01 4.599E-01 4.197E-01 4.90E-01 4.81E-01 4.85E-01 4.81E-01 6.44E-01 5.04E-01 1.007E+00
std 2.529E-02 6.426E-02 8.113E-02 4.22E-02 5.24E-02 4.78E-02 5.24E-02 1.60E-02 4.26E-06 1.685E-01

LIRCMOP10 mean 1.572E-02 2.291E-01 6.108E-01 2.13E-01 2.16E-01 1.92E-01 2.13E-01 5.97E-01 4.10E-01 1.258E+00
std 4.506E-02 8.123E-02 1.375E-01 5.32E-02 6.81E-02 6.81E-02 4.63E-02 3.20E-02 2.86E-05 1.029E-01

LIRCMOP11 mean 2.770E-02 4.400E-01 5.135E-01 3.47E-01 3.42E-01 3.16E-01 3.81E-01 4.87E-01 5.33E-01 1.054E+00
std 4.656E-02 1.038E-01 1.131E-01 9.28E-02 9.22E-02 7.49E-02 8.95E-02 1.05E-02 8.59E-02 1.196E-01

LIRCMOP12 mean 9.310E-02 1.488E-01 2.549E-01 2.52E-01 2.69E-01 2.06E-01 2.50E+00 5.80E-01 2.52E-01 1.028E+00
std 9.310E-02 5.757E-02 1.592E-02 8.98E-02 9.06E-02 5.61E-02 9.63E-02 1.17E-01 7.79E-02 1.303E-01

LIRCMOP13 mean 1.874E-01 1.57E+00 1.263E+00 1.20E+00 1.21E+00 8.86E-01 1.18E+00 1.39E+01 8.97E-01 8.530E+00
std 2.690E-02 1.05E-02 2.254E-01 3.06E-01 3.17E-01 5.76E-01 3.78E-01 2.26E+00 1.34E-01 7.869E-01

LIRCMOP14 mean 1.746E-01 2.39E+00 1.220E+00 1.02E+00 1.11E+00 1.03E+00 1.25E+00 1.36E+01 9.45E-01 8.568E+00
std 2.840E-02 1.63E-02 2.192E-01 4.86E-01 3.98E-01 4.70E-01 5.30E-02 2.17E+00 1.75E-01 0.65187

Friedman test 1.4286 4.7857 4.6429 5.8571 6.1786 4.0714 7 7.4286 3.8214 9.7857

Table 2
Adjusted p-values for the Friedman Aligned test in terms of mean metric (IGD). To facilitate the display of this table, Epsilon, CDP, SR,
SaE and ECHM in this table are short for MOEA/D-Epsilon [29], MOEA/D-CDP [30], MOEA/D-SR [30], MODE-SaE [33] and
MODE-ECHM [16] respectively.

i algorithm unadjusted p pHolm pHochberg pHommel pHolland pRom pFinner pLi

1 ECHM [16] 0 0 0 0 0 0 0 0
2 NSGA-II-CDP [2] 0 0.000001 0.000001 0.000001 0.000001 0.000001 0.000001 0
3 C-MOEA/D [31] 0.000001 0.000008 0.000008 0.000008 0.000008 0.000007 0.000003 0.000001
4 CDP [30] 0.000033 0.000199 0.000199 0.000199 0.000199 0.000189 0.000075 0.000034
5 Epsilon [29] 0.000109 0.000544 0.000544 0.000544 0.000544 0.000518 0.000196 0.000113
6 CM2M [28] 0.00335 0.013399 0.013399 0.010049 0.013331 0.012776 0.00502 0.003465
7 CM2M2 [32] 0.004972 0.014916 0.014916 0.014916 0.014842 0.014916 0.006388 0.005134
8 SR [30] 0.020916 0.041832 0.036525 0.036525 0.041395 0.036525 0.0235 0.021248
9 SaE [33] 0.036525 0.041832 0.036525 0.036525 0.041395 0.036525 0.036525 0.036525

4.3. Discussion of experiments

Tables 1 and 3 show the IGD and HV values of the ten algorithms
on LIR-CMOP1-14. According to the Friedman aligned test, PPS-M2M
achieves the highest ranking among the ten CMOEAs. The p-values
calculated by the statistics of the Friedman aligned test are close to
zero, which reveals the significant differences among the ten algorithms
(PPS-M2M, CM2M, MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP, C-
MOEA/D, NSGA-II-CDP, MODE-ECHM, CM2M2 and MODE-SaE).

Tables 2 and 4 show adjusted p-values of IGD and HV values
for the Friedman Aligned test, and PPS-M2M is the control method.
To compare the statistical difference among PPS-M2M and the other
nine algorithms, we perform a series of post-hoc tests. Each adjusted
p value in Tables 2 and 4 is less than the preset significant level
0.05. To control the Family-Wise Error Rate (FWER), a set of post-
hoc procedures, including the Holm procedure [40], the Holland proce-

dure [41], the Finner procedure [42], the Hochberg procedure [43],
the Hommel procedure [44], the Rom procedure [45] and the Li
procedure [46], are used according to Ref. [47]. It is worth noting
that some HV values of NSGA-II-CDP and MOED-ECHM are zero in
Table 4. The reason is that the achieved solutions by these two algo-
rithms are all dominated by the reference points. From the Fried-
man test, we can conclude that PPS-M2M is significantly better than
the other nine algorithms (CM2M, MOEA/D-Epsilon, MOEA/D-SR,
MOEA/D-CDP, C-MOEA/D, NSGA-II-CDP, MODE-ECHM, CM2M2 and
MODE-SaE).

In order to further discuss the advantages of the proposed PPS-
M2M in solving CMOPs, we plot non-dominated solutions achieved by
each algorithm on LIR-CMOP1, LIR-CMOP7 and LIR-CMOP11 with the
median HV values. The feasible and infeasible regions of LIR-CMOP1,
LIR-CMOP7 and LIR-CMOP11, corresponding to the three different
types of difficulties [37], are plotted in Fig. 3.
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Table 3
HV results of PPS-M2M and the other nine CMOEAs on LIR-CMOP1-14. To facilitate the display of this table, Epsilon, CDP, SR, SaE and ECHM in this table are
short for MOEA/D-Epsilon [29], MOEA/D-CDP [30], MOEA/D-SR [30], MODE-SaE [33] and MODE-ECHM [16] respectively. Friedman test at a 0.05
significance level is performed between PPS-M2M and each of the other nine CMOEAs, namely CM2M [28], Epsilon [29], SR [30], CDP [30], C-MOEA/D [31],
NSGA-II-CDP [2], ECHM [16], CM2M2 [32] and SaE [33]. The best mean among the compared algorithms on the test problem is highlighted in boldface.

Test Instance PPS-M2M CM2M [28] CM2M2 [32] Epsilon [29] CDP [30] SR [30] C-MOEA/D [31] NSGA-II-CDP [2] SaE [33] ECHM [16]

LIRCMOP1 mean 1.009E+00 9.897E-01 1.008E+00 9.590E-01 7.540E-01 9.960E-01 7.410E-01 5.160E-01 2.292E-01 3.718E-01
std 4.590E-03 1.322E-02 3.563E-03 3.280E-02 8.950E-02 2.910E-02 1.220E-01 5.570E-02 9.270E-03 1.871E-01

LIRCMOP2 mean 1.337E+00 1.321E+00 1.345E+00 1.280E+00 1.060E+00 1.340E+00 1.070E+00 8.240E-01 3.587E-01 5.971E-01
std 7.093E-03 1.124E-02 4.409E-03 2.880E-02 1.080E-01 1.470E-02 9.100E-02 1.150E-01 2.839E-03 2.620E-01

LIRCMOP3 mean 8.650E-01 8.407E-01 8.645E-01 7.980E-01 4.860E-01 5.910E-01 4.710E-01 4.080E-01 2.054E-01 1.538E-01
std 6.010E-03 1.787E-02 5.795E-03 3.930E-02 4.310E-02 1.070E-01 4.090E-02 2.880E-02 9.720E-04 1.793E-01

LIRCMOP4 mean 1.095E+00 1.051E+00 1.088E+00 1.020E+00 7.350E-01 8.150E-01 7.310E-01 6.170E-01 3.133E-01 1.707E-01
std 8.869E-03 3.870E-02 3.633E-03 4.190E-02 5.440E-02 8.700E-02 5.160E-02 1.060E-01 2.900E-03 2.774E-01

LIRCMOP5 mean 1.455E+00 1.084E+00 1.513E-01 4.300E-02 1.630E-01 1.820E-01 9.720E-02 9.390E-01 2.603E-01 0.000E+00
std 6.935E-03 6.097E-01 4.184E-01 2.350E-01 4.430E-01 4.390E-01 3.700E-01 3.210E-01 2.540E-01 0.000E+00

LIRCMOP6 mean 1.118E+00 5.337E-01 1.455E-01 5.400E-02 1.880E-01 3.020E-01 2.330E-02 4.130E-01 5.462E-02 0.000E+00
std 3.888E-02 3.987E-01 3.034E-01 2.210E-01 3.870E-01 4.620E-01 1.280E-01 1.890E-01 1.090E-02 0.000E+00

LIRCMOP7 mean 3.005E+00 2.021E+00 2.776E+00 3.030E-01 3.740E-01 9.880E-01 2.040E-01 2.400E+00 2.587E-01 0.000E+00
std 2.434E-02 1.349E+00 1.706E-01 9.070E-01 9.580E-01 1.270E+00 7.520E-01 6.520E-01 1.020E-02 0.000E+00

LIRCMOP8 mean 3.016E+00 1.498E+00 2.769E+00 1.060E-01 5.170E-01 1.100E+00 1.660E-01 1.900E+00 1.044E-01 0.000E+00
std 2.494E-03 1.277E+00 2.149E-01 5.490E-01 1.050E+00 1.200E+00 6.110E-01 7.560E-01 1.480E-01 0.000E+00

LIRCMOP9 mean 3.152E+00 2.826E+00 2.941E+00 2.740E+00 2.770E+00 2.750E+00 2.770E+00 2.060E+00 3.585E-01 1.110E+00
std 8.752E-02 2.114E-01 1.698E-01 1.480E-01 1.840E-01 1.640E-01 1.840E-01 1.080E-02 9.970E-05 2.421E-01

LIRCMOP10 mean 3.216E+00 2.845E+00 1.847E+00 2.890E+00 2.880E+00 2.930E+00 2.890E+00 2.040E+00 4.913E-01 3.834E-01
std 7.555E-02 1.720E-01 4.934E-01 1.020E-01 1.360E-01 1.350E-01 9.770E-02 4.450E-02 1.070E-04 2.594E-01

LIRCMOP11 mean 4.343E+00 3.115E+00 2.738E+00 3.340E+00 3.350E+00 3.380E+00 3.240E+00 3.110E+00 3.083E-01 1.280E+00
std 1.401E-01 3.003E-01 5.532E-01 2.570E-01 2.570E-01 2.900E-01 2.550E-01 1.540E-02 6.890E-02 2.850E-01

LIRCMOP12 mean 5.409E+00 5.221E+00 4.900E+00 4.880E+00 4.830E+00 5.030E+00 4.890E+00 3.280E+00 5.077E-01 1.622E+00
std 1.717E-01 1.878E-01 1.115E-01 3.170E-01 3.280E-01 1.750E-01 3.450E-01 3.610E-01 2.250E-02 3.114E-01

LIRCMOP13 mean 4.874E+00 4.566E-01 3.119E+00 4.550E-01 4.630E-01 1.890E+00 6.290E-01 0.000E+00 9.476E-02 0.000E+00
std 1.068E-01 2.100E-02 2.746E+00 1.300E+00 1.420E+00 2.570E+00 1.710E+00 0.000E+00 6.010E-02 0.000E+00

LIRCMOP14 mean 5.449E+00 4.142E-01 2.313E+00 1.330E+00 8.810E-01 1.270E+00 1.800E-01 0.000E+00 3.178E-02 0.000E+00
std 1.237E-01 5.110E-03 2.835E+00 2.450E+00 1.970E+00 2.290E+00 2.600E-01 0.000E+00 4.360E-02 0.000E+00

Friedman test 1.1786 3.9286 3.5 5.75 5.5357 3.8929 6.3571 6.6429 8.6429 9.5714

Table 4
Adjusted p-values for the Friedman Aligned test in terms of mean metric (HV). To facilitate the display of this table, Epsilon, CDP, SR,
SaE and ECHM in this table are short for MOEA/D-Epsilon [29], MOEA/D-CDP [30], MOEA/D-SR [30], MODE-SaE [33] and
MODE-ECHM [16] respectively.

i algorithm unadjusted p pHolm pHochberg pHommel pHolland pRom pFinner pLi

1 ECHM [16] 0 0 0 0 0 0 0 0
2 SaE [33] 0 0 0 0 0 0 0 0
3 NSGA-II-CDP [2] 0.000002 0.000013 0.000013 0.000013 0.000013 0.000012 0.000005 0.000002
4 C-MOEA/D [31] 0.000006 0.000036 0.000036 0.000036 0.000036 0.000034 0.000014 0.000006
5 Epsilon [29] 0.000065 0.000324 0.000324 0.000324 0.000324 0.000308 0.000117 0.000068
6 CDP [30] 0.00014 0.000561 0.000561 0.000561 0.000561 0.000535 0.000211 0.000147
7 CM2M [28] 0.016256 0.048767 0.035392 0.032511 0.047979 0.035392 0.020851 0.016694
8 SR [30] 0.017696 0.048767 0.035392 0.035392 0.047979 0.035392 0.020851 0.018146
9 CM2M2 [32] 0.042498 0.048767 0.042498 0.042498 0.047979 0.042498 0.042498 0.042498

As shown in Fig. 3(a), the feasible region of LIR-CMOP1 is very
small, which indicates a feasibility-hard problem. Non-dominated solu-
tions achieved by each algorithm on LIR-CMOP1 with the median HV
values are plotted in Fig. 4. We can observe that PPS-M2M, CM2M,
MOEA/D-SR, MODE-ECHM, CM2M2 and MODE-SaE can converge to
the true PF and have good diversity, as shown in Fig. 4(a), (b), (e),
(h), (i) and (j). However, according to the HV and IGD metrics, the
proposed PPS-M2M is better than the other compared algorithms. The
convergence of CM2M is worse than that of PPS-M2M, as shown in
Fig. 4(b). A possible reason is that some sub-regions are assigned to
infeasible regions in CM2M, and solutions in these sub-regions cannot
converge to the true PF. For the rest of four algorithms, their diversity
is worse than that of PPS-M2M, as shown in Fig. 4(c), (d), (f) and (g).

On LIR-CMOP7, there are three large non-overlapping infeasible
regions in the front of the unconstrained PF, as illustrated in Fig. 3(b).
In addition, the unconstrained PF is covered by one of the infeasi-
ble regions, which indicates a convergence-hard problem. The results

of PPS-M2M and the other nine algorithms (CM2M, MOEA/D-Epsilon,
MOEA/D-SR, MOEA/D-CDP, C-MOEA/D, NSGA-II-CDP, MODE-ECHM,
CM2M2 and MODE-SaE) on LIR-CMOP7 are shown in Fig. 5. We can
see that only PPS-M2M can get across the infeasible regions to reach
the whole true PF, as illustrated in Fig. 5(a). The reason is that PPS-
M2M ignore the constraints at the push stage, and can conveniently get
across the infeasible regions. However, the other compared algorithms
cannot get across the three infeasible regions effectively since two large
infeasible regions in front of the PF hinder the way of populations of
these nine algorithms to converge to the true PF.

The PF of LIR-CMOP11 is discrete as shown in Fig. 3(c), which sug-
gests a problem with diversity-hardness. There are seven Pareto optimal
solutions. Two solutions are located on the unconstrained PF, and five
solutions are located on the constrained PF. Fig. 6 shows the results
of the nine tested algorithms on LIR-CMOP11. From Fig. 6(a)–(b), we
can see that only PPS-M2M and CM2M can find all the Pareto opti-
mal solutions. Furthermore, the PPS-M2M has good convergence com-
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Fig. 3. Illustrations of the feasible and infeasible regions of LIR-CMOP1, LIR-CMOP7 and LIR-CMOP11, corresponding to three different types of difficulties as
discussed in Ref. [37].

Fig. 4. The non-dominated solutions achieved by each algorithm on LIR-CMOP1 with the median HV values.

pared to the CM2M. A possible reason is that each sub-population is
combined into a whole population which is evolved by employing the
improved epsilon constraint-handling method at the last ten percent-
ages of the maximum generation. The rest of algorithms (MOEA/D-
Epsilon, MOEA/D-SR, MOEA/D-CDP, C-MOEA/D, NSGA-II-CDP MODE-
ECHM, CM2M2 and MODE-SaE) can find only a part of Pareto opti-
mal solutions, because infeasible regions block the way of populations
of these algorithms towards the true PF. Furthermore, it is difficult to
set parameters of constraint-handling methods properly in these algo-
rithms, because the landscape of constraints is not well explored and
estimated during the search.

Based on the above observations and analysis, we can conclude that
the proposed PPS-M2M outperforms the other nine CMOEAs (CM2M,
MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP, C-MOEA/D, NSGA-II-
CDP, MODE-ECHM, CM2M2 and MODE-SaE) on most of the test
instances.

4.4. The comparison between PPS-M2M and PPS-MOEA/D

To compare the two PPS based algorithms, namely PPS-M2M and
PPS-MOEA/D, both LIR-CMOPs [6] and CIMOPs are suggested. The
detailed definitions of CIMOP1-7 are given in Table 7. The feasible

regions and true PFs of CIMOP1-7 are shown in Fig. 7. It is worth not-
ing that while LIR-CMOPs are featured by large infeasible regions, and
CIMOPs are featured by imbalanced objective functions and diversity-
hard constraint functions.

At first, the proposed PPS-M2M and PPS-MOEA/D are compared
on LIR-CMOP1-14. Tables 5 and 6 show the IGD and HV values of
PPS-M2M and PPS-MOEA/D on LIR-CMOP1-14. From these tables, we
can observe that PPS-MOEA/D outperforms the proposed PPS-M2M on
LIR-CMOP1-14. From these tables, we can observe that PPS-MOEA/D
outperforms the proposed PPS-M2M on LIR-CMOP1-14, even though
PPS-M2M can achieve significantly better results than the other nine
algorithms (CM2M, MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP, C-
MOEA/D, NSGA-II-CDP, MODE-ECHM, CM2M2 and MODE-SaE) in this
test suite (as shown in Tables 1–4).

Tables 8 and 10 show the IGD and HV values of the four algorithms,
including PPS-M2M, PPS-MOEA/D, CM2M and CM2M2, on CIMOP1-7.
Since CM2M and CM2M2 adopt M2M decomposition approach, they
are included to verify that the performance of PPS-M2M does not only
rely on the M2M approach, but also on the constraint handing mech-
anism in the PPS framework. According to the Friedman aligned test,
PPS-M2M achieves the highest ranking among the four CMOEAs. To
compare the statistical difference among PPS-M2M and the other three

9
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Fig. 5. The non-dominated solutions achieved by each algorithm on LIR-CMOP7 with the median HV values.

Fig. 6. The non-dominated solutions achieved by each algorithm on LIR-CMOP11 with the median HV values.

algorithms, we perform a series of post-hoc tests, with results shown
Tables 9 and 11. Since each adjusted p-value in Tables 9 and 11 is less
than the preset significant level 0.05, we can conclude that PPS-M2M
is significantly better than the other three algorithms (PPS-MOEA/D,
CM2M and CM2M2).

In order to illustrate the advantages of the proposed PPS-M2M in
solving CIMOPs, we plot non-dominated solutions achieved by each

algorithm on CIMOP2 and CIMOP4 with the median HV values, as
two examples shown in Figs. 8 and 9. We can observe that PPS-M2M
can find most Pareto optimal solutions. However, the other three algo-
rithms can only find a small part of the true PFs. A possible rea-
son is that CIMOP2 and CIMOP4 have diversity-hard characteristics
in constraint functions. More specifically, the objective functions of
CIMOP2 and CIMOP4 are imbalanced. As a result, and the decompo-

10
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Fig. 7. The feasible regions, PFs without constraints and true PFs (PFs with constraints) of CIMOP1-7 are plotted.

Table 5
IGD and HV results of PPS-M2M and the other three CMOEAs on LIR-CMOP1-14. Friedman test
at a 0.05 significance level is performed between PPS-M2M and PPS-MOEA/D [27]. The best
mean among the compared algorithms on the test problem is highlighted in boldface.

Test Instances IGD HV

PPS-M2M PPS-MOEA/D [27] PPS-M2M PPS-MOEA/D [27]

LIRCMOP1 mean 1.330E-02 6.413E-03 1.009E+00 1.016E+00
std 4.407E-03 1.938E-03 4.590E-03 1.580E-03

LIRCMOP2 mean 1.485E-02 4.673E-03 1.337E+00 1.349E+00
std 5.576E-03 7.844E-04 7.093E-03 1.010E-03

LIRCMOP3 mean 1.987E-02 8.545E-03 8.650E-01 8.703E-01
std 7.371E-03 5.184E-03 6.010E-03 2.650E-03

LIRCMOP4 mean 2.504E-02 4.677E-03 1.095E+00 1.093E+00
std 9.030E-03 1.116E-03 8.869E-03 2.467E-03

LIRCMOP5 mean 3.922E-03 1.837E-03 1.455E+00 1.462E+00
std 1.515E-03 9.263E-05 6.935E-03 2.919E-04

LIRCMOP6 mean 5.077E-03 2.490E-03 1.118E+00 1.129E+00
std 1.117E-02 3.399E-04 3.888E-02 1.771E-04

LIRCMOP7 mean 3.711E-03 2.797E-03 3.005E+00 3.015E+00
std 1.993E-03 9.854E-05 2.434E-02 2.663E-03

LIRCMOP8 mean 2.949E-03 2.778E-03 3.016E+00 3.017E+00
std 9.666E-05 7.558E-05 2.494E-03 1.139E-03

LIRCMOP9 mean 3.704E-01 9.940E-02 3.152E+00 3.570E+00
std 2.529E-02 1.519E-01 8.752E-02 2.242E-01

LIRCMOP10 mean 1.572E-02 2.108E-03 3.216E+00 3.241E+00
std 4.506E-02 7.754E-05 7.555E-02 3.077E-04

LIRCMOP11 mean 2.770E-02 2.832E-03 4.343E+00 4.390E+00
std 4.656E-02 1.359E-03 1.401E-01 2.217E-04

LIRCMOP12 mean 9.310E-02 2.704E-02 5.409E+00 5.614E+00
std 5.548E-02 5.002E-02 1.717E-01 1.525E-01

LIRCMOP13 mean 1.874E-01 6.455E-02 4.874E+00 5.710E+00
std 2.690E-02 2.177E-03 1.068E-01 1.275E-02

LIRCMOP14 mean 1.746E-01 6.419E-02 5.449E+00 6.193E+00
std 2.840E-02 1.690E-03 1.237E-01 1.310E-02

Friedman test 2 1 1.9286 1.0714

sition method of MOEA/D can only find a few parts of the PFs, as dis-
cussed in Ref. [26]. In addition, the convergence performance of CM2M
and CM2M2 are worse than that of PPS-M2M, since many solutions
obtained by CM2M and CM2M2 cannot converge to the true PFs, as
shown in Fig. 8(c)–(d) and Fig. 9(c)–(d). One possible reason is that
the constrained PFs of CIMOP2 and CIMOP4 are subsets of their uncon-
strained PFs. Because PPS-M2M first converges to unconstrained PFs
without considering any constraints, it can very well deal with problems
with this type of constraints using the push and pull mechanism. How-
ever, CM2M and CM2M2 adopt a different constraint-handling mech-
anism that considers the feasibility of the working population all the

time, which is not so effective to treat the constraints of CIMOP2 and
CIMOP4.

Based on the above observations and analysis, we conclude that PPS-
M2M is a powerful algorithm that can very well treat CMOPs with either
large infeasible regions or imbalanced objectives and diversity-hard
constraints. In comparison with PPS-MOEA/D, another instantiation of
PPS framework, PPS-M2M is more suitable for solving CMOPs with
imbalanced objectives and diversity-hard constraint functions, while
PPS-MOEA/D is more suitable to solve LIR-CMOPs with large infeasible
regions.

11
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Table 6
Adjusted p-values for the Friedman Aligned test in terms of mean metric (IGD and HV). PPS-MOEA/D is the control method.

performance indicator algorithm unadjusted p pHolm pHochberg pHommel pHolland pRom pFinner pLi

IGD PPS-M2M 0.008151 0.008151 0.008151 0.008151 0.008151 0.008151 0.008151 0.008151
HV PPS-M2M 0.023342 0.023342 0.023342 0.023342 0.023342 0.023342 0.023342 0.023342

Table 7
The objective functions and constraint functions of CIMOP1-7.

Problem Objectives Constraints

CIMOP1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min f1(x) = (1 + g(x))x1

min f2(x) = (1 + g(x))(1 −
√

x1)

where g(x) = 2 sin(𝜋x1)
n∑

i=2
(−0.9t2

i + |t0.6
i |)

ti = xi − sin(0.5𝜋x1)
n = 10,x ∈ [0,1]n

{
c1(x) = sin(a𝜋x1) − b ≥ 0
a = 20, b = 0

CIMOP2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min f1(x) = (1 + g(x))x1

min f2(x) = (1 + g(x))(1 − x2
1)

where g(x) = 10 sin(𝜋x1)
n∑

i=2
( |ti|
1 + e5|ti | )

ti = xi − sin(0.5𝜋x1)
n = 10,x ∈ [0,1]n

They are the same as those of CIMOP1

CIMOP3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min f1(x) = (1 + g(x)) cos( 𝜋x1
2

)

min f2(x) = (1 + g(x)) sin( 𝜋x1
2

)

where g(x) = 10 sin( 𝜋x1
2

)
n∑

i=2
( |ti|
1 + e5|ti | )

ti = xi − sin(0.5𝜋x1)
n = 10,x ∈ [0,1]n

They are the same as those of CIMOP1

CIMOP4

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min f1(x) = (1 + g(x))x1

min f2(x) = (1 + g(x))(1 − x0.5
1 cos2(2𝜋x1))

where g(x) = 1 + 10 sin(𝜋x1)
n∑

i=2
( |ti|
1 + e5|ti | )

ti = xi − sin(0.5𝜋x1)
n = 10,x ∈ [0,1]n

They are the same as those of CIMOP1

CIMOP5

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min f1(x) = (1 + g(x))x1

min f2(x) = (1 + g(x))(1 −
√

x1)

where g(x) = 2| cos(𝜋x1)| n∑
i=2

(−0.9t2
i + |t0.6

i |)
ti = xi − sin(0.5𝜋x1)
n = 10,x ∈ [0,1]n

They are the same as those of CIMOP1

CIMOP6

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min f1(x) = (1 + g(x))x1x2

min f2(x) = (1 + g(x))x1(1 − x2)
min f3(x) = (1 + g(x))(1 − x1)

where g(x) = 2 sin(𝜋x1)
n∑

i=3
(−0.9t2

i + |t0.6
i |)

ti = xi − x1x2

n = 10,x ∈ [0,1]n

⎧⎪⎨⎪⎩
c1(x) = sin(a𝜋x1) − b ≥ 0
c2(x) = cos(a𝜋x2) − b ≥ 0
a = 20, b = 0

CIMOP7

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min f1(x) = (1 + g(x)) cos( x1𝜋

2
) cos( x2𝜋

2
)

min f2(x) = (1 + g(x)) cos( x1𝜋

2
) sin( x2𝜋

2
)

min f3(x) = (1 + g(x)) sin( x2𝜋

2
)

where g(x) = 2 sin(𝜋x1)
n∑

i=3
(−0.9t2

i + |t0.6
i |)

ti = xi − x1x2

n = 10,x ∈ [0,1]n

They are the same as those of CIMOP6
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Table 8
IGD results of PPS-M2M and the other three CMOEAs on CIMOP1-7. Friedman test at a
0.05 significance level is performed between PPS-M2M and each of the other three
CMOEAs, namely PPS-MOEA/D [27], CM2M [28] and CM2M2 [32]. The best mean
among the compared algorithms on the test problem is highlighted in boldface.

Test Instance PPS-M2M PPS-MOEA/D [27] CM2M [28] CM2M2 [32]

CIMOP1 mean 2.05E-02 2.81E-01 7.96E-01 5.22E-02
std 1.13E-03 8.44E-02 6.36E-03 1.79E-02

CIMOP2 mean 4.42E-02 2.95E-01 6.38E-01 1.81E-01
std 1.56E-02 1.29E-02 2.01E-02 3.18E-02

CIMOP3 mean 1.19E-01 3.51E-01 5.58E-01 2.80E-01
std 1.13E-02 3.06E-02 1.54E-02 3.66E-02

CIMOP4 mean 4.72E-03 2.01E-01 6.47E-01 1.09E-02
std 1.00E-03 2.92E-02 1.49E-02 3.44E-02

CIMOP5 mean 4.45E-02 3.76E-01 6.60E-02 8.26E-02
std 5.28E-03 4.59E-02 1.25E-02 2.23E-02

CIMOP6 mean 9.17E-02 2.13E-01 6.98E-01 2.34E-01
std 8.67E-03 4.46E-02 2.42E-02 2.46E-02

CIMOP7 mean 1.64E-01 3.65E-01 8.00E-01 3.67E-01
std 1.87E-02 1.64E-02 5.11E-02 4.51E-02

Friedman test 1 2.8571 3.7143 2.4286

Table 9
Adjusted p-values for the Friedman Aligned test in terms of mean metric (IGD).

i algorithm unadjusted p pHolm pHochberg pHommel pHolland pRom pFinner pLi

1 CM2M 0.000084 0.000251 0.000251 0.000251 0.000251 0.000251 0.000251 0.000087
2 PPS-MOEA/D 0.007118 0.014237 0.014237 0.014237 0.014186 0.014237 0.010659 0.007348
3 CM2M2 0.038434 0.038434 0.038434 0.038434 0.038434 0.038434 0.038434 0.038434

Table 10
HV results of PPS-M2M and the other three CMOEAs on CIMOP1-7. Friedman test at a
0.05 significance level is performed between PPS-M2M and each of the other three
CMOEAs, namely PPS-MOEA/D [27], CM2M [28] and CM2M2 [32]. The best mean
among the compared algorithms on the test problem is highlighted in boldface.

Test Instance PPS-M2M PPS-MOEA/D [27] CM2M [28] CM2M2 [32]

CIMOP1 mean 1.065E+00 6.623E-01 3.833E-01 1.032E+00
std 1.359E-03 1.388E-01 5.250E-02 2.243E-02

CIMOP2 mean 7.251E-01 4.620E-01 7.109E-01 5.237E-01
std 2.415E-02 1.478E-02 9.110E-03 2.600E-02

CIMOP3 mean 5.834E-01 2.470E-01 6.630E-01 3.384E-01
std 2.507E-02 3.612E-02 2.260E-02 4.312E-01

CIMOP4 mean 9.288E-01 5.999E-01 7.856E-01 8.019E-01
std 2.686E-03 1.747E-02 1.080E-03 7.203E-02

CIMOP5 mean 1.028E+00 6.550E-01 8.355E-01 9.617E-01
std 7.116E-03 2.281E-02 6.810E-03 3.263E-02

CIMOP6 mean 1.437E+00 1.326E+00 8.748E-01 9.505E-01
std 1.227E-02 5.988E-02 1.440E-02 4.994E-02

CIMOP7 mean 1.041E+00 9.348E-01 8.319E-01 7.827E-01
std 3.658E-02 6.182E-03 1.850E-02 3.010E-02

Friedman test 1.1429 3.2857 2.8571 2.7143

Table 11
Adjusted p-values for the Friedman Aligned test in terms of mean metric (HV).

i algorithm unadjusted p pHolm pHochberg pHommel pHolland pRom pFinner pLi

1 PPS-MOEA/D 0.001901 0.005703 0.005703 0.005703 0.005692 0.005703 0.005692 0.001941
2 CM2M 0.012983 0.025966 0.022773 0.022773 0.025797 0.022773 0.019411 0.013111
3 CM2M2 0.022773 0.025966 0.022773 0.022773 0.025797 0.022773 0.022773 0.022773

5. Conclusion

This paper proposes a new algorithm, namely PPS-M2M, which
combines a multi-objective to multi-objective (M2M) decomposition
approach with a push and pull search (PPS) framework to deal with

CMOPs. To be more specific, the search process of PPS-M2M is divided
into two stages—namely, push and pull search processes. At the push
search stage, PPS-M2M uses the M2M decomposition method to decom-
pose a CMOP into a set of simple CMOPs which correspond to a set
of sub-populations. Each simple CMOP is solved in a collaborative
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Fig. 8. The non-dominated solutions achieved by each algorithm on CIMOP2 with the median HV values.

Fig. 9. The non-dominated solutions achieved by each algorithm on CIMOP4 with the median HV values.

manner without considering any constraints, which can help the sub-
populations effortlessly get across infeasible regions.

Furthermore, some constrained landscape information can be esti-
mated during the push search stage, such as the ratio of feasible to infea-
sible solutions and the maximum overall constraint violation, which
can be further employed to guide the parameter settings of constraint-
handling mechanisms in the pull search stage. When the max rate of
change between ideal and nadir points is less than or equal to a pre-
defined threshold, the search process is switched to the pull search
stage. At the beginning of the pull search stage, the infeasible solutions
of each sub-population obtained in the push stage are pulled to the
feasible and non-dominated regions by adopting the improved epsilon
constraint-handling approach. At the last ten percentages of the max-
imum generation, all sub-populations are merged into a whole pop-
ulation, which is further evolved by employing the improved epsilon
constraint-handling method. The comprehensive experimental results
demonstrate that the proposed PPS-M2M outperforms the other nine
CMOEAs (CM2M, MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP, C-
MOEA/D, NSGA-II-CDP, MODE-ECHM, CM2M2 and MODE-SaE) on
most of the LIR-CMOP1-14 significantly. To illustrate the differences
between PPS-M2M and PPS-MOEA/D, we compare the performance of
PPS-M2M and PPS-MOEA/D on LIR-CMOPs and CIMOPs. The experi-
mental results show that the proposed PPS-M2M achieves significantly
better results than PPS-MOEA/D on CIMOPs, while PPS-MOEA/D out-
performs PPS-M2M on LIR-CMOPs, even though PPS-M2M can achieve
significantly better results than the other nine algorithms (CM2M,
MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP, C-MOEA/D, NSGA-II-
CDP, MODE-ECHM, CM2M2 and MODE-SaE) in comparison in this test
suite. From the comprehensive experimental analysis, we can conclude
that PPS-M2M is a powerful algorithm that can effectively deal with
CMOPs with either large infeasible regions or with imbalanced objec-
tives and diversity-hard constraints. In comparison with PPS-MOEA/D,
PPS-M2M is more suitable for solving CMOPs with imbalanced objec-
tives and diversity-hard constraint functions, while PPS-MOEA/D is
more suitable to solve LIR-CMOPs with large infeasible regions.

There are many ways to improve the performance of PPS-M2M,
including enhancing constraint-handling mechanisms in the pull search
stage, and integrating machine learning methods to allocate compu-
tational resources dynamically into sub-populations of the PPS-M2M
method, and so on. It is worth noting that because PPS is a very power-

ful framework for solving CMOPs, many new instantiations of the PPS
framework can be generated and customized for solving CMOPs with
different features, which is also one of our future research directions.
In addition, real-world optimization problems will be investigated by
using the proposed PPS-M2M.
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