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Abstract. This paper proposes an adaptive method to select recom-
bination operators, including differential evolution (DE) operators and
polynomial operators. Moreover, a push and pull search (PPS) method
is used to handle constrained single-objective optimization problems
(CSOPs). The PPS has two search stages—the push stage and the pull
stage. In the push stage, a CSOP is optimized without considering con-
straints. In the pull stage, the CSOP is optimized with an improved
epsilon constraint-handling method. In this paper, twenty-eight CSOPs
are used to test the performance of the proposed adaptive GA with the
PPS method (AGA-PPS). AGA-PPS is compared with three other differ-
ential evolution algorithms, including LSHADE44+IDE, LSHADE44 and
UDE. The experimental results indicate that the proposed AGA-PPS is
significantly better than other compared algorithms on the twenty-eight
CSOPsq.
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1 Introduction

Many real-parameter single-objective optimization problems have constraints
[1,2]. In general, a constrained single-objective optimization problem can be
defined as follows:

minimize f(x), x = (x1, . . . , xD) ∈ S (1)
subject to gi(x) ≥ 0, i = 1, . . . , q

hj(x) = 0, j = 1, . . . , p

c© Springer Nature Singapore Pte Ltd. 2018
J. Qiao et al. (Eds.): BIC-TA 2018, CCIS 951, pp. 355–367, 2018.
https://doi.org/10.1007/978-981-13-2826-8_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2826-8_31&domain=pdf


356 Z. Fan et al.

where f(x) is the objective function. x is a decision vector. xi is the i-th variable
of x. S =

∏D
i=1 [Li, Ui] is the decision space, where Li and the Ui are the lower

and the upper bounds of xi. gi(x) denotes the i-th inequality constraint, and
hj(x) denotes j-th equality constraint.

In order to evaluate the constraint violation of a solution x, the overall con-
straint violation method is adopted, which summaries all constraints into a scalar
value φ(x), as follows:

φ(x) =
q∑

i=1

max(gi(x), 0) +
p∑

j=1

max(|hj(x)| − σ, 0) (2)

In this paper, σ is set to 0.0001 as suggested in [3]. If φ(x) = 0, the x is a feasible
solution. Otherwise it is an infeasible solution.

At present, the Constraint-handling Technique based on evolutionary algo-
rithm can be divided into the following two categories: Penalty Function Based
Methods and Multi-objective Based Methods. For example: Le Riche et al. [4]
proposed a segregated genetic algorithm (SGGA), It contains two values of the
penalty parameter, SGGA permits to balance the inuence of the two penalty
parameters. Huang et al. [5] proposed a novel method co-evolutionary differen-
tial evolution (CDE), two kinds of populations are used in CDE, In the popula-
tion denotes a set of penalty factors, and in another kind of populations denotes
a decision solution. Surry and Radcliffe [6] proposed COMOGA, that is, the
single-objective constrained optimization problem is considered as a constraint
satisfaction problem or a single-object unconstrained optimization problem.

As a representative heuristic algorithm, generic algorithm (GA) [16] can be
used to optimize real-parameter SOPs. A typical example of GA is differential
evolution algorithm (DE). There are many different variants of DE. For exam-
ple, FADE [7], jDE [8], JADE [9], CoDE [10], SHADE [11], L-SHADE [12],
L-SHADE44 [13] and so on. FADE [7] sets the DE parameters by using the
fuzzy logic control. jDE [8] updates the DE parameters with different prob-
abilities. JADE [9] proposes a current-to-pbest/1 with an external archive, a
greedy mutation operator. It adaptively updates its parameters in each gener-
ations. CoDE [10] applies several groups of suitable parameter settings to the
DE. SHADE [11] proposes an adaptive technique of parameter settings by using
successful historic memories. L-SHADE [12] is an improved version of SHADE,
which reduces the population size linearly during the evolutionary process. As
an variant of L-SHADE, L-SHADE44 [13] proposes a strategy to select four
different kinds of DE operators adaptively.

However, in some circumstance, the diversity of a population may be lost
by only adopting DE operators. A polynomial operator proposed in [17] can be
used to enhance the diversity of a population.

To solve CSOPs, an efficient constraint-handling method should be applied
[14,18]. ε constrained method [15] is a representative constraint-handling
method, which can be concluded as the following three rules:

1. When the constraint violations of two individuals are both lower than or equal
to ε, the individual with the lower objective value is better than the other.
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2. When the constraint violations of two individuals are the same, the individual
with a lower objective value is better than the other.

3. When at least one constraint violation of two individuals is larger than ε, the
individual with a lower constraint violation is better than the other.

In this paper, we propose a GA with an adaptive recombination operator
selection (AGA) method and a PPS constraint-handling method, namely AGA-
PPS.

The rest of this paper is organized as follows. Section 2 introduces some
related work. Section 3 introduces the proposed method AGA-PPS. Section 4
shows the experimental results of AGA-PPS and other three DE algorithms
(LSHADE44+IDE, LSHADE44 and UDE) on 28 test instances. Section 5 gives
the conclusion.

2 Adaptive Recombination Operator Selection

2.1 Successful History Based DE Parameter Settings

In SHADE [11], a method of adaption parameter setting is proposed. For each
individual xi, i = 1, . . . , N , its matching parameters Fi and CRi are generated
according to successful historic memories MF and MCR with H cells, respec-
tively. A pointer k is used to record the memories. k is initially set to 0. At the
beginning of each generation, two sets SF and SCR are both set as ∅, which stores
the successful parameter pair {Fi, CRi} for each individual xi, i = 1, . . . , N .
At the end of each generation, if SF is not empty, the k will be increased by
1. If the value of k is larger than H, k will be reset as 1. The adaption factors
mF and mCR are calculated by Eq. (3)–(8), which are stored into the k-th cell
of memories MF and MCR, respectively.

mF = meanWL(SF ) if SF �= ∅ (3)
mCR = meanWA(SCR) if SCR �= ∅ (4)

meanWL(SF ) =

∑|SF |
t1=1 ωt1F

2
t1

∑|SF |
t2=1 ωt2Ft2

(5)

meanWA(SCR) =
|SCR|∑

t=1

ωtCRt (6)

ωt =
Δfunct

∑|SCR|
u=1 Δfuncu

(7)

Δfunct = |func(xt) − func(yt)| (8)

In Eq. (8), func(·) = f(·) when φ(xt) = φ(yt) and f(xt) > f(yt). func(·) =
φ(·) when φ(x) > φ(y). Where f(·) and φ(·) are objective function and the
constraint violation according to Eqs. (1) and (2).
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Before performing the DE operators for xi, the parameter pair {Fi, CRi} is
generated by a Cauchy (Normal) distribution of mean μFi

(μCRi
) and a standard

deviation σ. The means μFi
and μCRi

are generated as follows:

Fi = randci(μF , 0.1) (9)
CRi = randni(μCR, 0.1) (10)

where randci(μ, σ)(randni(μ, σ)) denotes a value generated by a Cauchy (Nor-
mal) distribution. When the memories MF and MCR are both empty, the values
of μF and μCR are set as 0.5. Otherwise, an integer ri is uniformly selected from
[1,H], which means the ri-th pair of values in MF and MCR will be selected as
the means. These values should fall in [0, 1]. Otherwise, Eqs. (9) and (10) will be
repeated until the pair {Fi, CRi} falls in [0,1].

2.2 Competing Strategy for Selecting DE Operators

In real world, many optimization problems can be seen as black-box problems.
Without prior knowledge of problems, it is hard to select a suitable DE strategy.
To enhance the robust of an algorithm, various kinds of strategies for selecting
DE operators can be used [13].

At the beginning of the evolutionary process, each DE operator has the same
probability to be used. This probability is ql, and ql is equal to 1/K. Where K
is the number of DE operators. When a DE operator generates a successful trial
vector, the probability of each DE operator will be updated as follows:

ql =
nl + n0

∑K
k=1(nk) + n0

(11)

where nl is the successful number of the l-th DE operator, and n0 > 0 is a
constant, which is used to smooth the influence of each DE operator. When one
of the probabilities is less than a threshold δ, each ql and nl is reset as 1/K and
0, respectively.

In this paper, four kinds of DE operators are used. They are DE/current-
to-pbest/1/Bin (with archive), DE/current-to-pbest/1/Bin (without archive),
DE/randr1/1/Bin and DE/current-to-randr1/1/Bin.

2.3 Local Convergence Detection

To detect the status of population, we define a convergence parameter C as
follows:

C(G) =
f(xi,G) − f(xj,G−L)

f(xj,G−L) − f(xk,G−2L)
(12)

where G is current generation and L is a positive integer defined by users,
and L < 0.5G. i = argi min f(xi,G), j = argj min f(xj,G−L) and k =
argk min f(xk,G−2L) are the indexes of the best solutions in different genera-
tions.
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We initialize the flag flocal to zero, which means the population is not locally
convergent. If flocal = 1, it means that the population is locally convergent. With
a given threshold η, the flocal is updated at end of each generation as follows:

flocal(G) =
{

0, if C(G) > η
1, if C(G) ≤ η

(13)

When flocal = 1, the polynomial operator [17] will perform for each individual
after the DE operator.

3 The Proposed Method

In this paper, we propose a GA with an adaptive recombination operator selec-
tion (AGA) method and a PPS constraint-handling method, namely AGA-PPS.
The details are as following:

1. The GA uses the framework of SHADE [13] to perform the DE operators
with the adaption parameter technique. At the beginning of each generation,
the status of the current population is detected. If the population is consid-
ered to be locally convergent, the polynomial operator will be performed to
each individual after the DE operators. Otherwise, each individual is only
performed by the DE operators.

2. The PPS method has two stages to handle the constraints. In the first stage,
the algorithm optimizes the CSOPs without considering constraints. When
the status of population is considered to be locally convergent, the improved
epsilon method, which controls the ε according to the feasible rate of the
current population (fr), will be applied to the algorithm until the stopping
criteria are met, which can help to accelerate the convergence of the popula-
tion and escape from the local optima.

As a variant of epsilon constrained method, the PPS firstly sets the value
of ε to be infinity, which makes the algorithm optimize a CSOP without con-
sidering constraints in the push stage. When flocal becomes 0 at the first time,
the algorithm optimizes the CSOP in the pull stage, and then an improved ε
constrained method will be executed.

To balance the evolutionary search of the population between feasible and
infeasible regions, an improved ε setting approach is suggested as follows:

ε(k) =

⎧
⎪⎪⎨

⎪⎪⎩

Rule1(if fpush = 1) : ∞
Rule2(if fpush = 0 ∧ rk < α ∧ FEs < Tc) : ε(k − 1)(1 − FEs

Tc
)cp

Rule3(if fpush = 0 ∧ rk ≥ α ∧ FEs < Tc) : (1 + τ)φmax

Rule4(otherwise) : 0

(14)

where fpush is the pushing flag initialized as 1. rk is the proportion of feasible
solutions in the generation k. FEs is the number of objective function evaluations
(FEs). Tc is a controlled objective function evaluations, which is set according to
Eq. (15). ε will be set to 0 when FEs reaches to Tc. cp and τ are two parameters
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to control the decreasing and the increasing speed of ε. α is a threshold defined
by users. When fpush becomes 1, the value of ε begins to change. When rk ≥ α,
it means that the number of feasible solutions in the population is enough, and
ε tends to increase in order to allow more infeasible solutions to have chances to
stay in the population. When rk < α, the ε tends to decrease, which tends to
search for feasible solutions.

Tc = FEsc + 0.8(MaxFEs − FEsc) (15)

where MaxFEs is the maximal FEs and FEsc is the FEs when the flocal = 1
at the first time.

In this paper, the PPS method is embedded in the adaptive GA (AGA-PPS),
which is devoted to solve CSOPs, and the pseudo-code of AGA-PPS is shown in
Algorithm 1. The best solution xbest updated by each evaluation is the optimal
result.

4 Experimental Study

All 28 test instances defined in the report [3] are optimized by the proposed
AGA-PPS in this paper. Each instance is a single-objective optimization problem
with some inequality or equality constraints. Twenty-five independent runs are
carried out for each problem at each kind of dimension levels (D = 30, 50,). The
maximal FEs is set as 20000D. The experimental results are shown in Tables 1, 2
and 3. As defined in [3], ‘Mean’ and ‘std’ in tables respectively denote the mean
value and the standard deviation of the objective during the 25 runs.

4.1 Experimental Settings

The parameter settings are listed as follows:

(1) Population size: N = 5D.
(2) The length of historic memory: H = 10.
(3) Parameters of strategy for selecting DE operators: K = 4, n0 = 2, δ = 0.05.
(4) DE/current-to-pbest/1 parameter: p = 0.2.
(5) The size of external archive: NA = 2.5N
(6) Parameters of IEpsilon: cp = 2, η = 0.01, α = 0.5, τ = 0.1, L = 5.

4.2 Comparison Among AGA-PPS and Three DE Algorithms

We compare AGA-PPS with three algorithms in 30 and 50 dimensions. Three
algorithms are LSHADE44+IDE [19], LSHADE44 [13] and UDE [20]. All the
experimental results of these three algorithms come from the official website of
CEC2018.
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Algorithm 1: AGA-PPS
Input:

A CSOP and a stopping criterion.
N , NA: the sizes of population and external archive.
cp, L, η, Tc, α, τ : parameters of PPS.
H: the length of the historic memory.
n0, δ: parameters of strategy competition.

Output: The best solution xbest.
Step 1: Initialization:

a) Set probabilities ql = 1/4 for l = 1, 2, 3, 4.
b) Set counts nl = 0 for l = 1, 2, 3, 4.
c) Generate a population P = {x1, ...,xN}.
d) Evaluate f(xi) and φ(xi), i = 1, ..., N . Get the maximal constraint violations φmax.
e) Set ε = ∞. Set flocal = 0, fpush = 1.

Step 2: Population update
For i = 1, . . . , N , do

a) Choose the lth strategy according to the ql, l = 1, 2, 3, 4.
b) Generate DE parameters Fi and CRi according to the memories MF and MCR.
c) If flocal = 0 then perform the selected DE strategy to generate a trial vector yi.
d) Else perform the selected DE strategy and polynomial operator to generate a trial

vector yi.
e) Evaluate f(yi) and φ(yi),update xbest and φmax.
f) If max(φ(yi) − ε, 0) < max(φ(xi) − ε, 0) then

1) replace xi with yi,
2) nl = nl + 1, update qs, s = 1, 2, 3, 4 according to Eq (11),
3) store |φ(xi) − φ(yi)|, store Fi and CRi.

g) ElseIf max(φ(yi) − ε, 0) = max(φ(xi) − ε, 0) ∧ f(yi) < f(xi) then
1) insert xi to the archive A, replace xi with yi.
2) nl = nl + 1, update qs, s = 1, 2, 3, 4 according to Eq (11),
3) store |f(xi) − f(yi)|, store Fi and CRi.

Step 3: Memories update
Update MF and MCR for each strategy.
Step 4: Convergence status update
Update flocal, Tc, and fpush according to Eq (13), (15).
Step 5: Epsilon update
If fpush = 0, then

a) Get the proportion of feasible solutions rk in the current generation k.
b) If rk < α ∧ FEs < Tc then

ε = ε(1 − FEs/Tc)
cp,

c) ElseIf rk ≥ α ∧ FEs < Tc then
ε = (1 + τ)φmax,

d) ElseIf FEs ≥ Tc then
ε = 0.

Step 6: Termination
If stopping criteria are satisfied, output the best solution xbest. Otherwise, go to Step 2.
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Tables 1 and 3 show the results of mean values of the four single-objective
constrained optimization algorithms applying to 28 constraint problems after
25 independent runs implemented in each problem at each kind of dimension
levels (D = 30, 50). According to the Friedman aligned test, AGA-PPS achieves
the highest ranking among the four single-objective constrained optimization
algorithms. The p values calculated by the statistics of the Friedman aligned
test are 3.61923E−05, 1.02665E−05, and 1.49E−05 for D = 30, 50, which reveals
the difference among the four algorithms. To compare the statistical difference
between the AGA-PPS and other three algorithms, we perform a series of post-
hoc tests. Since each adjusted p value in Tables 2 and 4, is less than the preset
significant level 0.05, To control the Family-Wise Error Rate (FWER), a set of
post-hoc procedures are used as suggested in [21]. we can conclude that AGA-
PPS is significantly better than the other three algorithms in the performance
of mean value of the objective.

The experimental results in Tables 1 and 3 indicate that AGA-PPS signifi-
cantly outperforms other three algorithms on C01, C02, C16, C18, C21 and C27
test problems. We analyze the possible reason for C01 test problem. In Fig. 1,
the blue area is the objective function and the red area is the constraint function.
AGA-PPS can find unconstrained optimal solutions in the push stage, and the
unconstrained optimal solutions are the very feasible solutions.
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Fig. 1. The C01 test problem. (Color figure online)

Table 1. The mean value and the standard deviation of the objective during the 25
runs on the test instances C01 - C28 with D = 30.

Test instances AGA-PPS LSHADE44+IDE LSHADE44 UDE

C01 Mean 7.10E−29 3.37E−11 1.02E−21 2.21E−15

Std 4.23E−29 4.11E−11 4.87E−21 7.08E−15

C02 Mean 6.27E−29 1.77E−11 2.86E−21 1.17E−14

Std 4.24E−29 2.52E−11 9.27E−21 3.65E−14

C03 Mean 1.08E+03 1.13E+07 1.12E+06 8.59E+01

Std 4.16E+02 4.60E+06 1.95E+06 22.89161

C04 Mean 2.19E+01 1.39E+01 1.97E+01 8.45E+01

Std 3.87E+00 0.778232 0.540477 23.64712

(continued)
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Table 1. (continued)

Test instances AGA-PPS LSHADE44+IDE LSHADE44 UDE

C05 Mean 6.47E−28 1.30E−16 4.25E−03 7.22E+00

Std 9.26E−28 7.82E−17 0.004395 1.065887

C06 Mean 4.09E+02 5.67E+03 3.96E+03 3.28E+02

Std 5.59E+01 1031.592 722.409 105.1588

C07 Mean −2.21E+02 −1.02E+01 −5.55E+01 −4.11E+02

Std 6.65E+01 96.7726 108.028 225.5643

C08 Mean −2.84E−04 −2.40E−04 −2.80E−04 −2.40E−04

Std 3.56E−09 4.05E−05 5.77E−10 4.94E−05

C09 Mean −2.67E−03 −2.67E−03 −2.67E−03 −2.67E−03

Std 8.85E−19 5.44E−09 1.33E−18 3.32E−16

C10 Mean −1.03E−04 −9.00E−05 −1.00E−04 −9.12E−05

Std 4.25E−09 8.64E−06 4.76E−10 1.79E−05

C11 Mean −3.04E+02 −8.55E−01 −8.75E−01 −2.70E+01

Std 3.06E+02 0.096998 0.109523 4.755493

C12 Mean 3.98E+00 6.07E+00 4.00E+00 1.57E+01

Std 4.26E−04 2.839335 0.013465 8.832025

C13 Mean 1.29E+01 3.27E+01 5.03E+01 9.64E+01

Std 3.02E+01 39.16682 13.6338 129.0651

C14 Mean 1.45E+00 1.93E+00 1.86E+00 1.59E+00

Std 6.09E−02 0.046647 0.044671 0.193245

C15 Mean 2.73E+00 1.29E+01 1.92E+01 9.27E+00

Std 1.38E+00 1.539043 3.61396 2.22144

C16 Mean 0 1.56E+02 1.54E+02 8.92E+00

Std 0 13.61105 15.3015 3.066072

C17 Mean 1.21E+00 1.03E+00 1.00E+00 1.03E+00

Std 3.17E−01 0.005842 0.018234 0.002783

C18 Mean 3.66E+01 7.54E+03 9.13E+03 9.84E+03

Std 1.39E−01 5261.00831 6634.57 3779.395

C19 Mean 0 1.28E−03 1.08E−03 1.97E+00

Std 0 0.000399 0.00094 3.515707

C20 Mean 4.38E+00 2.92E+00 3.55E+00 4.00E+00

Std 6.63E−01 0.31498 0.221087 1.064174

C21 Mean 9.37E+00 2.77E+01 2.28E+01 1.25E+01

Std 6.49E+00 9.187089 8.98664 8.474046

C22 Mean 1.84E+02 1.18E+03 3.24E+03 2.21E+02

Std 2.09E+02 2023.388 3173.81 181.7431

C23 Mean 1.43E+00 1.91E+00 1.86E+00 1.50E+00

Std 4.48E−02 0.05499 0.060907 0.117495

C24 Mean 3.36E+00 1.42E+01 1.22E+01 9.27E+00

Std 1.50E+00 1.369376 1.04194 1.28255

C25 Mean 1.83E+01 1.48E+02 1.47E+02 1.59E+01

Std 7.25E+00 13.87661 12.7452 3.636656

C26 Mean 9.05E−01 1.03E+00 1.00E+00 1.03E+00

Std 1.92E−01 0.0018 0.021067 0.005126

C27 Mean 3.71E+01 4.16E+04 3.19E+04 3.07E+04

Std 1.83E+00 19984.77 11319.9 13370.99

C28 Mean 4.94E+01 1.55E+02 1.51E+02 6.50E+01

Std 2.17E+01 19.07424 20.4233 19.27773

Friedman aligned test 3.13E+01 7.03E+01 7.01E+01 5.43E+01
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Table 2. Adjusted p-values for the Friedman Aligned test in terms of mean metric
(AGA-PPS is the control method and D = 30).

Friedman

aligned

Unadjusted Bonferroni Holm Hochberg Hommel Holland Rom Finner Li

LSHADE44

+IDE

0.000007 0.000022 0.000022 0.000016 0.000014 0.000022 0.000016 0.000022 0.000007

LSHADE44 0.000008 0.000023 0.000022 0.000016 0.000016 0.000022 0.000016 0.000022 0.000008

UDE 0.008149 0.024448 0.008149 0.008149 0.008149 0.008149 0.008149 0.008149 0.008149

Table 3. Results obtained for D = 50, all results for C01–C28.

Test Instances AGA-PPS LSHADE44+IDE LSHADE44 UDE

C01 Mean 6.76E−25 1.21E−03 9.80E−19 6.77E−04

Std 8.43E−25 0.000758 1.88E−18 0.000977

C02 Mean 1.01E−24 8.25E−04 2.70E−17 2.89E−04

Std 3.71E−24 0.0007 7.75E−17 0.00033

C03 Mean 5.44E+03 4.14E+07 3.54E+06 3.41E+02

Std 1.40E+03 1.36E+07 5.08E+06 115.2714

C04 Mean 1.40E+02 1.40E+01 1.48E+02 1.61E+02

Std 2.67E+01 0.986834 7.4323 27.97972

C05 Mean 1.29E−19 4.31E−09 2.11E+01 3.19E+01

Std 3.98E−19 1.05E−08 0.379687 3.211975

C06 Mean 8.16E+02 8.99E+03 7.41E+03 6.56E+02

Std 8.44E+01 1064.459 1203.89 224.7076

C07 Mean −1.89E+02 −3.65E+01 −3.94E+01 −6.73E+02

Std 9.48E+01 121.0128 160.717 244.2575

C08 Mean −1.17E−04 2.96E−04 −1.30E−04 1.62E−03

Std 3.21E−05 7.59E−05 2.33E−07 0.00079

C09 Mean −2.04E−03 −1.56E−03 −2.04E−03 −2.04E−03

Std 1.94E−09 0.000235 1.33E−18 5.84E−11

C10 Mean −4.75E−05 9.36E−05 −4.82E−05 6.06E−05

Std 1.33E−06 3.77E−05 8.10E−08 4.70E−05

C11 Mean −2.59E+03 −7.30E−01 −1.19E+00 −9.48E+01

Std 3.64E+02 3.298387 2.44299 46.61275

C12 Mean 6.63E+00 7.36E+00 5.20E+01 1.25E+01

Std 4.07E+00 2.860924 20.8675 5.861807

C13 Mean 6.34E+01 9.14E+01 6.50E+02 1.37E+03

Std 5.42E+01 24.87958 101.664 416.8811

(continued)
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Table 3. (continued)

Test Instances AGA-PPS LSHADE44+IDE LSHADE44 UDE

C14 Mean 1.17E+00 1.49E+00 1.41E+00 1.29E+00

Std 8.75E−02 0.029674 0.029579 0.09744

C15 Mean 5.25E+00 1.45E+01 1.78E+01 1.17E+01

Std 1.26E+00 1.652444 2.99689 1.428187

C16 Mean 6.28E−02 2.72E+02 2.72E+02 1.26E+01

Std 3.14E−01 17.73679 18.4244 7.25E−15

C17 Mean 1.01E+00 1.05E+00 1.04E+00 1.05E+00

Std 2.75E−01 0.000586 0.005574 0.001564

C18 Mean 3.66E+01 2.00E+04 2.05E+04 3.40E+04

Std 3.74E−01 6831.056 7214.01 9621.109

C19 Mean 0 3.54E−02 6.66E−02 6.42E+00

Std 0 0.019309991 0.038894 7.264131

C20 Mean 1.03E+01 5.63E+00 8.12E+00 7.85E+00

Std 6.01E−01 0.293081 0.299347 1.640922

C21 Mean 6.62E+00 6.28E+01 6.53E+01 7.64E+00

Std 3.77E+00 1.433125 2.04016 4.221377

C22 Mean 4.12E+03 1.13E+04 1.45E+04 4.09E+03

Std 6.42E+03 6028.40364 7731.5 3048.246

C23 Mean 1.15E+00 1.44E+00 1.42E+00 1.26E+00

Std 3.99E−02 0.029772 0.031323 0.077029

C24 Mean 5.50E+00 1.56E+01 1.43E+01 1.14E+01

Std 9.07E−01 1.570784 1.28254 1.381348

C25 Mean 5.30E+01 2.65E+02 2.53E+02 2.34E+01

Std 1.67E+01 20.04611 16.8844 7.592

C26 Mean 9.91E−01 1.05E+00 1.04E+00 1.05E+00

Std 1.50E−01 0.00346 0.003285 0.003759

C27 Mean 4.07E+01 7.60E+04 8.40E+04 1.09E+05

Std 1.93E+01 2.03E+04 28825.7 18819.77

C28 Mean 1.39E+02 2.74E+02 2.67E+02 1.33E+02

Std 3.65E+01 18.77917 17.8361 21.89726

Friedman aligned test 3.21E+01 6.94E+01 7.47E+01 4.98E+01

Table 4. Adjusted p-values for the Friedman Aligned test in terms of mean value of
the objective (AGA-PPS is the control method and D = 50).

Friedman

Aligned

Unadjusted Bonferroni Holm Hochberg Hommel Holland Rom Finner Li

LSHADE44

+IDE

0.000001 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000003 0.000001

LSHADE44 0.000017 0.000052 0.000034 0.000034 0.000034 0.000034 0.000034 0.000026 0.000018

UDE 0.0425 0.127499 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425 0.0425
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5 Conclusion

The paper proposes a method to adaptively select the operators according to
current convergence status of population, which can prevent the population from
being trapped into local optimal. Moreover, the paper also proposes a novel PPS
method for solving CSOPs. It divides the search process in two stages, which can
help to accelerate the convergence of population and maintain a good balance of
searching between feasible and infeasible regions. The proposed AGA-PPS and
other three DEs (LSHADE44+IDE, LSHADE44 and UDE) are tested on the
CEC2017 benchmarks with 30 and 50 dimensions. The experimental results show
that AGA-PPS is significantly better than other three DEs, which manifests that
AGA-PPS is a quite competitive algorithm for solving these CSOPs.
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