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Abstract—Swarm intelligence inspired by the all kinds of
theory from nature has developed rapidly towards dealing with
complicated problems. In realm of collective robots, a main
stream is to urge robots more intelligent in performance of
tasks, such as distributed system, complete self-organization and
reliance only on local information. Gene regulatory networks
(GRNs) construct the cell theory about the regulatory activities
between genes and protein and succeeded in being exerted
to multirobot system and achieving the collective entrapping
and tracking function. The excellent self-organized and robust
characteristic in GRNs guarantees collective tasks more fault-
tolerant. Unfortunately, swarm robots are easily trapped into
perplexed stuck and stagnate still when robots lose contact with
targets because of obstacle blocking. To overcome the dilemma,
we proposed online planning-based gene regulatory network (OP-
GRN) to bring robots to normal orbit and supply guidance
to reconstruct the contact with targets, which involves online
grouping planning (OGP) and online path planning (OPP). The
experiment results demonstrate the efficacy and superiority of
our model in constrained environment.

Index Terms—swarm intelligence, gene regulatory networks,
target lost, online planning, constrained environment

I. INTRODUCTION

Recently, swarm intelligence has developed to deal with
some complex problems [1] and tilted toward fully unmanned
and self-organized feature. When equipped with sophisticated
and advanced intelligence, the action of swarm robots could
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accomplish complex tasks independently and there is no need
in people’s participation. However, there is a long way to
go. Some self-organized swarm intelligence is easily trapped
into stuck when some external basic condition fails to be
detected, e.g., swarm lose contact with their target or beacon.
Hierarchal gene regulatory networks (H-GRN) is type of bio-
inspired swarm intelligence model for entrapping targets [2],
building the mephor between cell mechanism and entrapment
task of swarm robots. There are three necessary input for
H-GRN: target information, neighbor information and envi-
ronment information. Target information is a key to construct
protein concentration to generate trapping pattern for swarm.
Unavoidably, a target sometimes could rely on its advantage of
small bulk to escape from the sight line of the swarm robots,
e.g., a small bulk one could get through tunnel or narrow path
but swarm robots merely bypass. When losing information
of the target, swarm robots merely rely on simple motion,
e.g., most of robots follow few robots that still detect the
target until all of them lose sight of the target and wait in
place or most of robots start to bypass the ”obstacle” they
have no idea how large and complicated it is, which both
makes original tasks stuck in backwater. Hence, we proposed
online planning-based gene regulatory network (OP-GRN)
to break the dilemma constrained environment brings. OP-
GRN contains online grouping planing (OGP) and online path
planing (OPP). OGP instructs the swarm robots that cannot
detect targets to regroup online and the number of group
in need counts on analysis of situation awareness, e.g., the
possible position targets escape to or the command specific
tasks require. OPP utilizes improved rapidly-exploring random
tree (RRT∗-ε) supply suitable paths for all sub-swarms.

Our proposed model makes several contributions to swarm
robots in constrained scenario where leads to a target lost.
Firstly, OP-GRN enables swarm robots to reconstruct task
when swarm robots cannot detect targets and get stuck, com-
pared with traditional GRNs. Secondly, OGP uses a spot of
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communication cost to regroup lost robots to form sub-swarms
and most of lost robots join the nearest group in voluntary way.
Thirdly, OPP is used to bring the sub-swarm to the correct
orbit that points to strategic position to besiege a escaped
target. Finally, OP-GRN extends the application of GRNs
in constrained environment and describes the corresponding
dynamic equation in detail.

The rest of this paper is organized as follows. Sect. II
reviewed related work. Sect. III proposed the OP-GRN model,
consisting of online grouping planning, online path planning
and corresponding GRN dynamic equation. Sect. IV presented
the experimental setting. Sect. V exhibited experimental re-
sults and disccusion. Finally, the paper made conclusions and
discusses some future work in Sect. VI.

II. RELATED WORK

Swarm intelligence is exerted to deal with practical prob-
lems through imitating biological behaviors, e.g., fish school-
ing [3], bird flocking [4] and ant colonies [5]. These intelligent
bio-inspired behaviors help them to survive in this cruel world
including strategies engraved into nature instincts for predation
and avoiding predators. Besides, there are some microscopic
swarm behaviors morphogen diffusion [6], reaction–diffusion
model (RD) [7], gene regulatory networks(GRNs) [2], and
chemotaxis [8]. Grouping plays a key role in swarm intel-
ligence because chaotic individual behaviors could upgrade
to collective behaviors and emerge to swarm intelligence
when individuals unite together. Traditional grouping methods
revolve around a potential center control, such as global
optimization and clustering. Al-Obaidy et al. [9] achieve
balanced centralized grouping in terms of genetic algorithm.
Although this method guarantees fewer grouping centers and
harmonious number of members in each group, it does not
consider the robots’ communication load in the process of
grouping. Unfornately, designating the specific members for
a group in central controller not only comsumes lots of
time in calculation but also the time lag between calculation
results and practical dynamic situation is easily to account for
inexistence that some designated member has gone away and
leave the communication range. Wang et al. [10] proposed
a chained-grouping method based on the K-nearest neighbor
and a joining mechanism for those that were not in each group
after chain grouping.The chained-grouping lacks efficiency in
grouping and makes group pattern long-stripe ribbon shape,
which leads to a dispersive pattern and obstructs the efficiency
in the group departing from the original swarm. A remarkable
strategy in his work is to empower individuals to voluntarily
join the group that an individual is close to. Although the
strategy may make the number of members in one group out
of control, yet, it is well-suited to dynamic situation and to
reduce the time lag mentioned before. Therefore, we propose
an online grouping method to rapidly reconstruct swarm based
on this mechanism.

Path planning is a hot issue in robot system, but most
of work concentrates on single robot. Actually, swarm path
planning should be emphasized because more complicated

environment requires more ordered path planning to enhance
the intelligence of swarm. I believe most of intelligent meth-
ods used into single robot systems should be beneficial to
multirobot system. The difference is that swarm robots need
to consider pattern problem but a single robot does not. For
the sake of adaptation in unknown or changeable environment,
LaValle et al. [11] proposed rapid-exploring random tree
(RRT) that could rapidly search in map and find a good path
in constrained environment. However, the path from RRT is
not optimal enough. Karaman et al. [12] proposed RRT∗, an
improved version, backtracks the path planning cost between
parents and their child to optimize the final result of path
planning. Online path planning in our work does not need
real-time path planning and support swarm robots only when
they need. Besiders, we slightly improve RRT∗ for keeping
swarm pattern when swarm robots bypass obstacles.

III. ONLINE PLANNING-BASED GENE REGULATORY
NETWORK

In traditional gene regulatory networks, swarm of robots
perform excellently in a self-organized way to entrap or track
targets. Also, some of gene regulatory networks consider the
influence of obstacles and there are some strategy for avoiding
obstacles used in confined environment and even for cooper-
ating with obstacles to improve efficiency in entrapment task.
However, there is no doubt that these networks proposed in a
indispensable assumption that robots need possess positional
information of targets are easier to fail in confined environ-
ment because unpredicted confined environment could obstruct
those movement and make robots lose the sight or detection
on the target. For example, swarm robots taken up big area
are hard to go through narrow tunnel. When a target easily
passes through a narrow tunnel, swarm robots chasing for the
target are easily trapped into a stuck around the access and
have to bypass to torpidly discover possible path. As losing
the positional information about the target evolving with time,
those robots farther away from the target start to swtich to
non-organized status that merely follows organized robots who
still possess positional information about the target. Hence,
less and less robots possess positional information about the
target, as with chronic death, and the target finally escape
from entrapment or tracking. The feature of self-organization
GRNs bring to robots may greatly decline action capability of
swarm robots in the condition. For the description, we define
an organized robot as a robot that detects a target, a non-
organized or lost robot as a robot that doesn’t detect a target,
and a reorganized robot as a robot that are reintegrated through
online planning. The state transition diagram in Fig.2 reveal
the relationship between the three statuses.

In this section, we introduce online grouping planning,
online path planning and dynamic equation of OP-GRN. The
process of OP-GRN is to extend the function of traditional
GRNs when swarm robots trapped into target loss(shown
in Fig.1). When swarm robots cannot detect a target, they
independently send task failure information and request for
assist to cloud. Cloud consistently receives information from
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Fig. 1: The process of OP-GRN

robots and analyzes the situation. When the lost robots’
number comes to the threshold set beforehand, the cloud
starts to accept those request, calculate the information of lost
robots and make decision on regrouping. In this part, some
reorganized organizers will be reckoned to be beacon to attract
other non-organized robots to join them. Afterwards, these
reorganized organizers download the expected path from cloud
and take action to reach designated places where robots may
refind the target lost before. Other reorganized robots follow
their organizers until they discover targets again. If these
organized robots find the target, they will transform their status
to organized robots and entrap the target. Maybe there are
many sub-swarms following different paths to different places,
yet, they could still cooperate to entrap the same target after
“reorganized” status switches to “organized” without conflict
because GRNs has distributed characteristic.

A. Online Grouping Planning

Online route-planning based gene regulatory network is
proposed to improve the situation where more and more swarm
robots are losing contact with a target owing to environment
obstruction and plan shortest routes for non-organized robots
to bypass obstacles and reach the strategic locations which
the lost target could have passed through. In this process, the
non-organized robots are going to undergo online grouping
planning and online path planning, including status transfor-
mation from non-orgniazed status to reorganized status and
from reorganized status to organized status(shown in Fig.2).

As more and more non-organized robots sending request
for online support and reaching threshold value tg for online
planning, online grouping planning starts to reintegrate these
non-organized robots(shown in Fig.3). Firstly, online grouping
planning separates non-organized robots into c sub-swarms
and designates c reorganizers as the center robots of the
sub-swarms. c reorganizers are the c robots who possess the

most neighbors and who are more than rg apart respectively.
Then, the other non-organized robots are voluntary to join
corresponding sub-swarm in terms of proximity principle. In
general, the c is usually decided by task requirement, e.g.,
there should be c potential positions to implement a target
pursuit and interception. Similarly, c also decides on the pop-
ulation size of sub-swarms, which influences the performance
of sub-swarms. In pratice, c is a expected grouping number and
a better performance of OGP can be attained by controlling
appropriate distance between organizers rg . For non-organized
robots, the positional information, the unique ID and the neigh-
bors number need sending to cloud and updating consistently.
Commonly, most of non-organized robots get stuck and stand
still so that the positional information is always changeless.

To conveniently describe the spatial grouping of swarm
robots, we established an abstract model of swarm robots. We
assumed that U was the set of swarm robots. Each robot u is
a tuple {s, id, n, d, l, pos}, where (1) s represents the current
grouping state of robot u, (2) id is the unique identification
number of robot u, (3) n is the number of neighbors of the
robot u, (4) d is the relative distance between the neighbors
and the robot, and (5) l is the special boolean flag for convener
when cloud accepts request for regrouping, (6)pos represents
the robot’s current positional information. The robots’ states
were “organized,” “unorganized,” and “reorganized,” which
are denoted as S = {Sorg, Suno, Sreo}. Non-roganized robots
send uid, upos, un to the cloud, then the cloud sorts un in
descending rank. The c robots with the most un is chosen to be
reorganized organizers. Once the ud between c robots satisfies
the seperation distance rg , the cloud will send reorganization
order to these robots. If there are insufficient robots to satisfy
the condition above, the seperation distance rg will be self-
adaptively decreased until c organizers are selected success-
fully.
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B. Online Path Planning

Considering the time of uploading request and downloading
predicted path, RRT∗ has competence for rapidly planning
appropriate path in unknown or confined environment. The
c reorganizers as terminals send current position information
to cloud, then cloud analyzes situational information and
calculates potential end position. RRT∗ searches feasible paths
in the map and finally find the shortest path under little
computational cost. Through RRT∗, the shortest paths and
corresponding predicted waypoint set Qj

i are generated, which
represents the ith predicted waypoint of the jth group. The
predicted waypoint as beacons guides reorganized organizer
to designated place the cloud reckons. Given that the path
just guides the reorganized organizers and there are many
following fellow around them, the sub-swarm bulk should be
taken into account. A collision-free situation between robots
and obstacles should be considered in RRT∗. An inflated
distance ε is added to RRT∗, which leads to a virtual inflation
in obstacles and smooths the change of sub-swarms’ pattern
when they bypass obstacles. Hence, the improved RRT∗-ε is
customized to lessen unnecessary avoidance to lower speed of
swarm.

C. Dynamics of OP-GRN

H-GRN is one of most successful GRN to achieve swarm
entrapment to a target, which mainly revolve pattern gener-
ation and formation around. In phase of pattern generation,
the trap pattern is calculated in forms of maximal protein
concentration. In phase of pattern formation, swarm robots
independently goes to the pattern. The top-down model mod-
ularized information and control parts respectively so that
robots could be easily custimized their own control strategy.
Nonetheless, we propose two new dynamics for reorganized

Fig. 2: The state transition diagram of swarm robots.

Fig. 3: The process of OGP.

Fig. 4: The inflated distance ε used in RRT∗.

organizer and other reorganized robots. In our previous work
[13], conflict-free strategy for GRN has been developed to
achieve obstacle avoidance. Due to the fact that OPP has
discovered a conflict-free path for reorganized organizers,
the phase of pattern formation should slightly weaken the
avoidance factor in motion.

D. Upper Layer: Trap Pattern Generation

For generation of target tracking pattern, each organizing
robots will utilize the following gene regulatory dynamics to
generate the concentrations:

dpj
dt

= −pj +52pj + γj , (1)

p =

nt∑
j=1

pj , (2)

dg1
dt

= −g1 + sig(p, θ1, k), (3)

dg2
dt

= −g2 + [1− sig(p, θ2, k)], (4)

dg3
dt

= −g3 + sig(g1 + g2, θ3, k), (5)

sig(x, z, k) =
1

1 + e−k(x−z)
, (6)
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where pj , an internal state, denotes the protein concentration
produced by the jth target. 52, a Laplacian operator, which
is defined as the second-order derivative of pj in the spatial
domain and can be treated as the diffusion process in the
biological system. p denotes the sum of concentrations from all
nt targets. k, a positive constant, controls the slope of sigmoid
function. g1, g2 and g3 denote the protein concentrations. The
g3, whose concentration defines the contour of target pattern,
is regarded as the input of B-spline.θ1, θ2 and θ3 are thresholds
of a sigmoid function.

B-Spline is used to extract the contour of the target pattern
generated by the upper layer of TH-GRN, and supply predic-
tion function for the robots’ location. NURBS (Non-uniform
Rational B-spline) [14] can generate pattern evenly according
to the equations as follow:

C(u) =

∑n
i=0Ni,p(u)ωiPi∑n
i=0Ni,p(u)ωi

, (7)

where C(u) is polynomial curves fitting function, Ni,p is B-
spline basis functions with knot u ∈[0,1] and Pi is matrix of
control points. The knot needs to be set so as to approximate
a uniform parameterization because of the uneven distribution
of points on the pattern.

E. Lower Layer: Pattern formation

In this part, we describe the dynamics of four pattern
formation respectively from organized robots, non-organized
robots, reorganized robots.

1) Organized Robot:

G1
i = o11A+ o12Pi + o13D + o14β(t)O, (8)

β(t) =

{
1, when avoiding obstacle
0, else

(9)

where A is the factor of avoiding neighbors, Pi is the factor
of direction to pattern , including zi and αt in Fig.1. D is
neighbor density factor(guiding ith robot to low density ), O
is the factor to keep away from obstacles and D is the factor
pointing to low density within neighbor. β(t) is a switching
function to control avoiding mode. Gi is final sum of all
direction factors. The coefficient o11, o12, o13, o14 are positive
constant,where o14 goes beyond another three.

2) Non-organized Robot:

G2
i = o21A+ o22C1 + o23β(t)O, (10)

For those robots that do not detect any target, their movement
behavior is governed by the following dynamics. Assume that
a non-organizing robot has Nn neighbors, which are within its
sensing range. The dynamics of this robot is determined by:

C1 =
dx

dt
=

Nn∑
i=1

(
dxi
dt
− dx

dt
) (11)

where C1 is the direction toward neighbors, x denotes the
current position of the non-organized robot and dx

dt is the
velocity of the robot.

3) Reorganized Robot:

G3,j
i = r11A+ r12C2 + r13D + r14β(t)O, (12)

where C2 is the direction toward the corresponding reorga-
nized organizer, G3,j

i is the final sum of all direction of the
ith robot of the jth sub-swarm.

4) Reorganized Organizer:

G4,j
i = r21A+ r22Q

j
i + r23β(t)O, (13)

where Qj
i is the ith waypoint of the jth sub-swarm’s planning

path RRT∗-ε, G4,j
i is the final sum of all direction of the ith

robot of the jth sub-swarm. A organizer goes to Qi+1, once
it reaches Qi.

IV. EXPERIMENTAL SETTING

The experiment is set to 25m × 25m scenario. There are
5 circle obstacles with a radius of 3m and 1 circle obstacle
with a radius of 1m. The smaller one is set to a typical
swarm constrained obstacle, which accounts for a narrow
lane nearly obstructing swarm’s bulk and merely permitting
single individual through. The 6 obstacles constructs only two
exits on left and right hand for the target’s escaping. There
are 20 non-organized robots generated within 2m around the
coordinates (20, 20) and 1 target generated in coordinates (20,
20). The robots and the target initially defaults to moving
upward. The target and robots keep a unfair condition, i.e.,
the target could pass through tunnel entrance because of small
bulk. Whereas, swarm cannot pass it directly and have to
bypass all obstacle. The task of robots is to entrap a escaping
target and the task of the target is to try its best to avoid
entrapment. Velocity of the target we set is smaller than swarm
robots, which guarantees robots could catch up with the target
and entrap it in collision-free environment. The tunnel terrain
halves the velocity of the target after it enters the tunnel.
Nonetheless, there is still a big challenge for swarm robots
to besiege the escaping target.

In OPP process, the number of sample point is set to
2000. The path planning executes at per 500 sample points,
therefore, there are four potential paths generated by RRT∗-
ε. In terms of the distance cost, the smallest one is chosen
to send to reorganized organizers. The start point is the
position the reorganized organizers stand at and the end point
is the potential besiege position that the cloud reckons after
analyzing the terrain and situation.

The overall notation in simulations is shown in TABLE I.

V. RESULTS AND DISCUSSION

The experimental process exhibits in Fig.5. Firstly, 20 non-
organized robots detecting the escaping target turn their status
to “organized” and endeavor to chasing (shown in Fig.5(a)).
When swarm robots start to entrap the escaping target, the
obstacles interrupt the closed pattern formation and many of
robots have to avoid obstacles. Then, the target darts into
tunnel and temporarily escapes from the entrapment. As more
and more swarm robots cannot detect the escaping target, more
and more swarm robots turn their status from “organized”
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TABLE I: Notations used in simulations

Parameters Description Values

c Expected number of grouping in OGP 2
rg Distance between groups in OGP 0.8
tg Threshold of cloud accepting requests to regroup 15
ε Inflated distance for RRT∗-ε in OPP 0.3
θ1, θ2, θ3 Thresholds of a sigmoid function in Eq.(3)(4)(5) 0.25,0.3,1.2
k Slope of sigmoid function in Eq.(6) 1
o11, o12, o13, o14 Coefficient of the controller in a organized robot 1,1,1,1.5
o21, o22, o23 Coefficient of the controller in a non-organized robot 1, 1, 1.5
r11, r12, r13, r14 Coefficient of the controller in a reorganized robot 1,1,1,1.5
r21, r22, r23 Coefficient of the controller in a reorganized organizer 1,1,0.5
δ Detection distance of a robot 5
φ Communication range of a robot 5
vr Velocity of swarm robots 0.5
vt, v′t Velocity of a target before and after entering the tunnel 0.2,0.1
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(a) Swarm intend to entrap the target.
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(b) Swarm is obstructed by obstacles.
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(c) OGP and OPP are activated to reorganize.
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(d) Two sub-swarm go to designated places.
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(e) One sub-swarm succeeds in detecting the target.
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(f) The target is finally trapped.

Fig. 5: Process of OP-GRN entrapping an escaped target in a constrained environment.

to “non-organized”. Then, all of robots get stuck to stand
still and the requests for guidance consistently are received
by cloud (shown in Fig.5(b)). The number of non-organized
robots reaches threshold tg and the OGP is triggered to regroup
the swarm. The 2 reorganized organizers whose status changes
to “reorganized” are chosen and the other non-organized
robots join the sub-swarm those reorganized organizers live,
according to principle of proximity . After joining sub-swarms,
these non-organized robots turn their status to “reorganized”
(shown in Fig.5(c)). Soon, the OPP is activated to push cloud
to reckon potential positions to besiege the escaping target

and to send predicted besiege paths to different reorganized
organizers. The two reorganized sub-swarms start to obey the
respective path planing to reach the desiganted position (shown
in Fig.5(d)). The sub-swarm at left side is the first to detect
the target again. The members of this sub-swarm turn their
status to “organized” (shown in Fig.5(e)). Finally, the sub-
swarm succeeds in entrapping the escaping target (shown in
Fig.5(f)).

In OPP process, the predicted paths are reckoned respec-
tively and sent to reorganized organizers by cloud. Owing to
two potential postions reckoned by cloud, therefore, there are
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two predicted paths on the left side and the right side. The
path planning results reflect on Fig.6. The path planning on
left side is the result from 1000 sample points and the path
planning on right side is the result from 2000 sample points.
The results of OPP is shown in TABLE II and the processor
of cloud is Inter(R) Core(TM) i7-9700F CPU @ 3.00GHz.

(a) Left Path (b) Right Path

Fig. 6: The results of RRT∗-ε in simulations.

TABLE II: Results of OPP

RRT∗-ε Information

Sample Number Average Running Time Average Waypoint Number

2000 5.4s 8
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Fig. 7: The comparative experimental results between H-GRN
and OP-GRN.

In the Fig.7, the comparative results between H-GRN and
OP-GRN reveals the change of the distance between robots
and the target in the overall process the Fig.5 shows. Before
the iteration number is less than 67, the curves the three
comparative models show are nearly same. Until the iteration
number comes to 67, the knee point from H-GRN (green line)
reflects most of robots are still following the target and even
one or two finds the way to get in channel, which accounts
for a descending trend. As for OP-GRN and OP-GRN with
no epsilon, robots turn to request the cloud for help, start
to group and reorganize and bypass the obstacles from two
sides, therefore, the distance between robots and the target

begins to rise. Obviously, most of robots get stuck outside the
channel in H-GRN, so the distance between robots and the
target consistently keeps going up. When the iteration number
comes to 89, the OP-GRN and OP-GRN with no epsilon reach
local peak, i.e., one of reorganized sub-swarm is truly being
close to the target. Then, the distance between robots and
the target starts to decline. Moreover, one of reorganized sub-
swarm detects the target again and its members turn state to
“organized” and entrap the target. When the iteration number
comes to 99, the OP-GRN encounters the last knee point
because one of sub-swarm has eventually entrapped the target
successfully and there are other robots further getting away
from the target, such as those non-organized robots stuck
outside the channel and other sub-swarm stands by in another
strategical position. Compared with OP-GRN, the OP-GRN
with no epsilon makes sub-swarms suffer a unsmooth process
because online path planning could not supply an action path
considering the shape of swarm formation. The defective
path planning may leads to a unnecessary inner positional
harmonization when the sub-swarms bypass the obstacles.

VI. CONCLUSIONS AND FUTURE WORKS

We proposed online planning-based gene regulatory net-
work (OP-GRN) to improve the traditional GRNs in being
trapped into stuck when robots cannot detect an escaping
target’s information, which strategically brings robots to places
where robots could detect and besiege the target again. In
addition, OGP module has competence for reorganizing swarm
in cloud-end synchronization and OPP module utilizes RRT∗-
ε to achieve inflated collision-free path planning for swarm
robots. The experiment results demonstrate the efficacy and
superiority of our model in constrained environment. Fu-
ture works shall include accelerating the path planning for
swarm, designing the entry and exit mechanism for grouping
to achieve self-adapting adjustment in balancing number of
members in each sub-swarm and applying the model to a
larger-scale and complex scenario.
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