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a b s t r a c t 

During the last decade, sampling-based algorithms for path planning have gained considerable attention. 

The RRT ∗, a variant of RRT (rapidly-exploring random trees), is of particular concern to researchers due 

to its asymptotic optimality. However, the limits of the slow convergence rate of RRT ∗ makes it inefficient 

for applications. For the purposes of overcoming these limitations, this paper proposes a novel algorithm, 

PQ-RRT ∗, which combines the strengths of P-RRT ∗ (potential functions based RRT ∗) and Quick-RRT ∗. PQ- 

RRT ∗ guarantees a fast convergence to an optimal solution and generates a better initial solution. The 

asymptotic optimality and fast convergence of the proposed algorithm are proved in this paper. Compar- 

isons of PQ-RRT ∗ with P-RRT ∗ and Quick-RRT ∗ in four benchmarks verify the effectiveness of the proposed 

algorithm. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Mobile robots are gaining more and more attention as intelli-

ent systems. Much attention has been devoted to mobile robots

ince they can increase productivity and provide various conve-

iences. Mobile robots with autonomous navigation capabilities are

ritical to machine intelligence. The basis of navigation is path

lanning ( Huang, Li, Jiang, & Cheng, 2019; Lee, Shin, & Chae, 2018;

ajeed & Lee, 2019 ), which consists of finding feasible paths from

he start state to the goal state without colliding with any obsta-

les. Applications of path planning algorithms include but are not

imited to industrial automation ( Beyer, Jazdi, Göhner, & Youse-

far, 2015; Pandini, Spacek, Neto, & Junior, 2017 ), graphical an-

mation ( Liu & Badler, 2003 ), autonomous exploration ( Atanacio-

iménez et al., 2011 ), medical ( Taylor, Menciassi, Fichtinger, Fiorini,

 Dario, 2016; Valencia-Garcia, Martinez-Béjar, & Gasparetto, 2005 )

nd robot navigation ( González, Pérez, Milanés, & Nashashibi,

015 ). 

The research on path planning is in full swing. Currently, path

lanning algorithms mainly include geometric algorithms, artifi-
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ial potential field methods, grid-based searches, and sampling-

ased algorithms. Typical representatives of geometric algorithms

nclude visibility graph ( Alexopoulos & Griffin, 1992; Asano, Asano,

uibas, Hershberger, & Imai, 1985; Maekawa, Noda, Tamura, Ozaki,

 Machida, 2010 ) and cell decomposition methods ( Brooks &

ozano-Perez, 1985 ). However, these algorithms are mostly lim-

ted to low-dimensional path planning problems. Artificial poten-

ial fields (APF) ( Khatib, 1986 ), a method first proposed by Khatib,

hould be given special consideration. APF assumes that there is a

irtual force consisting of the repulsive force of the obstacles and

he attractive force of the goal region. The system proceeds accord-

ng to their joint force. Although the operation is easy, APF suf-

ers from the problem of local minima ( Koren & Borenstein, 1991 ).

hen applying graph theory to a discretized state space, grid-

ased searches assume that each state corresponds to a grid point.

 well-known algorithm in grid-based algorithms is A 

∗ ( Hart, Nils-

on, & Raphael, 1968; Koenig, Likhachev, & Furcy, 2004; Stentz,

997 ). Although it can guarantee resolution completeness and res-

lution optimality, computation time and memory space will grow

xponentially in dimensions. 

Sampling-based algorithms have gained a considerable amount

f attention as the result of their superior performance in high-

imensional state spaces. These algorithms provide probabilistic

ompleteness. Probabilistic completeness means that if feasible

ath exists, the probability that the algorithm cannot find the path
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tends towards zero as the number of samples approaches infin-

ity. Undisputed, the most widely used and influential algorithms

to date are probabilistic roadmaps (PRMs) ( Amato & Wu, 1996;

Kavraki & Latombe, 1994; Kavraki, Svestka, Latombe, & Overmars,

1996 ) and rapidly-exploring Random Trees (RRTs) ( LaValle, 1998 ).

The PRM algorithm is a multiple-query method, which is suitable

for problems with prior knowledge of the environment. In prac-

tice, an environment is not necessarily known in advance, and the

multiple-queries methods do not always perform well. As single-

query counterparts to PRMs, RRTs have won the attention of the

research community, due to their greater efficiency in practical

applications. Due to increased attention, a large number of RRT-

variants have emerged in the last decade. Introducing a greedy

heuristic to RRT, a double tree algorithm, RRT-connect, was pro-

posed. Unlike RRT, RRT-connect ( Kuffner & LaValle, 20 0 0 ) main-

tains two trees at the same time: one from the initial state and the

other from the goal state. However, neither RRT and RRT-connect

consider the cost of the found solution, so both cannot ensure op-

timality. Inspired by the above idea, Karaman et al. ( Karaman &

Frazzoli, 2011 ) proposed the RRT ∗ algorithm as an optimal variant

of RRT. Different from RRT, RRT ∗ adopts optimisation modules, the

ChooseParent and Rewire procedures, ensuring the asymptotic op-

timality. An algorithm is said to be asymptotically optimal if the

probability of finding the optimal solution approaches one when

the number of samples approaches infinity. RRT ∗ is a milestone in

the development of RRT. 

Although finding the optimal path solution is already a chal-

lenging task, ensuring fast convergence is also important for path

planning. For the purpose of overcoming the slow convergence rate

of RRT ∗, a lot of work has gradually unfolded. Enlightened by the

idea of visibility graph technology, RRT ∗-Smart ( Islam, Nasir, Malik,

Ayaz, & Hasan, 2012 ) introduces an intelligent sampling method

to RRT ∗. RRT ∗-Smart accelerates the convergence rate and obtains

an optimum or a near optimum solution. However, the quality of

the solution obtained by RRT ∗-Smart greatly depends on the ini-

tial solution, which reduces the probability of finding a different

homotopy class, thus violating the assumption of uniform sam-

pling of RRT ∗. As we know, as the solution optimisation process

proceeds, the number of nodes will increase infinitely. Therefore,

the implementation of RRT ∗ will be difficult in a computing system

with limited memory. In order to use the memory more efficiently,

Olzhas et al. put forward RRT ∗ FN ( Adiyatov & Varol, 2013 ), an al-

gorithm with a fixed number of nodes. When the number of nodes

exceeds a given value, it is important to remove nodes that are not

useful in reducing the cost. In addition to the above methods, it

is worth noting the sampling heuristic known as node rejection

( Akgun & Stilman, 2011; Ferguson & Stentz, 2006 ). Informed RRT ∗

( Gammell, Srinivasa, & Barfoot, 2014 ), inspired by node rejection,

uses a direct sampling method that samples in a hyper-ellipsoid.

However, the algorithm will no longer be applicable when the as-

sociated prolate hyperspheroid is larger than the domain of the

planning problem. 

A fundamental reason for the slow convergence rate of RRT ∗

is its pure exploration, while APF ( Khatib, 1986 ) suffers from the

problem of local minima due to its pure exploitation. Based on

the above ideas, Qureshi et al. proposed an improved algorithm, P-

RRT ∗ ( Qureshi & Ayaz, 2016 ), which incorporates the APF into RRT ∗.

It is the addition of APF that provides a direction for exploration,

giving P-RRT ∗ a faster convergence than RRT ∗. P-RRT ∗ introduces

APF to achieve a trade-off between exploration and exploitation,

which is worth noting. Accelerating the convergence rate of RRT ∗

can not only start from the guided sampling process, but it can

also be optimised from the structure of RRT ∗ itself. In this regard,

Jeong et al. first point out that use of triangular inequality to im-

prove the ChooseParent and Rewire procedures, proposing Quick-

RRT ∗ ( Jeong, Lee, & Kim, 2019 ). Compared with RRT ∗, Quick-RRT ∗
llows a faster rate of convergence. Since Quick-RRT ∗ is a tree-

xtending algorithm, any sampling strategy or graph-pruning al-

orithm can be combined with Quick-RRT ∗. 

This paper proposes a novel algorithm, PQ-RRT ∗, for the optimal

ath planning mobile robots. Compared with P-RRT ∗ and Quick-

RT ∗, PQ-RRT ∗ generates a better initial solution and a fast con-

ergence to optimal solution. A theoretical proof is given for the

ompleteness, asymptotic optimality and faster convergence of the

roposed algorithm. In addition, PQ-RRT ∗ has the same computa-

ional complexity as P-RRT ∗ and Quick-RRT ∗. Comparative simula-

ions are performed according to four benchmarks, which validate

he effectiveness of the proposed algorithm. 

The remaining sections of this paper are outlined as follows.

ection 2 addresses the problem definition. Section 3 introduces

he relevant prerequisites for the proposed algorithm. Section 4 ex-

lains the proposed algorithm. Section 5 presents analysis of com-

leteness, optimality and computational complexity. Section 6 pro-

ides the simulation results. Section 7 summarizes the main con-

ributions and discusses some future research directions. 

. Problem definition 

This section presents three motion planning problems to be

olved. Let X ⊆ R 

d be the configuration space, where d ∈ N , d ≥ 2.

et X obs ⊂ X be the obstacle region, and denote the obstacle-free

pace as X f ree = cl(X\ X obs ) , where cl ( · ) denotes the closure of a

et. x init and X goal are the initial configuration and the goal region,

espectively. A continuous function σ : [0, 1] �→ X is called a path, if

t has bounded variation. The path is collision-free, if σ ( τ ) ∈ X free 

or all τ ∈ [0, 1]. 

A path planning problem is to find a collision-free path σ :

0, 1] �→ X free that starts from the initial configuration σ (0) = x init 

nd reaches the goal region σ (1) ∈ X goal and σ ( τ ) ∈ X free for all

∈ [0, 1]. If a path σ : [0, 1] �→ X is a collision-free path, σ (0) = x init 

nd σ (1) ∈ X goal , then it is called a feasible path. Given a triplet

 x init , X obs , X goal }, path planning problem is to find a feasible path.

roblem 1 presents the feasibility problem of path planning. 

roblem 1 (Feasible Path Planning) . Given a triplet { x init , X obs ,

 goal }, find a feasible path, if one exists. Report failure if no such

olution exists. 

Let � denote the set of all paths, and �feasible is a set of all

easible paths. Let c ( · ) be the cost function in terms of Euclidean

istance function. Problem 2 formalizes the optimality problem of

ath planning. 

roblem 2 (Optimal Path Planning) . Given a triplet { x init , X obs ,

 goal } and a cost function c : � → R ≥0 , find a feasible path σ ∗ such

hat c(σ ∗) = min { c(σ ) : σ ∈ � f easible } . Report failure if no such so-

ution exists. 

Let t ∈ R denote the time required by the algorithm to find a

et of all feasible paths �feasible . The fast path planning stated in

roblem 3 demonstrates that optimal path solution must be found

n least possible time. 

roblem 3 (Fast Path Planning) . Find the optimal path solution in

east possible time t ∈ R . 

. Related work 

This section first introduces RRT ∗, which forms the basis of P-

RT ∗ and Quick-RRT ∗ algorithms, and then it explains P-RRT ∗ and

uick-RRT ∗ subsequently. The above two algorithms are the cor-

erstones of the proposed PQ-RRT ∗ algorithm. 
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Algorithm 3 Rewire(G, x rand , X near ). 

1: for each x near ∈ X near do 

2: σ ← Steer(x rand , x near ) ; 

3: if Cost(x rand ) + Cost(σ ) < Cost(x near ) then 

4: if Col l isionF ree (σ ) then 

5: x parent ← Parent(x near ) ; 

6: E ← (E\{ (x parent , x near ) } ) ∪ { (x rand , x near ) } ; 
7: end if 

8: end if 

9: end for 

10: return G = (V, E) ; 
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.1. RRT ∗

This section formally introduces RRT ∗, which is an incremen-

al sampling-based motion planning algorithm. RRT ∗ guarantees

symptotic optimality, that is, an almost-sure convergence to op-

imal solution. Before showing the RRT ∗ algorithm, a brief descrip-

ion of RRT will be provided. The inputs of RRT consist of the initial

tate, the goal state (region) and the environment. The output is a

raph including a feasible path. In each iteration, a sample x rand 

s selected randomly from X free , then the closest vertex x nearest to

he sample x rand is found in terms of distance metric. The graph

erifies whether there is a feasible local path σ local from x nearest 

o x rand . If so, the sample x rand and the local path σ local are added

o the tree. The above steps are repeated until a feasible path is

ound or the stop criteria are met. Next, we will briefly describe

RT ∗, which is shown in Algorithm 1 . 

lgorithm 1 RRT ∗. 

1: V ← { x init } ; E ← ∅ ; 
2: for i = 1 to n do 

3: x rand ← SampleF ree (i ) ; 

4: x nearest ← Nearest(V, x rand ) ; 

5: σ ← Steer(x nearest , x rand ) ; 

6: if Col l isionF ree (σ ) then 

7: X near ← Near(V, x rand , min { γRRT ∗( log (card(V ))) / 

card(V ) 1 /d , η} ) ; 
8: (x parent , σparent ) ← ChooseParent(X near , x nearest , σ ) ; 

9: V ← V ∪ { x rand } ; 
10: E ← E ∪ (x parent , x rand ) ; 

11: G ← Rewire (G, x rand , X near ) ; 

12: end if 

13: end for 

14: return G = (V, E) ; 

Unlike RRT, RRT ∗ adopts two optimisation procedures, Choose-

arent and Rewire. In the ChooseParent procedure, RRT ∗ searches

he X near , (a set of vertices in a hypersphere of a specific radius

entered at x rand ), to find the optimum. Through the optimisation,

 path has the lowest cost from the root x init to x rand . The Choose-

arent procedure is outlined in Algorithm 2 . After adding x rand to

lgorithm 2 ChooseParent( X near , x nearest , x rand , σ nearest ). 

1: x min ← x nearest ; 

2: σmin ← σnearest ; 

3: c min ← C ost(x nearest + C ost(σnearest )) ; 

4: for each x near ∈ X near do 

5: σ ← Steer(x near , x rand ) ; 

6: c ← C ost(x near + C ost(σ )) ; 

7: if c < c min then 

8: if Col l isionF ree (σ ) then 

9: x min ← x near ; 

10: σmin ← c; 

11: end if 

12: end if 

13: end for 

14: return (x min , σmin ) ; 

he tree, RRT ∗ tries to optimise the cost of the element of X near 

hrough x rand . If the local path σ local from x rand to any element of

 near , x near , is collision-free, and the local path σ local has a lower

ost than the current path, then the parent of x near is replaced with

 rand . Algorithm 3 presents the Rewire procedure. Following this,

he primitive procedures involved in RRT ∗ are briefly explained. 

• SampleFree: It returns a random sample from X free . 
• Nearest: It returns the closest vertex from V in the graph G =
(V, E) in terms of a given distance metric. In this paper, we use

Euclidean distance function. 
• Near: Given a graph G = (V, E) and a configuration x, it returns

the set of neighboring vertices of the sample x . The set is the

vertices contained in a ball of a radius r centered at x . 
• CollisionFree: It checks whether the local path σ lies entirely in

X free . 
• Steer: Given two configurations x s , x t ∈ X , the function returns

the line segment connecting x s to x t . 

.2. P-RRT ∗

In this section, we show Potential Function Based-RRT ∗ (P-

RT ∗), which is an extension of RRT ∗. The RRT ∗ algorithm here is

ot the original version, but a slightly modified one. The objective

f the modification is to reduce the number of calls to the Colli-

ionFree procedure ( Perez et al., 2011 ). Besides using the modified

ersion of RRT ∗, the outstanding feature of P-RRT ∗ is its incorpo-

ation of artificial potential field (APF) into RRT ∗. The pseudocode

or the P-RRT ∗ algorithm is presented in Algorithm 4 . Some new

lgorithm 4 P-RRT ∗. 

1: V ← { x init } ; E ← ∅ ; 
2: for i = 1 to n do 

3: x rand ← SampleF ree (i ) ; 

4: x prand ← RGD (x rand ) ; 

5: X near ← Near(V, x prand , min { γRRT ∗( log (card(V ))) / 

card(V ) 1 /d , η} ) ; 
6: if X near = ∅ then 

7: X near ← Nearest(V, x prand ) 

8: end if 

9: L near ← GetT uple (x prand , X near ) 

10: x parent ← F indBest Parent (L near , x prand ) 

11: if x parent � = ∅ then 

12: V ← V ∪ { x prand } ; 
13: E ← E ∪ (x parent , x prand ) ; 

14: G ← Rewire (G, x prand , L near ) ; 

15: end if 

16: end for 

17: return G = (V, E) ; 

rocedures used in P-RRT ∗ are presented below. 

• GetTuple: Given x prand and X near , returns L near , which is a sorted

data structure in ascending order according to their costs. Each

element includes three data attributes, cost, x near and local path

σ local . 
• FindBestParent: Given L near and x prand , it returns x parent ∈ X near ,

which is the best parent of x prand . 

The RGD procedure is presented in Algorithm 5 in detail. The

andom sample x is adjusted under the attractive force of the
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Algorithm 5 RGD( x rand ). 

1: x prand ← x rand ; 

2: for n = 1 to k do 

3: �
 F att ← (x goal − x prand ) ; 

4: d min ← NearestObstacle (X obs , x prand ) ; 

5: if d min ≤ d ∗
obs 

then 

6: return x prand ; 

7: else 

8: x prand ← x prand + λ
�
 F att 

| � F att | ; 
9: end if 

10: end for 

11: return x prand ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 7 Rewire-Q-RRT ∗(G, x rand , X near ). 

1: for each x near ∈ X near do 

2: for each x f rom 

∈ { x rand } ∪ ancestor(G, x rand ) do 

3: σ ← Steer(x f rom 

, x near ) ; 

4: if Cost( x f rom 

+ Cost(σ ) < Cost(x n ear) ) then 

5: if Col l isionF ree (σ ) then 

6: x parent ← Parent(x near ) ; 

7: E ← E\{ (x parent , x near ) } ∪ { (x f rom 

, x near ) } ; 
8: end if 

9: end if 

10: end for 

11: end for 

12: return G = (V, E) ; 
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goal region X goal , obtaining an improved sample x prand . The Near-

estObstacle procedure computes the shortest distance from x prand 

to the obstacle space X obs . There are three parameters k, λ and d ∗
obs 

used in RGD. Here, k is a limited number of iterations and the con-

stant d ∗
obs 

is a very small distance from X obs , and λ is a small incre-

mental step towards the target. Obviously, these parameters need

to be adjusted, but the parameter tuning is omitted here. In this

paper, for P-RRT ∗ and PQ-RRT ∗ λ = d ∗
obs 

= 0 . 1 , while k = 80 . 

3.3. Quick-RRT ∗

Quick-RRT ∗, as shown in Algorithm 6 , has two special adjust-

ments. They are the ChooseParent and the Rewire procedures.

In the ChooseParent procedure associated with Quick-RRT ∗, the

search range of the possible parent vertices of x rand includes not

only X near but also the ancestry of X near up to a predefined depth.

Obviously, expanding the search scope can better optimise the gen-

erated tree. However, expanding the search scope does not increase

the computation time significantly, for this element of X near usu-

ally shares a common parent. Like the ChooseParent procedure, the

Rewire procedure also considers the ancestry of the vertex x rand .

The Rewire procedure of Quick-RRT ∗ is presented in Algorithm 7 . 

Note that there is a new procedure Ancestry. Related functions

of this procedure are described below. 

• ancestor: Given a graph G = (V, E) , a vertex p and a constant

number d ∈ N , it returns the d − th parent of p . 
• Ancestry: Given a graph G = (V, E) and a vertex p , if the depth

d is 0, returns ∅ , otherwise returns 
d ∪ 

i =1 
ancestor(G, p, i ) . 
Algorithm 6 Quick-RRT ∗). 

1: V ← { x init } ; E ← ∅ ; 
2: for i = 1 to n do 

3: x rand ← SampleF ree (i ) ; 

4: x nearest ← Nearest(V, x rand ) ; 

5: σ ← Steer(x nearest , x rand ) ; 

6: if Col l isionF ree (σ ) then 

7: X near ← Near(V, x rand , min { γRRT ∗( log (card(V ))) / 

card(V ) 1 /d , η} ) ; 
8: X parent ← Ancestry (G, X near ) ; 

9: (x parent , σparent ) ← ChooseParent(X near ∪ X parent , x nearest , σ ) ; 

10: V ← V ∪ { x rand } ; 
11: E ← E ∪ (x parent , x rand ) ; 

12: G ← Rewire-Q-RRT*(G, x rand , X near ); 

13: end if 

14: end for 

15: return G = (V, E) ; 

A

. PQ-RRT ∗

This section presents the details of the proposed PQ-RRT ∗ al-

orithm. In order to further accelerate the convergence rate, this

aper proposes the PQ-RRT ∗ algorithm based on Quick-RRT ∗ and

-RRT ∗. Algorithm 8 shows the pseudocode for the PQ-RRT ∗ algo-

ithm. 

PQ-RRT ∗ has three main improvements when compared with

RT ∗. The first point is to change the sampling strategy by adopt-

ng the attractive force of the target region. The second point is

xpanding the search scope of the ChooseParent procedure. The

earch scope contains not only the neighbor X near but also the an-

estry of the X near . The last one is the improvement of the Rewire-

Q-RRT ∗ procedure, which is similar to the second point. 

. Analysis 

This section presents the completeness, asymptotic optimality,

ast convergence rate and computational complexity of the pro-

osed algorithm. Some symbols used in the analysis are described

elow. Let ALG denote the label of the algorithms mentioned in

he following. Let V ALG 
n and E ALG 

n be the vertices and edges in the

raph G 

ALG 
n generated by an algorithm after n iterations. 

.1. Probabilistic completeness 

Problem 1 is considered in this section. It is widely recog-

ised that most sampling-based algorithms can guarantee proba-

ilistic completeness. The concept of probabilistic completeness is

ormalised below. 
lgorithm 8 PQ-RRT ∗. 

1: V ← { x init } ; E ← ∅ ; 
2: for i = 1 to n do 

3: x rand ← SampleF ree (i ) ; 

4: x prand ← RGD (x rand ) ; 

5: x nearest ← Nearest(V, x prand ) ; 

6: σ ← steer(x nearest , x prand ) ; 

7: if Col l isionF ree (σ ) then 

8: X near ← Near(V, x prand , min { γRRT ∗( log (card(V ))) / 

card(V ) 1 /d , η} ) ; 
9: X parent ← Ancestry (G, X near ) ; 

10: (x parent , σparent ) ← ChooseParent(X near ∪ X parent , x nearest , σ ) ; 

11: V ← V ∪ { x rand } ; 
12: E ← E ∪ (x parent , x rand ) ; 

13: G ← Rewire-PQ-RRT*(G, x rand , X near ); 

14: end if 

15: end for 

16: return G = (V, E) ; 
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efinition 1 (Probabilistic completeness) . Given a triplet { x init ,

 obs , X goal }, an algorithm ALG is said to be probabilistically

omplete if for any robustly feasible path planning problems,

im n →∞ 

P (V ALG 
n ∩ X goal � = ∅ ) = 1 and the graph returned by ALG in-

ludes a path connecting the root x init to x goal ∈ X goal . 

Karaman et al. have proved that RRT provides probabilistic com-

leteness and RRT ∗ inherits this property of RRT ( Karaman & Fraz-

oli, 2011 ). As a result, the probabilistic completeness of P-RRT ∗

nd Quick-RRT ∗ algorithms has been deduced ( Jeong et al., 2019;

ureshi & Ayaz, 2016 ). The probabilistic completeness of the pro-

osed algorithm PQ-RRT ∗ is stated in Theorem 1 . 

heorem 1 (Probabilistic completeness of PQ-RRT ∗) . For any given

obustly feasible path planning problems 

{x init , X obs , X goal }, the probability of finding a feasible solution ap-

roaches one, i.e., 

lim 

 →∞ 

P 

(∃ x goal ∈ V 

PQ−RRT ∗
n ∩ X goal such that x init is 

connected to x goal ∈ X goal 

)
= 1 . 

roof of Theorem 1. First, we select the same samples as P-RRT ∗.

oreover, Quick-RRT ∗ just changes the growth trend of the tree

ut not the connectivity of the tree. Hence the PQ-RRT ∗ provides

robabilistic completeness as P-RRT ∗. �

.2. Asymptotic optimality 

RRT ∗ was proposed by Karaman et al., who proved that RRT

oes not possess the property of asymptotic optimality that is pos-

essed by RRT ∗. The related definitions and concepts required to

rove the asymptotic optimality of PQ-RRT ∗ are given in the fol-

owing words. 

Let η be a non-negative real number. For a state y ∈ X free , B y, η

enotes a closed ball region of radius η centered at y . X int η := { y ∈
 f ree | B y,η ⊆ X f ree } and X ext η := X f ree \ X int η . 

efinition 2 (strong η - clearance) . A path is said to have strong η
 clearance if and only if all points of the path belong to X int η . 

efinition 3 (weak η - clearance) . A path σ 1 : [0, 1] is said to have

eak η - clearance if there exists a path σ 2 : [0, 1] and function

: [0, 1] such that φ(0) = σ1 , φ(1) = σ2 and φ( τ ) is strong η -

learance for τ ∈ (0, 1]. 

Let Y ALG 
n be a random variable, which denotes the cost of the

inimum-cost solution in the graph returned by ALG after n iter-

tions. 

efinition 4 (Asymptotic optimality) . For any path planning prob-

ems, an algorithm ALG is said to be asymptotically optimal if ALG

ill return a graph including a minimum-cost solution as the num-

er of samples tends to infinity. It can be expressed clearly by the

ollowing formula. 

 

(
lim sup 

n → ∞ 

Y ALG 
n = L ∗

)
= 1 

In the above formula, L ∗ represents the cost of the optimal so-

ution. In fact, P-RRT ∗ introduces intelligent sampling heuristic into

RT ∗ to direct the random samples ( Qureshi & Ayaz, 2016 ). How-

ver, the other procedures are the same as RRT ∗. Therefore, P-RRT ∗

nherits the property of asymptotic optimality. Similarly, PQ-RRT ∗

an be understood as an optimisation version of P-RRT ∗, so the

roposed PQ-RRT ∗ algorithm also possesses the asymptotic opti-

ality property. 

.3. Fast convergence to optimal solution 

The proof of fast convergence requires a definition, which

hows a critical property of the optimal solution. 
efinition 5 (Optimal path planning) . If a collision-free path has

eak η - clearance, the path is said to be optimal. 

Similar to the proof of asymptotic optimality, the property of

ast convergence of PQ-RRT ∗ mainly hinges on the P-RRT ∗ algo-

ithm. The following theorem presents the reason why P-RRT ∗ pro-

ides fast convergence. 

heorem 2 (Potential guided sampling heuristic RGD(x)) . The

GD(x) heuristic guides the random samples towards the goal region

n such a manner so that P 

(
x prand ∈ X ex t η

)
> 0 . 

From Theorem 2 and Definition 5 , a conclusion that P-RRT ∗ has

he property of fast convergence to optimal solution is obtained.

ince Quick-RRT ∗ provides a new optimisation frame, the rest pro-

edures of PQ-RRT ∗ are the same as P-RRT ∗, it can be concluded

hat PQ-RRT ∗ inherits the property of fast convergence of P-RRT ∗. 

.4. Computational complexity 

In this section, the computational complexity of the proposed

Q-RRT ∗ algorithm is introduced. Let S ALG 
n be the number of pro-

edures executed by ALG after n iterations. Theorem 3 presents

he fact that PQ-RRT ∗ has the same computational complexity as

-RRT ∗ and Quick-RRT ∗. 

heorem 3. There exist two constants α1 and α2 such that 

lim 

 →∞ 

E 

[
S PQ −RRT ∗

n 

S P −RRT ∗
n 

]
≤ α1 , 

lim 

 →∞ 

E 

[
S PQ −RRT ∗

n 

S Quick −RRT ∗
n 

]
≤ α2 . 

roof of Theorem 3. Let’s first analyze the first formula. The dif-

erence between PQ-RRT ∗ and P-RRT ∗ is the integration of Quick-

RT ∗. The contributions of Quick-RRT ∗ are the improvements on

ptimisation procedures, the ChooseParent and the Rewire. Since

ost neighbor vertices have a common ancestor, Quick-RRT ∗ does

ot greatly increase the computational complexity. Similarly, for

he second formula, RGD procedure is considered undoubtedly. For

he RGD procedure, it does not increase the number of the sam-

les, but improves the quality of the sample. Hence the two algo-

ithms have the same asymptotic computational complexity. �

. Simulation results 

In this section, PQ-RRT ∗ is compared with the existing algo-

ithms, P-RRT ∗ and Quick-RRT ∗, in accordance with four bench-

arks: two 2-dimensional environments for P-RRT ∗ and two en-

ironments for Quick-RRT ∗. P-RRT ∗ and Quick-RRT ∗ are used for

omparative analysis, since they are typical examples of fast con-

ergence algorithms. Due to the randomness of sampling-based al-

orithms, each algorithm was run 100 times. 

The parameters in the simulation are λ, d ∗
obs 

, k and the depth d .

or a fair comparison, the simulation parameters are the same for

ll algorithms. In the ChooseParent procedure, d = 2 , and in the

ewire procedure, d = 1 . Two evaluation indicators are utilized to

ompare the performance of the three algorithms: ’ l f ’, the length

f the first found solution, and ’ T 5% ’, the time to find a solution

f ’1.05 ∗l optimal ’, where l optimal is the length of optimal solution.

or the purpose of demonstrating the better performance of the

Q-RRT ∗ algorithm, the same random seed is used in the Sample-

ree procedure in each comparison. Note that these algorithms will

top once the approximate optimal solutions are found. The simu-

ations are implemented on an Intel Xeon(R) E3-1240 CPU with 8G

f RAM. The simulation platform is Matlab. Four test environments

re the same size, 100 · 100. The “Fail” value is the number of
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Fig. 1. Four test environments. (a) and (b) are two-dimensional environments for P-RRT ∗ , (c) and (d) are maze environments for Quick-RRT ∗ . (green star: start state, red 

circle: goal region). 

Fig. 2. Performance of the three algorithms in the environment 2d-1. 

 

 

 

 

 

9  

a  
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c  

m

 

b  

s  

s  
failures. Failure means an algorithm cannot find the approximate

optimal solution within 300 secs. The simulation environments are

shown in Fig. 1 . 

6.1. 2d-1 

Environment 2d-1 is shown in Fig. 1 (a). Fig. 2 shows the perfor-

mance of the three algorithms in environment 2d-1. In Fig. 2 , the

generated paths of PQ-RRT ∗( l f = 89 . 2985 , T 5% = 1 . 667 ), P-RRT ∗( l f =
6 . 3998 , T 5% = 6 . 558 ) and Quick-RRT ∗( l f = 101 . 7946 , T 5% = 32 . 949 )

re shown. It can be seen from the results of this run that the pro-

osed algorithm, PQ-RRT ∗, has a better initial solution and a faster

onvergence rate than the other two algorithms. In this environ-

ent, l optimal = 72 . 8829 . 

The statistical results of 100 simulations are described by the

oxplots. The unit of the ordinate of the boxplot is seconds. The

imulation results of l f and T 5% are shown in the Figs. 3 and 4 re-

pectively. In the boxplots, p-q denotes PQ-RRT ∗, p denotes P-
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Fig. 3. l f in the 2d-1. 

Fig. 4. T 5% in the 2d-1. 

Table 1 

Comparing algorithms on the quality of the initial solution and convergence rate in 

2d-1(Std represents the standard deviation). 

Algorithm Mean Std Min Max Fail 

PQ-RRT ∗ l f 96.8742 10.1366 76.2692 128.8751 0 

T 5% 4.3554 2.6687 0.547 14.596 

P-RRT ∗ l f 120.4426 15.5077 84.9359 157.7636 0 

T 5% 4.8352 2.9337 1.14 19.475 

Quick-RRT ∗ l f 104.0857 32.7497 73.7135 241.232 0 

T 5% 23.7181 22.5681 1.512 140.67 

Table 2 

Comparing algorithms on the quality of the initial solution and convergence rate in 

2d-2. 

Algorithm Mean Std Min Max Fail 

PQ-RRT ∗ l f 60.3689 3.8795 52.3068 70.9071 0 

T 5% 9.2958 7.4132 0.187 40.259 

P-RRT ∗ l f 65.6481 7.5297 55.095 105.559 0 

T 5% 11.9609 10.6067 0.619 56.207 

Quick-RRT ∗ l f 73.4725 21.052 54.1837 144.1125 0 

T 5% 40.0247 40.5819 1.51 297.421 
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Fig. 5. Performance of the three algor
RT ∗, and q denotes Quick-RRT ∗. Although the median of l f for PQ-

RT ∗ is slightly higher than the median of l f for Quick-RRT ∗, PQ-

RT ∗ is better than Quick-RRT ∗ overall. It can be clearly seen from

ig. 4 that in the environment of 2d-1 PQ-RRT ∗ and P-RRT ∗ have

 faster convergence rate than Quick-RRT ∗. The statistics in Table 1

ndicate that PQ-RRT ∗ has better stability. Based on the above anal-

sis, PQ-RRT ∗ performs better than P-RRT ∗ and Quick-RRT ∗ in 2d-1.

.2. 2d-2 

Environment 2d-2 is shown in Fig. 1 (b). Fig. 5 shows the per-

ormance of the three algorithms. In Fig. 5 , the generated paths

f PQ-RRT ∗( l f = 56.1574, T 5% = 0.781), P-RRT ∗( l f = 56.5157, T 5 % =
.064) and Q-RRT ∗( l f = 54.598, T 5% = 33.031) are shown. From the

esults of this run, we can draw a conclusion that the proposed

lgorithm, PQ-RRT ∗, outperforms the other two algorithms in this

omparison. In the environment 2d-2, l optimal = 52.0711. 

The statistical results of 100 simulations are shown in the box-

lots. Figs. 6 and 7 plot the results of l f and T 5 % respectively. It

an be clearly seen from Figs. 6 and 7 and Table 2 that PQ-RRT ∗ is

utstanding on the two indicators, l f and T 5 %. Based on the above

nalysis, PQ-RRT ∗ performs better than P-RRT ∗ and Quick-RRT ∗ in

d-2. 
ithms in the environment 2d-2. 
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Fig. 6. l f in the 2d-2. 

Fig. 7. T 5% in the 2d-2. 

Fig. 9. l f in the maze-1. 

Table 3 

Comparing algorithms on the quality of the initial solution and convergence rate in 

maze-1. 

Algorithm Mean Std Min Max Fail 

PQ-RRT ∗ l f 239.4538 5.3222 223.6241 248.227 0 

T 5% 9.5649 4.32 2.818 22.464 

P-RRT ∗ l f 244.1686 4.482 231.8931 253.6486 4 

T 5% 64.2541 65.9887 4.67 280.973 

Quick-RRT ∗ l f 250.4689 19.7013 226.6428 315.0957 0 

T 5% 23.6302 23.3234 2.768 162.794 

6

 

f  

o  

4  

s  

m  

m  

a

 

p  

I  

Fig. 8. Performance of the three algorit
.3. maze-1 

Environment maze-1 is shown in Fig. 1 (c). Fig. 8 shows the per-

ormance of the three algorithms. In Fig. 8 , the generated paths

f PQ-RRT ∗( l f = 243.824, T 5% = 2.849), P-RRT ∗( l f = 247.7364, T 5% =
.67) and Q-RRT ∗( l f = 252.1599, T 5% = 4.723) are shown. As can be

een in Fig. 8 , PQ-RRT ∗ can converge to the near optimal solution

ore quickly and has a lower cost initial solution. In the environ-

ent maze-1, l optimal = 219.8094. PQ-RRT ∗ requires fewer samples

nd less time to obtain the near optimal solution. 

The statistical results of 100 simulations are shown in the box-

lots. Figs. 9 and 10 depict the performance of the algorithms.

t can be seen from the box-plots of Figs. 9 and 10 and Table 3
hms in the environment maze-1. 
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Fig. 10. T 5% in the maze-1. 
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Fig. 12. l f in the maze-2. 

Fig. 13. T 5% in the maze-2. 
hat PQ-RRT ∗ is superior to P-RRT ∗ and Quick-RRT ∗. It should be

ointed out that the failed experiments are not included in the

alculation of the mean, standard deviation, maximum and mini-

um. From the above analysis, it can be concluded that PQ-RRT ∗

erforms better than P-RRT ∗ and Quick-RRT ∗ in maze-1. 

.4. maze-2 

Environment maze-2 is shown in Fig. 1 (d). Fig. 11 shows the

erformance of the three algorithms. In Fig. 11 , the generated

aths of PQ-RRT ∗( l f = 209.2523, T 5% = 2.346), P-RRT ∗( l f = 216.7866,

 5% = 14.363) and Q-RRT ∗( l f = 221.9119, T 5% = 13.921) are shown.

ig. 11 demonstrates that the proposed algorithm PQ-RRT ∗ obtains

etter performance. In the environment maze-2, l optimal = 204.1923.

The statistical results of 100 simulations are shown in the box-

lots. Figs. 12 and 13 show the comparison of the two indica-

ors, l f and T 5% , respectively. In Fig. 12 , the median of PQ-RRT ∗ is

lightly higher than that of Quick-RRT ∗, but Quick-RRT ∗ has many

bnormalities that getting the initial solutions takes a long time. In

ig. 13 , PQ-RRT ∗ has a faster convergence rate than the other two

lgorithms. In Table 4 , the last column demonstrates PQ-RRT ∗ per-

orms best. Combining two performance indicators, PQ-RRT ∗ per-

orms best in maze-2. 
Fig. 11. Performance of the three algorithms in the environment maze-2. 
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Table 4 

Comparing algorithms on the quality of the initial solution and convergence rate in 

maze-2. 

Algorithm Mean Std Min Max Fail 

PQ-RRT ∗ l f 213.3854 3.1562 208.4424 225.4243 0 

T 5% 6.2253 4.2351 1.583 23.938 

P-RRT ∗ l f 223.8193 5.0614 213.1984 238.2166 16 

T 5% 62.1314 64.2663 4.722 288.623 

Quick-RRT ∗ l f 214.1641 13.4942 205.3227 292.9553 1 

T 5% 30.1505 43.3519 0.493 248.213 
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The performance of the navigation is usually subject to the ini-

tial solution of path planning since the robot will follow the ini-

tial solution at the beginning. The boxplots show that the pro-

posed algorithm can generate a relatively better solution. A bet-

ter initial solution means more energy saving under the same con-

ditions. Moreover, the near optimal solution obtained by PQ-RRT ∗

requires fewer nodes which make memory utilization more effi-

cient. The quality of a path planning algorithm depends not only

on asymptotic optimality but also on the convergence rate. The

boxplots of the indicator T 5% show that PQ-RRT ∗ has a fast con-

vergence to an optimal solution compared with P-RRT ∗ and Quick-

RRT ∗. From comparisons with P-RRT ∗ and Quick-RRT ∗, we draw a

conclusion that PQ-RRT ∗ performs best overall. PQ-RRT ∗ generates

a better initial solution and a fast convergence rate. 

7. Conclusion 

There has been a great deal of recent research on sampling-

based path planning algorithms. RRT ∗ is an optimal algorithm, but

it has a slow rate of convergence. In order to address this problem,

this paper proposed an improved RRT ∗ algorithm, PQ-RRT ∗. This

paper proves that the proposed algorithm is complete, asymptot-

ically optimal and provides fast convergence to optimal solution.

Moreover, PQ-RRT ∗ has the same computational complexity. 

Although PQ-RRT ∗ is a promising algorithm, it also has its lim-

itations. When applying PQ-RRT ∗ to mobile robots, the kinematic

constraints of the robot must be considered. Another point is that

the parameters in the proposed algorithm may not perform best in

other complex environments. Therefore, in our future proceedings,

we will consider the kinematic constraints and explore an adap-

tive parameter method for the proposed algorithm. The flexibility

of the robot arm can carry out more complex tasks, so applying

PQ-RRT ∗ to the robot arm is a potential direction. Static path plan-

ning is mostly studied at the present stage, but the actual environ-

ments are dynamic, so it is necessary to study the performance of

PQ-RRT ∗ in dynamic path planning. 
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