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Abstract
Melanoma is the deadliest form of skin cancer, and its incidence is increasing. The first step in automated melanoma analysis
of dermoscopy images is to segment the area of the lesion from the surrounding skin. To improve the accuracy and adaptability
of segmentation, an algorithm called sampling with level set by integrating color and texture (SLS-CT) is proposed that not
only designs a new way to incorporate textural and color features in the definition of the energy functional but also utilizes an
index called texture level, proposed in this work, to automatically decide the weight of each feature in the combined energies.
First, at the preprocessing stage, hair and black frame removal is applied, and a potential lesion area is then obtained using
Otsu thresholding and entropy maximization. Thereafter, the probability distribution of prior color in this potential lesion
area is calculated as well. Second, Gabor wavelet-based texture features are extracted and integrated with the prior color
into the evolving energies of the level set based on the texture level. To achieve global optimization, a Markov chain Monte
Carlo sampling approach guided by the combined energy is adopted in evolving the level set, which ultimately defines a
border in the image to segment a lesion from normal skin. Finally, morphological operations are used for postprocessing. The
experimental results of the proposed algorithm are compared with those of other state-of-the-art algorithms, demonstrating
that the proposed algorithm outperforms the other tested ones in terms of accuracy and adaptability to different databases.
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1 Introduction

Malignant melanoma is the deadliest form of skin cancer,
and the number of invasive melanoma cases is increas-
ing rapidly. In fact, early-stage melanoma can be cured
with a simple excision. Melanoma screenings such as skin
self-examination or total body skin examination are recom-
mended for early detection. However, the interpretation of
such examinations is time-consuming and subjective, even
for trained dermatologists. Therefore, the development of
computer-aided diagnostic techniques for automatic or semi-
automatic diagnosis of skin lesions is essential for facilitating
early diagnosis of malignant melanoma [1, 2].

Accurate segmentation facilitates clinical quantitative
analysis. In recent decades, many segmentation algorithms
have been proposed to detect the borders of pigmented
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skin lesions either automatically or semiautomatically [3–6].
These algorithms can be classified into the following cate-
gories: thresholding, edge-based, clustering [7, 8], region-
based, active contours [9–12] and supervised learning,
among others. The thresholding and edge-based methods
both encounter problems when the modes of the two regions
overlap or when the transition between them is vague, e.g.,
blurred lesion borders or low contrast between the lesion and
surrounding skin. To address these problems, region-based
methods such as clustering and region merging have been
proposed.

To select more features automatically and integrate more
prior knowledge, supervised learning methods are widely
used in medical image segmentation [13, 14]. Roth et al. [15]
proposed DeepOrgan, a method of pancreas segmentation
using convolutional neural networks (CNNs). This method
first uses random forest (RF) to generate region proposals
(RPs) and then employs several CNNs to classify RPs from
coarse to fine. In a previous work [16], a method of pig-
mented skin lesion segmentation based on RF is proposed.
First, RPs are generated by statistical regionmerging (SRM).
Then, Gabor wavelet transform-based texture and red (R),
green (G), blue (B) color features of RPs are combined and
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fed into RF for training and testing. This kind of RP classi-
fication method has the deficiency of heavy dependence on
RPs, i.e., if RPs are not generated accurately, the classifica-
tion accuracymay not be satisfactory.Without the generation
of RPs, Jafari et al. [17] made preprocessed patches of input
images and fed them into a convolutional neural network
for training and testing. However, one shortcoming of super-
vised learning is that a large and accurate training dataset is
usually required. Especially for medical image analysis, it is
very difficult to obtain such a dataset.

Active contour [18] is another well-known segmentation
model that is capable of integrating local and global features,
such as gradients, curvature andmean intensity. Silveira et al.
[19] compared four methods of active contour (two with
snakes and two with level set) in pigmented skin lesion seg-
mentation: gradient-based gradient vector flow (GVF) snakes
[20], active snakes using expectation maximization (EM)
[21], regional color based on Chan and Vese’s level set (CV)
[22] and an extension of CV combined with EM (EM-CV)
[19]. These four methods directly use pixel colors or features
derived from them to drive the explicit curves (snakes) or the
implicit curves embedded in a high-dimensional space (level
set). However, none of them has considered integration of
texture feature.

Ma and Tavares [23] presented a semiautomatic method
based on a level set to handle the segmentation of skin
lesions in dermoscopic images. The method uses the con-
trasts between the lightness and saturation of the skin lesions
and the surrounding normal skin to build the driving ener-
gies. However, the initial curve needs to be defined manually
to cover the entire region of the skin lesion to ensure that
the initial curve will then move inward until it arrives at
the boundaries of a skin lesion. The estimated distributions
of the lightness and saturation also depend on the initial
curve.

The most similar method to ours is the one called Markov
chain Monte Carlo sampling with level set (MCMC-LS)
[24]. MCMC-LS is an efficient, globally optimized level set
segmentation method in which each iteration of the evolv-
ing level set is sampled using Metropolis–Hastings MCMC
sampling. MCMC-LS introduces a perturbation based on
intensity and internal constraint energies, leading to the pro-
posal of evolving level sets being accepted more properly
and efficiently.

Unfortunately, the work performed in [24] did not include
a discussion of texture integration and determination of the
relative importance of different energies. In fact, in addition
to intensity and color, a pigmented skin lesion usually has
some unique texture features not observed in normal skin,
hair and vessels [25]. Therefore, texture features are suitable
for integration with color in pigmented skin lesion segmen-
tation. Furthermore, because melanoma regions are more
textured than nonmelanoma regions, the relative importance

of energies based on color or texture is not equal in segmen-
tation. Thus, it is necessary to differentiate the importance of
energies during level set segmentation for differently textured
skin lesions, according to texture level (TL), as proposed in
this work.

In this paper, we propose a level set-based segmentation
method for pigmented skin lesion in dermoscopy images to
achieve the following twoobjectives: (1) to improve the accu-
racy of segmentation by integrating additional microfeatures
such as textures, which we believe is an issue not sufficiently
discussed in pigmented skin lesion segmentation [26], and
(2) to improve adaptability by distinguishing the importance
of features in response to different inner textures. In our
method, TL is introduced to facilitate the adaptable inte-
gration of energies based on color and texture. In addition,
Gabor wavelet transform is used to extract different orienta-
tions and scales of texture features, which are added into a
variational level set segmentationmodel.Moreover, to obtain
global optimization,MCMC sampling is adopted in evolving
the level set.

Some preprocessing methods, including black frame
removal and approximate lesion localization [27], are also
introduced to further improve the performance of the algo-
rithm.

The remainder of this paper is organized as follows. In
Sect. 2, the proposed algorithm is explained in detail. In
Sect. 3, the experimental results and a discussion are pre-
sented. Finally, the conclusions are provided in Sect. 4.

2 Methods

Our method, named sampling with level set by integrating
color and texture (SLS-CT), comprises three major stages:
preprocessing, segmentation and postprocessing. (Details of
the algorithm are shown in Fig. 1.) In the stage of prepro-
cessing, we use a tool called DullRazor [28] to remove
hair, if present, and use a method based on clustering to
remove black frames in dermoscopy images. Subsequently,
a method of approximate lesion localization based on the
maximum entropy principle (MEP) is used, and the prepro-
cessed result is fed into the subsequent stage of segmentation.
The details of this stage are described in Sect. 2.1. In
the next stage of segmentation, we build a prior color
energy based on the result of approximate lesion localiza-
tion and a texture energy based on Gabor wavelet transform.
Then, we integrate these energies using a novel index
named texture level to guide sampling based on MCMC-
LS. These details are described in Sects. 2.2. Finally, in
the postprocessing stage, mathematical morphology opera-
tions are used to erase tiny islands and fill in small holes in
Sect. 2.3.
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Fig. 1 Flowchart of SLS-CT, including preprocessing, segmentation and postprocessing steps

Fig. 2 An illustrative example of hair removal using DullRazor: a the
original image; b the image after hair removal

Fig. 3 An example of black frame removal: a the original image;
b removal results for the rectangular black frames

2.1 Preprocessing

Here, we use three steps of preprocessing, namely hair
removal, black frame removal and approximate lesion local-
ization. Hair and black frame removal is employed to erase
irrelevant objects, and the aim of approximate lesion local-
ization is to roughly locate lesions.

2.1.1 Hair and black frame removal

A tool named DullRazor [28] is directly used to remove any
hair present in a dermoscopic image. An illustrative example
of hair removal is illustrated in Fig. 2.

Black frames usually exist in dermoscopic images due
to unsatisfactory illumination conditions. Here, we used a
method based on k-means clustering [29] to remove black
frames. An example of black frame removal is depicted in
Fig. 3. The detailed descriptions of black frame removal are
as follows:

(a) Given an image f (i, j) with spatial resolutionM*N, con-
vert it fromRGBcolor space toCIEL*a*b* color space.

(b) Choose the a* and b* channels as two components of
the vector features for k-means clustering.

(c) Build the third component, d, of the vector features by
the method given below:

d(i, j) �
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where n1 is a constant to adjust the area of the black frames.
The values of d for black frames are always greater than those
for lesions.

(d) Classify the vector features into three classes in ‘a*b*
+ d’ space using k-means clustering, where ‘+’ means
addition of two vectors in the vector space.

(e) Label each class as black frame, normal skin or skin
lesion according to the following relationship:

d̄b > d̄s > d̄l (2)

where d̄b, d̄s and d̄l are the mean values of d defined by
Eq. (1) for the classes black frame, normal skin and skin
lesion, respectively.

(f) Replace the color of the black frame class with the mean
color of the normal skin class.

Some illustrative examples of removal results are shown
in Fig. 3b. Note that we extract color features in CIE L*a*b*
color space instead of RGB because color differences are
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Fig. 4 Approximate lesion localization based on Otsu thresholding seg-
mentation and entropy maximization

more distinguishable in the former color space [30] for the
three classes.

2.1.2 Approximate lesion localization

The preprocessing stage also includes a method for approxi-
mate lesion localization. Inspired by themethod of automatic
color channel selection proposed in [19], which uses MEP
to determine which color channel to choose, we developed
a technique for approximating the ROI location using Otsu
thresholding based on MEP.

Assume a given image contains an obvious area of pig-
mented skin lesion. The entropy of the approximate ROI is
maximized only if the area of the ROI satisfies the following
equation:

AR � 2Am, (3)

where Am is the estimated lesion area segmented by Otsu
thresholding andAR is the area of theROI,whichhas the same
centroid as the smallest rectangle containing the estimated
lesion (as shown in Fig. 4).

The details of approximate lesion localization are given
below:

(a) Use Otsu thresholding to segment the input image into
a binary image, f Otsu, based on its blue channel in
RGB color space. Note that the blue channel is selected
because it best facilitates discrimination of lesions from
normal skin [31].

(b) With the given f Otsu, find the smallest rectangle to
encompass the skin lesion area.

(c) Based on the smallest rectangle, crop the input image
into a smaller rectangular onewith a proper size to fulfill
the condition in Eq. (3), as shown in Fig. 4.

2.2 Segmentation

First, an energy functional is constructed based on prior color
and texture. Then, TL is introduced to decide the weights of
the integrated energies adaptively. Finally, MCMC sampling
is adopted to obtain global optimization.

2.2.1 Prior color energy

During approximate lesion localization,we usedOtsu thresh-
olding to estimate the area of a lesion based on color. Thus,
the estimated result, f Otsu, is reused to calculate the estimated
probability p(x, y)K(clr) of each pixel belonging to the lesion
or the background. The energy of the prior color [32],EK(clr),
is given by

⎧
⎨

⎩

EK (clr) � − log
(
p(x, y)K (clr) + ε

)
,

p(x, y)K (clr) �
{
1, if fOtsu(x, y) � 0
0, if fOtsu(x, y) � 1

(4)

where ε is an additive tiny positive constant in case p(x,
y)K(clr) � 0. Notably, we use prior color instead of color to
build the energy because color is unreliable, especially when
lesions have varied coloring. Prior color provides an estima-
tion of color information of lesions, which can be further
refined by other features.

2.2.2 Texture energy

To improve the accuracy of segmentation by integrating addi-
tional microfeatures, we use Gabor wavelet transform to
extract texture features, which has been a very useful tool
in texture analysis in our previous work [16] and An’s work
[33]. Because Gabor wavelet transform is not sensitive to
illumination variations and a certain degree of geometric
transformation, we use this method to extract the texture fea-
tures of the skin and lesion, which are defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w(u, v) �
¨

f (x, y)h∗
G(u − x, v − y)dxdy,

hG(x, y|σ , u, v ) �
1

2πσ 2 exp

(

− x2 + y2

2σ 2

)

exp[− j2π(ux + vy)],

(5)

where (u, v) is a spatial frequency, hG(·) is the Gabor wavelet
function [34], σ is the standard deviation, * is a complex con-
jugate operator and w(·) is the coefficient of Gabor wavelet
transform.

Let S and K be the total number of the scale and direction
of hG(·), respectively. S×K wavelet transforms of an image
will yield S×K results of wavelet coefficients, denoted by
ws,k , s� 0, 1,…S− 1, k� 0, 1,…K− 1.
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To transform the Gabor texture feature into a probabilistic
feature, kernel density estimation (KDE) is used, which is
given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ptex.obj � p̂h(w(u, v)|φ(u, v) ≥ 0),
ptex.bkg � p̂h(w(u, v)|φ(u, v) < 0),

p̂h(w) � 1
nh

n∑

i�1
Kh(w,wi ),

Kh(w,wi ) � 1√
2π

e
− 1

2

(
w,wi
h

)2

(6)

where ptex.obj and ptex.bkg represent the probability distribu-
tions of the texture features of the object (lesion) and the
background, respectively, φ is the level set function, Kh(·) is
the Gaussian kernel function with the bandwidth h and n is
the number of pixels in the given image.

Using Eq. (6), the texture feature is transformed to a prob-
abilistic feature and can be integrated into the energy func-
tional. Here, we adopt Jensen–Shannon divergence (JSD)
[35] for the integration, which is defined by

⎧
⎪⎨

⎪⎩

JSD(P‖Q ) � 1

2
D(P‖M ) +

1

2
D(Q‖M ),

M � 1

2
(P + Q),

(7)

where P and Q are two probability distributions to be mea-
sured, JSD(·‖· ) is the similarity between P and Q. D(·‖· ) is
the Kullback–Leibler divergence (KLD) [36], which is given
by

D(P‖Q ) �
∑

i

P(i) log
(
P(i)/

Q(i)

)
. (8)

Then, the energy of texture Ef (tex) can be written as

E f (tex) � JSD
(
ptex.obj

∥
∥ptex.bkg

)
. (9)

Now the proposed energy functional E(φ; f ) is given as

E(φ; f , Kclr) � λ1EK (clr) + λ2E f (tex) +
∫

Ω

|∇H(φ)|dxdy,
(10)

where λ1 and λ2 are positive constants, H(·) is a Heaviside
function and Kclr denotes prior color. The last term on the
right of Eq. (10) is added to smooth contours [22].

2.2.3 Energy integration

To distinguish the relative importance of different energies,
we need to solve the problem of parameter settings for λ1 and
λ2, which decide which type of energy, prior color or texture
plays a more important role in the MCMC sampling. Here,

Fig. 5 Examples of different texture levels: a TL� 1.26, b TL� 2.23,
c TL� 2.44 and d TL� 0.97

a novel method for setting λ1 and λ2 based on TL is pro-
posed. TL is proposed here to describe the degree of texture
complexity. Because texture reflects the changing patterns
within a local range, color varies more greatly in more tex-
tured images. For an area with homogeneous color, texture
generally has a very low level of complexity. In particular,
TL is defined by:

TL � −
∑

i

p(ri ) log2(p(ri )), i � 1, 2, . . . , L (11)

where ri is the ith color intensity level of the lesion area f Otsu
estimated by Otsu’s method in the stage 1 of the proposed
method, p(ri) denotes the histogram of the lesion area in
terms of ri and L is the maximum level of the discretization
of lesion color. Here, if we set L � 8, then TL∈ [0,3]. Some
illustrative images with different TLs are shown in Fig. 5,
where we can see that lesions with less color variation have
smaller values of TL (see Fig. 5a, d) and that more color
variation yields greater values of TL (Fig. 5b, c).

Based on the above analysis, λ1 and λ2 are set by

λ1 � C, λ2 � C ·

⎧
⎪⎨

⎪⎩

Tlow, if 0 ≤ TL ≤ 1,

Tmed, if 1 <TL ≤ 2,

Thgh, if 2 < TL ≤ 3,

(12)

where C is a positive constant and Thgh >Tmed >T low >0.
The parameters are set in this way because texture features
must play a more important role in segmentation if they are
more obvious.

2.2.4 Global optimization based on MCMC sampling

After the energy functional based on level set is ready,
the method of MCMC sampling in [24] is adopted here
to find the global optimizers for the energy minimization
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problem. Then, sufficient MCMC sampling will decrease
the energy and generate an approximate globally optimal
solution, which eventually defines a border in the image to
segment a lesion from normal skin.

2.3 Postprocessing

After segmentation, mathematical morphology operations
such as open, erode and close operators are used to fill in
small holes inside lesions, smooth lesion borders and erase
tiny islands apart from lesions. The disk-shaped structuring
elements are used here, and the disk radius for open, erode
and close operators is 2, 2 and 5, respectively.

3 Experiments

We use two public dermoscopy databases to test the segmen-
tation algorithms. One database contains 90 images provided
byCelebi et al. [37] and is calledDB1. The other database is a
challenging dermoscopic image database called PH2, which
includes 200 images that captured the complete region of
skin lesions [38]. First, the numerical results are compared
with those of 6 state-of-the-art algorithms. Then, the efficacy
of applying texture level is analyzed.

Our experiments were conducted on a PC with a 2.5 GHz
Intel Core2 Q8300 processor and 4 GB of 800 MHz DDR2
RAM runningMATLAB 2013b onWindowsXP. The default
settings of the related parameters were as follows: Gabor
wavelet scales � [0.1, 0.2, 0.5], S� 3; Gabor wavelet direc-
tions � [0, π /4, π /2, π*3/4], K� 4; L � 8; C � 1. For DB1,
n1 � 0.8, Tlow � 1e2, Tmed � 1e7 and Thgh � 1e9; for PH2,
n1 � 2, Tlow � 1e1, Tmed � 1e3 and Thgh � 1e8.

3.1 Evaluationmethod

To evaluate the algorithms, segmentation results are com-
pared with manually segmented ground truth, as determined
manually by experienced dermatologists. For the numerical
comparisons, we use the exclusive-OR (XOR) measure with
respect to the correct classification of each pixel as normal
skin or a lesion. Let TP be the number of true-positive pix-
els, FP the number of false positives, TN the number of true
negatives and FN the number of false negatives. The formula
for the metric is given in Eq. (13):

XOR = (FP + FN)/(TP + FN). (13)

3.2 Comparison with state-of-the-art algorithms

The proposed algorithm was first compared with 4 state-
of-the-art lesion segmentation algorithms using DB1. These

Table 1 Comparison data of state-of-the-art algorithms for DB1 mea-
sured by XOR (%)

Algorithm Benign Melanoma All

μ σ μ σ μ σ

SRM [39] 11.38 6.23 10.29 5.84 11.11 6.12

ACE [31] 10.07 4.34 18.17 26.96 12.14 14.36

W30B60 [41] 12.95 6.17 16.93 7.16 13.96 6.63

DM [23] 10.03 4.34 13.11 4.88 10.82 4.66

SLS-CT 10.28 6.88 11.12 5.74 10.50 6.03

algorithms cover the major types of effective segmentation
techniques.

Table 1 lists the comparative results of performance mea-
suredbyXOR, as defined inEq. (13), using theDB1database,
where μ and σ are the mean value and the standard deriva-
tion of XOR, respectively. The best results are highlighted
in boldface. The results show that the proposed algorithm
has the smallest mean value of XOR for all images in DB1.
The dataset is also divided into two categories: benign (67
images) and melanoma (23 images). Because benign lesions
are always homogeneous in color, the results of XOR are
satisfying (μ� 10.03 to 13.69). Our algorithm is in the top
3, with μ� 10.28 and σ � 6.88 for segmentation of benign
lesions. Melanoma lesions are more textured than benign
lesions, and the results for melanoma are consistent with this
difference. Two algorithms presented μ>15 for melanoma
segmentation. Our algorithm finished in second place, with
μ� 11.12 and σ � 5.74, while SRM [39] performed best,
with μ� 10.29 and σ � 5.84. The results of our algorithm
are superior to those of similar methods for both benign and
melanoma segmentation bydistinguishing the relative impor-
tance of the two types of features based on TL.

Furthermore, the presented algorithm was compared with
those proposed by Z. Ma and Tavares [23] and by Ahn et al.
[40] using the PH2 database. Notably, the algorithm pre-
sented in [23] used 160 of 200 images (8 for melanoma
and 152 for nevi), thereby excluding most of the melanoma
images, whereas we used 189 images in total (33 for
melanoma and 156 for nevi), with many more challenging
melanoma images. The algorithm in [40] used all 200 images.

Table 2 lists the comparative results measured by XOR
using the PH2 database from [23] and [40]. This table shows
that the proposed algorithm yields the smallest mean val-
ues of XOR for both benign and all images in PH2. For
melanoma, however, SLS-CT has a larger value of XOR than
that of the deformable model [23]. Note that our method
used 33 melanoma images, while the compared algorithm
used only 8. Moreover, the algorithm proposed by [23] is
semiautomatic and requires manual initialization, whereas
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Table 2 Comparison data of the algorithms for PH2 measured by XOR
(%)

Algorithm Benign Melanoma All

μ σ μ σ μ σ

DM [23] 13.91 7.79 14.16 8.07 13.92 7.78

RSSLS [40] 13.52 N/A 28.21 N/A 16.45 N/A

SLS-CT 11.94 8.29 19.80 8.19 13.31 8.64

Eleven images in PH2 (IDs: IMD035, 037, 085, 168, 196, 240, 284,
367, 420, 424 and 425) are excluded from our experiments

our algorithm is fully automatic due to the usage of the novel
index TL.

3.3 Efficacy of applying texture level

TL is introduced here to automatically decide the weight of
each feature in the combined energy of the proposed model.
Without TL, the weights are usually set manually and empir-
ically. It is not only time-consuming but also hard to find
optimal settings. The weight setting commonly accounts for
the whole dataset but not for a single image. Setting weights
per image is realizable with TL.

Figure 6 depicts the comparison of segmentation results
between the algorithms with TL and without TL, measured
by XOR, using boxplots. When setting weights manually, λ1
is set to 1 constantly, and λ2 is set to 14 different values as:

λ2 ∈ {1e − 2, 1e − 1, 1, 1e + 1, 1e + 2 . . . , 1e + 11}.

In Fig. 6a, b, the rightmost boxplot of each figure is the
result of the proposed method using TL, which outperforms
the others without TL.

Additionally, when λ2 is too small (λ2 � 1e−2 or 1e−1),
i.e., the texture energy is nearly neglected, the performances
are not satisfactory. With increasing values of λ2, the values
of XOR become significantly smaller (refer to the boxplots
in Fig. 6 for λ2 � 1e− 1, 1, 1e + 1). This further verified the
validity of introducing texture in the combined energy. After
that, the values of XOR fluctuate with the increase in λ2.
However, with the help of TL, λ2 can be selected adaptively,
and the resulting algorithm yields the best performance, as
shown by the last boxplots in Fig. 6a, b.

3.4 Drawbacks and discussion

Our algorithmstill failed to segment a small portionof images
in PH2. Two reasons may account for this: (1) some lesions
are very similar to the surrounding normal skin in both color
and texture and (2) some lesions have two or more different
colors that are close to the background color. SLS-CT is not
precise enough to discriminate between these lesions and the

Fig. 6 The comparison of segmentation results between the algorithms
with TL and without TL: a for DB1; b for PH2

background. These cases can be found in the excluded images
in PH2 [30].

One possible way to solve these problems is to utilize
the split-and-merge strategy in SLS-CT, i.e., first segment-
ing a dermoscopic image into more than two regions and
then merging areas according to their regional features. This
leaves us an open problem for future research.

4 Conclusions

SLS-CT, a novel pigmented skin lesion segmentation algo-
rithm based on level set, is proposed. Based on TL, SLS-CT
integrates adaptively themicrofeatures ofwavelet texture and
prior color produced by Otsu thresholding into the energy
functional and solves the problem of level set energy min-
imization by sampling based on MCMC to obtain global
optimization. The proposed algorithm and other state-of-
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the-art methods were tested and compared using two pub-
lic dermoscopy databases. Numerical experimental results
demonstrate the effectiveness and superiority of the proposed
algorithm.
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