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Abstract
Automated and accurate segmentation of retinal vessels in fundus images is an important step for screening and diagnosing
various ophthalmologic diseases. However, many factors, including the variations of vessels in color, shape and size, make
this task become an intricate challenge. One kind of the most popular methods for vessel segmentation is U-Net based
methods. However, in the U-Net based methods, the size of the convolution kernels is generally fixed. As a result, the
receptive field for an individual convolution operation is single, which is not conducive to the segmentation of retinal vessels
with various thicknesses. To overcome this problem, in this paper, we employed self-calibrated convolutions to replace
the traditional convolutions for the U-Net, which can make the U-Net learn discriminative representations from different
receptive fields. Besides, we proposed an improved spatial attention module, instead of using traditional convolutions, to
connect the encoding part and decoding part of the U-Net, which can improve the ability of the U-Net to detect thin vessels.
The proposed method has been tested on Digital Retinal Images for Vessel Extraction (DRIVE) database and Child Heart
and Health Study in England Database (CHASE DB1). The metrics used to evaluate the performance of the proposed
method are accuracy (ACC), sensitivity (SE), specificity (SP), F1-score (F1) and the area under the receiver operating
characteristic curve (AUC). The ACC, SE, SP, F1 and AUC obtained by the proposed method are 0.9680, 0.8036, 0.9840,
0.8138 and 0.9840 respectively on DRIVE database, and 0.9756, 0.8118, 0.9867, 0.8068 and 0.9888 respectively on CHASE
DB1, which are better than those obtained by the traditional U-Net (the ACC, SE, SP, F1 and AUC obtained by U-Net are
0.9646, 0.7895, 0.9814, 0.7963 and 0.9791 respectively on DRIVE database, and 0.9733, 0.7817, 0.9862, 0.7870 and 0.9810
respectively on CHASE DB1). The experimental results indicate that the proposed modifications in the U-Net are effective
for vessel segmentation.
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1 Introduction

As the ophthalmic diseases, including diabetic retinopathy,
arteriosclerosis and leukemia, can make the retinal vessels
change in length, width, angle and vascular proliferation,
the structural information of retinal vessels in the fundus
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images is important for the diagnosis of ophthalmic diseases
[4, 5, 8, 24, 28]. In clinical practice, to obtain the structural
information, retinal vessels are manually annotated by
ophthalmologists. The disadvantages of manual annotation
are obvious, including time-consuming and error-prone.
To reduce the workload of ophthalmologists and increase
the accuracy, many methods have been proposed for
segmenting retinal vessels in fundus images automatically,
which can be divided into unsupervised methods and
supervised methods roughly.

1.1 Unsupervisedmethods

The unsupervised methods could be divided into several
categories further, which are morphology based methods,
vessel tracking methods, model based methods and matched
filtering based methods. The morphology based methods [3,
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18] are generally designed based on the observation that
the intensity of retinal vessels is lower than the background
brightness. The vessel tracking methods [16] mainly employ
local information to detect vessels with the seed points.
The model based methods [10, 32] apply explicit vessel
profile to extract the vasculature. The matched filtering
based methods [2] employ the filters, which are designed
based on the characters of vessels, to enhance the vessels in
the images.

1.2 Supervisedmethods

One of advantages for the unsupervised methods is that
they do not require the manual labels to train the models.
However, the unsupervised methods are designed based on
some strong assumptions, e.g., the intensity of blood vessels
is lower than the background brightness [18], once the
vessels do not meet the assumptions, the designed methods
would fail to detect the vessels.

To avoid making a strong assumption for vessel
segmentation, the traditional supervised methods [14, 20,
21, 25] are an alternative way. There are two main steps
in the traditional supervised methods, which are feature
extraction and classification. Concretely, a series of features
are first designed. A classifier is then trained based on the
designed features. Once training done, the trained classifier
could be used to determine a pixel whether belongs to vessel
pixels. In the process, the classifiers are designed based
on some common machine learning algorithms, including
support vector machine [21], K-nearest neighbor [25], and
AdaBoost [14], while the features, e.g., Gabor filter based
features [9] and the Gaussian filter based features [20], are
generally designed by hand. There are several disadvantages
with hand-tuned features, including being time-consuming
and difficult to be generalized to other domains.

As the revival of deep learning [11], especially deep
convolutional neural networks [12], many researchers have
employed them for different tasks, including the task of
vessel segmentation. Note that deep convolutional neural
networks can learn hierarchical features through multiple
levels of abstraction from images automatically, and thus
can avoid the process of designing features by hand.
The existing methods for vessel segmentation with deep
convolutional neural networks are mainly designed based
on the structure of U-Net [22], which is a very popular
network structure for medical image segmentation. Such as,
Alom et al. [1] designed a recurrent convolutional neural
network based on the U-Net to segment retinal vessel.
Wang et al. [26] proposed a dual encoding method for
the U-Net to enhance the capability of the networks in
segmentation of vessels. Besides, CSU-Net [27], CS2-Net
[19] and Genetic U-Net [29] were also designed for vessel
segmentation.

Although the improved U-Nets could achieve good
performance, they generally adopted traditional convolution
operations, where the size of the convolution kernels is
fixed. As a result, the receptive field of an individual
convolution operation is single, which does not conducive to
the segmentation of retinal vessels with various thicknesses.
In addition, the information of thin vessels can be easily
filtered by the traditional convolution operations in the U-
Net. In this paper, we would like to make the U-Net can
learn discriminative representations from different receptive
fields, so that the U-Net has a stronger capability in
detecting the vessels with different thickness. Besides, we
also would like to improve the ability of the U-Net in
capturing the thin vessels.

To make the U-Net can learn discriminative represen-
tations from different receptive fields, we employed self-
calibration convolutions (SCC) [17] to replace the tradi-
tional convolutions. In a self-calibration convolution, the
low-dimensional features are used to calibrate the high-
dimensional features, as a result, different receptive fields
can be obtained to help the networks learn discrimina-
tive features. Concretely, the convolution filters in a spe-
cific layer are separated into multiple portions. The low-
dimensional feature information is then obtained through
the down-sampling operation, which is used to calibrate
the convolution transformation of another filter. Benefit-
ing from the heterogeneous convolutions in a self-calibrated
convolution, the receptive field of each spatial location can
be effectively amplified.

To enhance the ability of the U-Net in capturing the
thin vessels, we proposed an improved spatial attention
module (ISAM) to connect the encoding part and decoding
part of U-Net. As we know, the spatial attention modules
(SAM) [30] could find out the areas that need to be attended
from the image information. However, the traditional spatial
attention modules ignored the spatial information of thin
vessels since the information of thin vessels could be
easily filtered by convolution operations. In the proposed
spatial attention module, the self-calibrated convolutions are
included. The convolution operation and spatial attention
map generation are performed in a parallel way. As a result,
more complete information of vessels can be preserved.

A similar work has been reported in [7], where the
traditional U-Net is also improved for retinal vessel seg-
mentation in fundus images via changing the convolutional
blocks and employing the spatial attention modules to
connect the encoding part and the decoding part in the
traditional U-Net. However, there is essential difference
between the work presented in [7] and the proposed work. In
[7], the authors employed structured dropout convolutional
blocks instead of the original convolutional blocks of the U-
Net to prevent the network from overfitting. While in this
work, we employed self-calibrated convolutions to replace
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the original convolutional blocks to make the network can
learn discriminative representations from different receptive
fields. Besides, although both of the proposed work and the
work presented in [7] employed spatial attention module
to connect the encoding part and the decoding part of the
U-Net, in this work we proposed a modification for the spa-
tial attention module, which is integrating the self-calibrated
convolutions into the spatial attention modules.

The contributions of this paper are concluded as follows:

• We employed self-calibrated convolutions to replace
the traditional convolutions for the U-Net, which can
make the U-Net learn discriminative representations
from different receptive fields.

• We proposed an improved spatial attention module,
instead of using traditional convolutions, to connect the
encoding part and decoding part of U-Net, which can
improve the ability of the U-Net to detect thin vessels.

• We verified the proposed modifications for the U-
Net via a series of experiments. The experiments
showed that the proposed modifications are effective
for the U-Net to detect the retinal vessels with various
thicknesses.

2Method

The proposed network structure for vessel segmentation
is shown in Fig. 1, which is designed based on the
traditional U-Net [22]. There are two differences between
the proposed network and the traditional U-Net. The first
one is that we employed self-calibrated convolutions to
replace the traditional convolutions, shown as black arrows
in Fig. 1. The second is that we proposed an improved
spatial attention module to connect the encoding part and
decoding part of the U-Net, shown as the red block in Fig. 1.
Note that, in the traditional U-Net, the encoding part and
decoding part are connected via traditional convolutions
also.

2.1 Self-calibrated convolutions

Convolution operations are widely used for feature extrac-
tion in convolutional neural networks. However, the size
of filters for convolutions is generally fixed, which makes
it difficult to capture the feature information of different
scales. Instead of using the traditional convolution opera-
tions, in this paper, we employed self-calibrated convolu-
tions [17] to help the networks learn discriminative repre-
sentations by augmenting the basic convolution transforma-
tion per layer. The work flow of a self-calibrated convolu-
tion is illustrated in Fig. 2. In the self-calibrated convolution,
the convolution filters in a specific layer are separated into

multiple portions. The low-dimensional feature informa-
tion is then obtained through the down-sampling operation,
which is used to calibrate the convolution transformation of
another filter. Benefiting from the heterogeneous convolu-
tions in a self-calibrated convolution, the receptive field of
each spatial location can be effectively amplified.

Mathematically, given the input feature
F ∈ R

H×W×C , which is split into two portions{
F1 ∈ R

H×W×C/2, F2 ∈ R
H×W×C/2

}
by two 1 × 1 con-

volutions, where H , W represent the height and the width
of the feature map respectively, C represents the number
of channels. The output of the first pathway, as shown in
Fig. 2, is F ′

1 ∈ R
H×W×C/2, which is obtained by perform-

ing self-calibrated convolutions on F1. This process can
be represented by Eq. (1). The output of second pathway
is F ′

2 ∈ R
H×W×C/2, which is obtained by performing tra-

ditional convolutions on F2, as represented in Eq. (2), and
thus the original spatial context is retained in F ′

2.

F ′
1 = f [σ(Up(f (Down(F1))) ⊕ F1) � f (F1)] (1)

F ′
2 = f (F2) (2)

In Eq. (1) or Eq. (2), σ denotes the sigmoid function, f

represents a convolution operation, Down and Up repre-
sent the Down-sampling and Up-sampling respectively. ⊕
and � represent element-wise addition and multiplication
respectively. The final output of a self-calibrated convolu-
tion F ′ ∈ R

H×W×C is the concatenation of the feature map
F ′
1 and F ′

2, namely,

F ′ = Concate
{
F ′
1; F ′

2

}
(3)

2.2 Spatial attentionmodules

The spatial attention modules (SAM) [30] can find out the
areas that need to be attended from the image information.
However, in the task of retinal vessel segmentation, the
traditional spatial attention modules ignore the spatial
information of thin vessels since the information of thin
vessels can be easily filtered by convolution operations.
To obtain more complete spatial information, we proposed
an improved spatial attention module based on the
convolutional attention module [30] to connect the encoding
part and decoding part of the traditional U-Net. Figure 3
shows the original spatial attention module and the
improved spatial attention module respectively. In the
improved spatial attention module, the self-calibrated
convolutions are included. The convolution operation and
spatial attention map generation are performed in a parallel
way. As a result, we can obtain the feature maps with more
complete spatial information to improve the segmentation
performance.
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Improved Spatial Attention Module

SCC+BN+ReLU
MaxPooling, stride=2

Transposed Conv, stride=2
Skip Connection

Conv 1×1, sigmoid

H×W×3

Fig. 1 The structure of the proposed network. There are two differ-
ences between the proposed network and the traditional U-Net. The
first one is that we employed self-calibrated convolutions to replace
the traditional convolutions, shown as black arrows in the figure. The

second is that we proposed an improved spatial attention module to
connect the encoding part and decoding part of the U-Net, shown as the
red block in the figure. Note that, in the traditional U-Net, the encoding
part and decoding part are connected via traditional convolutions also

To compute the spatial attention map Ms ∈ R
H×W×1,

given the input features Fs ∈ R
H×W×C , the average-

pooling and max-pooling operations are applied along the
channel axis to get outputs FMP ∈ R

H×W×1 and FAP ∈
R

H×W×1 respectively. The output feature F ′
s ∈ R

H×W×C

of the improved spatial attention module is calculated as:

F ′
s = SCC(SCC(Fs)) ⊗ Ms(Fs)

= SCC(SCC(Fs)) ⊗ σ(f ([MaxPool(Fs); AvgPool(Fs)]))

= SCC(SCC(Fs)) ⊗ σ(f ([FMP ; FAP ]))

(4)

where SCC() denotes the self-calibrated convolutions, the
σ is sigmoid function and f represents a convolution
operation.

3 Experiments

3.1 Databases

The proposed method has been verified on two public
databases for vessel segmentation, which are DRIVE
(Digital Retinal Images for Vessel Extraction) [25] and
CHASE DB1 (Child Heart and Health Study in England
Database) [6]. DRIVE database consists of 40 color fundus
photographs obtained from a diabetic retinopathy screening
program, in which 20 samples were used for training and
the rest were used for testing. Each fundus image in DRIVE
is composed of 565 × 584 pixels and the corresponding
ground truth was annotated by human observers. CHASE
DB1 contains 28 retinal images and the size of each image

Fig. 2 The work flow of a self-calibrated convolution
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Fig. 3 The original spatial attention module (left) and the proposed spatial attention module (right)

is 999 × 960 pixels. The images in CHASE DB1 were
collected from both left and right eyes of 14 children. To
train and test the proposed method, the images in CHASE
DB1 were divided into training set and test set also, in which
the first 20 images were used for training and the others for
testing.

3.2 Implementation details

3.2.1 Loss function

The task of retinal vessel segmentation can be regarded as
a binary classification problem in pixel level. Since cross
entropy is widely used as the loss function in deep learning
networks to deal with binary classification problems, in this
work, the cross entropy is used as the loss function to train
the networks:

Loss = −
∑

i=1

ŷi logyi + (1 − ŷi )log(1 − yi) (5)

where ŷi represents the ground truth and yi the segmented
results obtained by the proposed method.

3.3 Metrics

The metrics used to evaluate the performance of the
proposed method are accuracy (ACC), sensitivity (SE),
specificity (SP), F1-score (F1) and the area under the

receiver operating characteristic curve (AUC). Table 1
summarizes the definition of each metric, where TP is short
for true positive, FP false positive, TN true negative and FN
false negative.

3.4 Results

3.4.1 Empirical study of parameter setting

A computer equipped with NIVIDIA TITAN Xp GPU with
12GB memory was used to train the networks based on
the Keras and TensorFlow frameworks. During training,
the stochastic gradient descent was used for minimizing
the loss function. The hyperparameters for the proposed
method included learning rate, the number of epochs and
the batch size, which might influence the performance of
the proposed method. We employed the DRIVE database

Table 1 The metrics used to evaluate the performance of the proposed
method

Metrics Description

ACC(accuracy) ACC=(TP+TN)/(TP+FN+TN+FP)

SE(sensitivity) SE=TP/(TP+FN)

SP(specificity) SP=TN/(TN+FP)

F1(F1-score) F1=(2×TP)/(2×TP+FP+FN)

AUC Area Under the ROC curve
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to study the influence of the hyperparameters on the
performance of the proposed method. We set a default value
for each parameter. Then we allowed one change while the
others were equal to the default values. As a result, we
can explore how varying the hyperparameter may affect the
performance of the proposed method. The default values of
learning rate, the number of epochs and the batch size are
0.001, 40 and 4 respectively.

Figure 4(a), (b) and (c) summarize how varying the
learning rate, the number of epochs and the batch size
affected the performance respectively. It can be observed
that a larger learning rate (e.g., 0.1) or a smaller learning
rate (e.g., 0.0001) could lead to a deteriorated performance,
which indicates that the proposed method got stuck in a
worse local minima during training. The performance of
the proposed method is improved with the increase of the
number of epochs until it reaches 40. When the number
of the epochs is greater than 40, the performance of the
algorithm tends to be stagnant. The influence of the batch
size on the performance of the proposed is slight. However,
if the batch size is set too large, more memory is required
during training. According to the above analysis, we set the
learning rate, the number of epochs and the batch size equal
to 0.001, 40 and 4 for the following experiments.

3.4.2 Ablation studies

Figure 5 shows some segmentation examples obtained by
the proposed method. In Fig. 5, the pixels are represented
with different color, in which green color means that the
pixels are segmented correctly by the proposed method,
namely belongs to TP category, red FP, black TN, and blue FN.

In order to verify the performance of the proposed
method, ablation experiments were performed on DRIVE
and CHASE DB1 respectively. Tables 2 and 3 summarize
the results obtained by U-Net, U-Net+SCC, U-Net+SAM,

U-Net+ISAM and U-Net+SCC+ISAM respectively. Note
that U-Net+SCC means that the convolution operations
in the traditional U-Net are replaced by self-calibrated
convolutions. U-Net+SAM means that the traditional
spatial attention module is used to replace the traditional
convolutions to connect the encoding part and decoding
part of the U-Net. U-Net+ISAM means that the improved
spatial attention module is used to replace the traditional
convolution operations to connect the encoding part and
decoding part of the U-Net. U-Net+SCC+ISAM means that
not only the convolution operations in the traditional U-
Net are replaced by self-calibrated convolutions, but also
the traditional convolution operations used to connect the
encoding part and decoding part of U-Net are replaced by
the improved spatial attention module. The last column in
Tables 2 and 3 summarize the number of parameters of each
model.

It can be observed that the modified U-Net is more
complex than the traditional U-Net. The number of
parameters in the traditional U-Net is 6.38M. While the
number of parameters in U-Net+SCC reaches to 8.68M.
Although the modified U-Net is more complex than the
traditional U-Net, the performance of the proposed method
is increased. As can be observed from Tables 2 and 3,
the network with the self-calibrated convolutions performs
better than the traditional U-Net, which indicates that
self-calibrated convolutions are effective for retinal vessel
segmentation compared with the traditional convolution
operations. In addition, the performance of the U-Net with
the improved spatial attention module is better than the
one with traditional spatial attention module, which verifies
the effectiveness of the improved spatial attention module.
Besides, the results obtained by U-Net+SCC+ISAM are
best on most of metrics, which indicates that the proposed
modifications on the U-Net are effective for vessel
segmentation.

Fig. 4 (a) The performance with different learning rate. (b) The performance with different number of epochs. (c) The performance with different
batch size
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Fig. 5 Detected examples on
DRIVE (first row) and CHASE
DB1 (second row) databases. (a)
F1 = 0.8497, ACC = 0.9730,
SE = 0.9191, SP = 0.9779,
AUC = 0.9912; (b)
F1 = 0.7888, ACC = 0.9611,
SE = 0.7288, SP = 0.9868,
AUC = 0.9786; (c)
F1 = 0.8228, ACC = 0.9802,
SE = 0.8638, SP = 0.9876,
AUC = 0.9928; (d)
F1 = 0.7658, ACC = 0.9716,
SE = 0.7334, SP = 0.9877,
AUC = 0.9839

To demonstrate the effectiveness of the proposed mod-
ifications on the U-Net visually, an example is given in
Fig. 6, which contains a fundus image, ground truth and the
segmentation results obtained by U-Net, U-Net+SCC, U-
Net+SAM, U-Net+ISAM and U-Net+SCC+ISAM respec-
tively. It is observed that U-Net+SCC achieves a better
segmentation result for vessels with various thicknesses
compared with the U-Net. Besides, although the ability of
U-Net+SAM in inhibition to noise is obvious, many thin
vessels can not be detected by U-Net+SAM. Compared with
the U-Net+SAM, U-Net+ISAM can preserve more detailed
information of thin vessels, which proves the power of the
proposed spatial attention module in detecting thin ves-
sels. When we combined the proposed modifications for the
U-Net together, we could obtain more correct and contin-
uous blood vessels, which verifies the effectiveness of the
proposed modifications for the U-Net further.

3.4.3 Comparison with state-of-the-art methods

Several state-of-the-art methods for vessel segmentation,
including R2U-Net [1], DEU-Net [26] and CSU-Net [27],
were selected for comparison. Tables 4 and 5 summarize
the results obtained by different methods on DRIVE and
CHASE DB1 respectively. The ACC, SE, SP, F1 and
AUC obtained by the proposed method are 0.9680, 0.8036,

0.9840, 0.8138 and 0.9840 respectively on DRIVE, and
0.9756, 0.8118, 0.9867, 0.8068 and 0.9888 respectively on
CHASE DB1, which are very competitive with the state-of-
the-art methods, or even better than some of the state-of-the-
art methods, including the DEU-Net [26] and CSU-Net [27].
The comparative experiments demonstrate that the proposed
modifications for the U-Net are effective for retinal vessel
segmentation. In addition, it could be observed that the
Genetic U-Net [29], which is a kind of neural architecture
search based method, shows impressive performance in
vessel segmentation. As will be pointed out in the discussion
section, we would employ the proposed modules to augment
the search space for the neural architecture search based
methods as a future work, so that the neural architecture
search based methods can search a more powerful network
for vessel segmentation.

4 Discussion and conclusion

In this paper, we proposed two modifications for the tra-
ditional U-Net for retinal vessel segmentation in fundus
images. Concretely, we employed self-calibrated convolu-
tion operations to replace the traditional convolution opera-
tions in the U-Net. As a result, the networks can learn dis-
criminative representations from different receptive fields.

Table 2 Ablation studies on
DRIVE dataset Methods ACC SE SP F1 AUC Params

U-Net 0.9646 0.7895 0.9814 0.7963 0.9791 6.38M

U-Net+SCC 0.9665 0.8067 0.9818 0.8084 0.9810 8.68M

U-Net+SAM 0.9659 0.7795 0.9838 0.8001 0.9780 6.39M

U-Net+ISAM 0.9663 0.8066 0.9820 0.8089 0.9815 6.39M

U-Net+SCC+ISAM 0.9680 0.8036 0.9840 0.8138 0.9840 8.69M
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Table 3 Ablation studies on
CHASE DB1 dataset Methods ACC SE SP F1 AUC Params

U-Net 0.9733 0.7817 0.9862 0.7870 0.9810 6.38M

U-Net+SCC 0.9744 0.8158 0.9851 0.8006 0.9872 8.68M

U-Net+SAM 0.9740 0.7933 0.9861 0.7934 0.9859 6.39M

U-Net+ISAM 0.9753 0.8114 0.9863 0.8053 0.9862 6.39M

U-Net+SCC+ISAM 0.9756 0.8118 0.9867 0.8068 0.9888 8.69M

In addition, we designed an improved spatial attention mod-
ule, instead of using traditional convolution operations, to
connect the encoding part and decoding part in the U-net,
which can improve the ability of U-Net in detecting thin
vessels.

To verify the effectiveness of the self-calibrated convo-
lution operations, a comparative experiment was conducted.
Concretely, the traditional convolution operations in the

U-Net were replaced by the self-calibrated convolution
operations to obtain the modified U-net. The modified U-
Net and the traditional U-net were then compared in the
same databases. We found that the modified U-Net outper-
forms the traditional U-Net, which indicated that the self-
calibrated convolution operations are more effective than
the traditional convolution operations in capturing the ves-
sel information. Similarly, We also conducted a comparative

Fig. 6 (a) Fundus image; (b) Ground truth; (c) U-Net; (d) U-Net+SCC; (e) U-Net+SAM; (f) U-Net+ISAM; (g) U-Net+SCC+ISAM
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Table 4 Comparison with
different methods on DRIVE Methods Year ACC SE SP F1 AUC

Azzopardi et al. [2] 2015 0.9442 0.7655 0.9704 − 0.9614

Roychowdhury et al. [23] 2016 0.9520 0.7250 0.9830 − 0.9620

Liskowsk and Krawiec. [15] 2016 0.9495 0.7763 0.9768 − 0.9720

Li et al. [13] 2016 0.9527 0.7569 0.9816 − 0.9738

MS−NFN [31] 2018 0.9567 0.7844 0.9819 − 0.9807

R2U−Net [1] 2019 0.9556 0.7792 0.9813 0.8171 0.9784

DEU−Net [26] 2019 0.9567 0.7940 0.9816 0.8270 0.9772

CSU−Net [27] 2020 0.9565 0.8071 0.9782 0.8251 0.9801

CS2−Net [19] 2021 0.9553 0.8154 0.9757 0.8228 0.9784

Genetic U−Net [29] 2022 0.9707 0.8300 0.9843 0.8314 0.9885

U−Net+SCC+ISAM (Proposed) − 0.9680 0.8036 0.9840 0.8138 0.9840

experiment to verify the effectiveness of the improved spa-
tial attention module. As the results shown in Tables 2 and
3, we found that the improved spatial attention module is
more effective in capturing the thin vessels. Moreover, many
state-of-the-art methods for vessel segmentation, includ-
ing CSU-Net [27], CS2-Net [19] and Genetic U-Net [29],
were selected for comparison. The comparative experiments
showed that the proposed method is very competitive with
the state-of-the-art methods.

From Tables 2 and 3, we can also observe that the
modified U-Net is more complex than the traditional U-Net.
Even so, we think the increased complex in the modified
U-Net is acceptable for improving the performance. As
we know, detecting the vessels with various thickness
automatically and accurately plays a very important role
for the precision medicine, meanwhile is a very challenging
task. In this paper, we proposed two modifications to make
the U-Net can learn discriminative representations from
different receptive fields and to improve the ability of
the U-Net in detecting the thin vessels. We verified the
effectiveness of the proposed modifications for the U-Net

via a series of experiments. Figure 6 is an example to
demonstrate the superiority of the proposed method, where
Fig. 6(c) is the results obtained by the traditional U-Net
and Fig. 6(g) the proposed method. As can be observed,
the proposed method can obtain a more correct result. In
addition, more thin vessels are preserved.

Note that it does not mean that the more complex the
model, the better the performance. As the work presented
in [29], the architecture obtained by the neural architecture
search based methods offered a superior performance with
less parameters. On the other hand, the proposed method
might fail to capture the vessels when the contrast between
the vessels and non-vessels is low. To address the limitation
of the proposed method, we think a promising way is
employing the proposed modules to augment the search
space for the neural architecture search based methods,
so that the neural architecture search based methods can
search a more powerful network for vessel segmentation.
This opinion, namely employing the proposed modules to
augment the search space for the neural architecture search
based methods, would be considered in our future work.

Table 5 Comparison with
different methods on CHASE
DB1

Methods Year ACC SE SP F1 AUC

Azzopardi et al. [2] 2015 0.9442 0.7655 0.9704 − 0.9614

Roychowdhury et al. [23] 2016 0.9530 0.7201 0.9824 − 0.9532

Li et al. [13] 2016 0.9581 0.7507 0.9793 − 0.9793

MS−NFN [31] 2018 0.9637 0.7538 0.9847 − 0.9825

R2U−Net [1] 2019 0.9634 0.7756 0.9820 0.7928 0.9815

DEU−Net [26] 2019 0.9661 0.8074 0.9821 0.8037 0.9812

CSU−Net [27] 2020 0.9706 0.8427 0.9836 0.8105 0.9824

CS2−Net [19] 2021 0.9651 0.8329 0.9784 0.8141 0.9851

Genetic U−Net [29] 2022 0.9769 0.8463 0.9857 0.8223 0.9914

U−Net+SCC+ISAM (Proposed) − 0.9756 0.8118 0.9867 0.8068 0.9888
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