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Abstract
Monocular depth estimation and semantic segmentation are two fundamental goals of scene understanding. Due to the
advantages of task interaction, many works have studied the joint-task learning algorithm. However, most existing methods
fail to fully leverage the semantic labels, ignoring the provided context structures and only using them to supervise the
prediction of segmentation split, which limits the performance of both tasks. In this paper, we propose a network injected
with contextual information (CI-Net) to solve this problem. Specifically, we introduce a self-attention block in the encoder
to generate an attention map. With supervision from the ideal attention map created by semantic label, the network is
embedded with contextual information so that it could understand the scene better and utilize correlated features to make
accurate prediction. Besides, a feature-sharing module (FSM) is constructed to make the task-specific features deeply fused,
and a consistency loss is devised to ensure that the features mutually guided. We extensively evaluate the proposed CI-Net
on NYU-Depth-v2, SUN-RGBD, and Cityscapes datasets. The experimental results validate that our proposed CI-Net could
effectively improve the accuracy of semantic segmentation and depth estimation.

Keywords Depth estimation · Semantic segmentation · Attention mechanism · Task interaction

1 Introduction

Scene understanding is an important yet challenging task in
computer vision and has contributed to visual simultaneous
localization and mapping(vSLAM) system [1], robot navi-
gation [2], autonomous driving [3], and other applications.
Two fundamental goals of scene understanding are monocu-
lar depth estimation [4, 5] and semantic segmentation [6–8],
which have been extensively researched by utilizing deep
learning. Recently, some works [4, 9, 10] have observed
the interactions between these two tasks and utilized their
common characteristics to improve each other, achieving
substantial performance increases. However, most of these
studies used a deep structure as encoder such as ResNet-101
[11], ResNet-50 [10] and SE-ResNet, introducing a large
number of downsampling and stride operations, which had
a negative influence [12] on depth estimation and seman-
tic segmentation, where fine-grained information is crucial.
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Despite some works also adopt strategies such as skip-
connection [13], up-projection [11] and multi-scale training
loss [10] to mitigate this problem, these schemes have
significant demands on computation and memory.

Another shortcoming is that current works about joint
learning did not fully exploit the contextual information
of the semantic labels. As far as we know, most of them
simply utilized the labels to supervise the predictions of
semantic and depth splits, making a limited contribution to
scene understanding of the network. In [14], Chen et al.
pointed out that how to obtain the correlation of inter and
intra-objects is crucial for depth estimation. Yu et al. [15]
also argued that such context makes feature representation
more robust for semantic segmentation. Therefore, could
we excavate the information of labels more deeply to
assist the network modeling of such correlation? Moreover,
most approaches achieve task interaction through adding
pixel-wise features [13], simply sharing encoder commonly
[16] or sharing parameters of convolutional layers [10].
Although these methods leveraged the correlation between
tasks, their approaches for fusing features were rough. For
example, in [13], the authors fused the features via direct
addition and then added them to task-specific features.
This simple structure may make it more difficult for
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the network to learn more useful representations of the
shared features.

To overcome these problems, this paper presents a net-
work injected with contextual information (CI-Net). We
adopt a dilated residual structure, where the dilation oper-
ation replaces a part of downsampling layers, guaranteeing
large receptive fields and avoiding introducing unneces-
sary parameters. To fully leverage the provided context
of semantic labels, we plug a scene-understanding mod-
ule (SUM) with contextual supervision, which captures the
similarity of pixels belonging to the same classes and the
differences of those pertaining to different classes. Specif-
ically, we introduce a self-attention block [6] to generate
an attention map and exploit the semantic labels to create
the ideal attention map indicating whether a pair of pixels
belongs to the same classes or not. The attention training
loss injects the contextual prior into the network, ensuring
the structure to use correlated features for more accurate
prediction. To make these two tasks deeply interacting, we
present two approaches. The first one is that we design a
feature-sharing module (FSM). Rather than simply adding
the task-specific features, we concatenate and put them
through a series of downsampling and upsampling opera-
tions, enabling more useful representations to be obtained.
We also devise a consistency loss between the depth and
semantic features, forcing them to maintain the intrinsic
consistency of first-order relationships.

To summarize, the contributions of this paper involve
three aspects:

– We propose a dilated network embedded with a SUM
with contextual supervision to inject contextual prior
about the correlation of inter and intra-classes, predict-
ing both the depth and semantic segmentation maps.

– We construct an FSM to deeply fuse the task-specific
features and put forward a consistency loss to maintain
the respective features consistent in the relationship
with adjacent features.

– Extensive experiments are performed to demonstrate
the effectiveness of our methods. Furthermore, the
proposed model achieves competitive results against
other approaches of depth estimation and semantic
segmentation on NYU-Depth-v2, SUN-RGBD, and
Cityscapes datasets.

2 Related works

2.1 Monocular depth estimation

With the appearance of convolutional neural networks
(CNNs), monocular depth estimation has been thoroughly

studied in recent years. Laina et al. [17] proposed a fully
convolutional residual architecture and four up-sampling
models to restore the resolution of depth maps. Since then,
this technique has been developed to a significant degree.
Qi et al. proposed GeoNet, which performed joint depth
and surface normal map prediction. This work utilized the
geometric constraint between normal and depth to train the
network, achieving excellent performance on both surface
normal and depth estimation. To reduce the information
loss induced by excessive pooling, Fu et al. [12] employed
atrous spatial pyramid pooling (ASPP) and presented an
ordinal loss to model the depth prediction as an ordinal
regression problem. Inspired by [12], Chen et al. [14]
proposed soft ordinal inference to exploit the predicted
probabilities of the whole depth intervals and replaced
ASPP with a self-attention module to capture the global
context. Recently, Yin et al. [18] projected the depth map to
obtain a 3D point cloud, exploiting the loss between virtual
normal and ground truth to train the model, an approach
that significantly improved the accuracy. To obtain high-
quality depth estimation, Ye et al. presented DP-Net, which
fuses multi-level features of a designed dual-branch depth
estimation model. Some other works [19, 20] also employed
the geometric constraints of the consective image sequence
to complete unsupervised depth prediction.

2.2 RGB-D semantic segmentation

The outstanding work proposed by Long et al. [8], fully
convolutional network (FCN) achieved great improvement
of semantic segmentation. Since then, many scholars [15,
21] have researched on this scene-understanding task
using only RGB images. After the RGB-D dataset was
released, some approaches [22–24] discovered that fusing
depth images could significantly improve the segmentation
results. Recently, Hu et al. [25] proposed the attention
complementary network which fuses weighted depth and
semantic features in the encoder. The fusion implementation
enabled ACNet to exploit more high-quality features. Hung
et al. [26] designed LDFNet, which is also a fusion-based
network. Its novelty of incorporating luminance, depth, and
color information produced substantial success in semantic
segmentation. To reduce the inference time, Chen et al. [27]
proposed spatial information guided convolution (S-Conv)
which extracts geometric information as convolutional
weights and infers the sampling offset according to the
3D spatial information. Different from these algorithms
that aimed to improve semantic segmentation with the
facilitation of RGB-D images, we design a joint-task
learning network to boost both depth estimation and
semantic segmentation with only RGB images as input
through the deep interaction of each task.
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2.3 Joint semantic segmentation anddepth estimation

Due to the common nature of pixel-level prediction among
different tasks, some works have paid attention to studying
joint learning. In [28], a network named C-DCNN was
proposed by Liu et al. which added a designed point-wise
bilinear layer to fuse the semantic and depth information
to produce higher-order features. Jiao et al. [13] proposed
a network with a backbone encoder and two sub-networks
as decoders for respective prediction, increasing both the
accuracy of depth estimation and semantic segmentation
dramatically. Later, PAD-Net was proposed by Xu et al.
[29], using four intermediate auxiliary tasks and providing
abundant information for prediction. In recent research,
the SOSD-Net [30] made full use of the geometric rela-
tions between depth estimation and semantic segmentation
for training. Although theseworks achieved outstanding perfor-
mance, they did not exploit the feature that semantic labels
could help the network capture prior contextual knowledge
of the scene to improve the accuracy of prediction.

2.4 Attentionmechanism

The attention mechanism has been widely used in CNNs
because it allows the network to ignore parts of the input and
focus on others. A profusion of attention methods have been
designed recently mainly including channel attention [31],
spatial attention [32], and self-attention [6]. Inspired by
these methods, some works that incorporated the attention
mechanism into depth prediction have emerged. Chen et al.
[33] interpolated a channel attention block into the encoder
and spatial block into the decoder to avoid losing structural
information. Xu et al. [4] presented a fused CRF model
guided by multi-scale attention. In 2019, Zhang et al. [10]
proposed to fuse the attention maps of three different tasks,
and then task-specific propagation was performed to spread
the attention map to different tasks, effectively improving
the accuracy.

In this work, we present a model jointly learning seman-
tic and depth representations. We introduce a shared atten-
tion block for these two tasks with contextual supervision so
that the network can understand the scene better for predic-
tion. Moreover, we design FSMs to combine the semantic
and depth features, making use of the task-wise informa-
tion. Notice that the similarity and discrepancy of the two
kinds of features should be consistent and we also construct
a novel consistency loss.

3Methods

This section illustrates our proposed method for joint
semantic segmentation and depth estimation from a single

RGB image. The first three subsections introduce the
architecture of our proposed CI-Net and its sub-modules.
The last subsection outlines the training losses.

3.1 Network architecture

The proposed contextual information Network (CI-Net)
uses the encoder-decoder scheme as shown in Fig. 1. For
the encoder, we choose the ResNet [34] for its identity-
mapping tackling of the vanishing gradient problem in
deeper networks. Another benefit of ResNet is its large
receptive field [17], which is a crucial factor for depth
estimation and semantic segmentation. However, rather than
deploying ResNet as the encoder directly, as in [11], we
also adopt a dilation strategy [35] to mitigate the negative
effect of overdownsampling in ResNet, an issue that may
hinder the predictions of fine-grained depth and semantic
maps. With the last two 2 and 4-dilated residual blocks,
the original resolution is lowered to 1/8 instead of 1/32,
reducing the detailed information loss.

In the decoder, a SUM with a supervised attention block
is designed to fully exploit the semantic labels to obtain a
context prior of inter and intra-classes, which benefits the
model to understand a scene better for later prediction. The
network then breaks apart into two branches for estimating
depth and segmenting semantics. During this stage, we
present an FSM to share feature representations so that these
two splits could fully exploit different levels of features.
Furthermore, a consistency loss is formulated to keep the
task-specific features consistent. More details about these
methods are described in the following subsections.

3.2 Scene-understandingmodule

Our motivation mainly comes from two areas: i) Pixels
of the same objects tend to have continuous or similar
depth values, whereas the depths of different objects have
large discrepancies. ii) Under the background of joint-task
learning of semantic segmentation and depth estimation,
semantic labels contain information of each class so that
it is easy to know whether pixels belong to the same
classes or not. Thus, our goal is to find an effective way to
ensure the network has prior knowledge of the categorical
relationship. To achieve this aim, we utilize the semantic
labels for supervising the network with an attention loss
to capture the correlation of the pixels belonging to same
classes and the distinction of different classes. With prior
knowledge of the scene, the profitable information for
prediction could be searched in a limited, related space
instead of the entire region. Then, the depth split, on the
one hand, will be prevented from capturing the unrelated
features. For example, the region of sky should not be used
to predict the depth of ground, and this behavior is hindered



T. Gao et al.

SUM FSM

Consistency LossDilated Converlution

rate=2 rate=4

con FSMcon FSMcon

Depth Split

Semantic Split

con Depth Loss Segementation LossSUM
Scene Understanding 

Module
FSM

Feature Sharing 

Module

att

att Attention Loss depthdepth

depth

seg

seg

Fig. 1 The overview of our CI-Net for joint depth estimation and
semantic segmentation. We adopt dilated operation in the backbone to
mitigate the harm of over-downsampling. At the end of the encoder,
the SUM is designed to aggregate the contextual information. Then the

network breaks into depth and segmentation split. To deeply fuse the
task-specific features, the FSM is proposed. Finally, a consistency loss
is formulated to make the depth and segmentation features mutually
guided

by the context prior for the gap between these two objects.
On the other hand, the semantic one also benefits because
it makes better judgments from the information of inter
and intra-classes. We encapsulate this process of obtaining
contextual information in the SUM, which is illustrated in
the following content.

The architecture of the SUM is presented in Fig. 2.
Similar to non-local block [6], it first uses 1×1 convolutions
to transform the input features X ∈ RN×Cf into query, key,
and value results represented by Q ∈ RN×Cq , K ∈ RN×Ck ,
and V ∈ RN×Cv respectively, where N = H × W is
the resolution. Then, the predicted attention map Ã can be
obtained with

Ã = Sigmoid(QT K), (1)

where Sigmoid(•) is the sigmoid function, which ensures
the attention values are in range [0, 1]. After that, the value
results are multiplied with the attention map to capture
the correlation with each pixel. By finally adding a skip
connection to avoid the problem of vanishing gradient, the
output Y ∈ RN×Cf can be defined as

Y = ÃV + X. (2)

To capture the context prior of pixels, we adopt the
method of [15] to generate an ideal attention map. As can
be seen in Fig. 3, given the ground truth, we can know the
label of each pixel. To transform it into the relation between
different pixels, the ground truth is first down-sampled into
the size of H × W and then flattened into a vector m of

Fig. 2 The structure of SUM.
The generated attention map
captures context prior of inter
and intra-classes so that the
network understands the scene
better
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Fig. 3 Process of generating the ideal attention map. First, we imple-
ment one-hot encoding for the semantic label and then flatten it
into a HW × 1 × C matrix M, where C denotes the number of
categories. After the operation of outer product, the ideal attention map

A is constructed with size of HW × HW . It can be noticed that the
pixels of the same classes in the semantic label have the same value 1
in the attention map

size 1×N . After the one-hot encoding implementation, new
binary columns, which indicate the presence of value from
the ground truth are created, leading to a H ×W ×C matrix
M, where C represents the number of total categories. The
matrix M is then reshaped into a size of N × C, and finally
the ideal attention map A is constructed with

A = MMT . (3)

It is clear that in the ideal attention map, pixels of same
classes are labeled as 1, and 0 otherwise, which aggregates
the contextual information of intra and inter-classes.
Furthermore, we employ the binary cross entropy loss as the
attention loss:

Latt = −
∑

i,j

(Ai,j logÃi,j + ((1−Ai,j )log(1− Ãi,j )), (4)

where Ai,j denotes the pixel at location (i, j) of the
predicted attention map.

It is worth noting that we utilize semantic labels rather
than depth to inject the context prior. One reason for this
approach is that it is difficult to find a feasible and suitable
representation of depth context. Although there exist some
works proposing to use Kullback-Leibler divergence [14]
or planar structures [36], their methods are limited to only
depth estimation task. However, for joint-task learning,
the correlation of different objects is harmful to semantic
segmentation.

3.3 Feature-sharingmodule

In the decoder, the network splits into depth and semantic
branches. We design a feature-sharing module (FSM)
aiming to make two branches share the features with each
other so that they can take full advantage of semantic
and depth information. The FSM structure is presented in

Fig. 4b. The depth features fdt and segmentation features
fst are first concatenated and then fed into an architecture
resembling an encoder-decoder. We utilizeC(•) to represent
the series of convolutions in the aforementioned process. It
can be noticed that we use depthwise separable convolution
to reduce the computational cost. Eventually, the commonly
shared features are allocated adaptively into two branches
via 1 × 1 convolutions C1×1

fd (•), C1×1
fs (•). Followed by

residual connections, the features dt+1 and st+1 can be
obtained by:

fdt+1 = fdt + C1×1
fd (C(concat (fdt , fst ))),

fst+1 = fst + C1×1
fs (C(concat (fdt , fst ))).

(5)

We also compare our structure with the lateral sharing unit
(LSU) proposed in [13], which is shown in Fig. 4a. It can
be seen that the task-shared features fst+1 and fdt+1 are
obtained with summation of three features, which can be
formulated by:

fdt+1 = fdt + C1×1
fd1 (fdt ) + C1×1

fs2 (fst ),
fst+1 = fst + C1×1

fd2 (fdt ) + C1×1
fs1 (fst ).

(6)

Although their method, to some extent, realizes the inter-
action of different features, providing information for later
predictions, we argue that the element-wise summation can
only obtain local information, making limited use of the
fused features. For example, the depth features located
at (i, j) can only sum with the corresponding semantic
features. Contrasting with LSU, our method implements
sampling towards the interacted features, which encapsu-
lates a large area of features and augments the presentation
ability. Therefore, each task-specific feature acquires more
useful information. We insert an FSM before each stage of
upsampling, benefiting depth split and segmentation split to
exploit multi-level fused information.
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Fig. 4 a Architecture of LSU
[13]; b Architecture of our
proposed FSM. Our module can
capture extensive interacted
context, whereas the
comparative one only captures
local interactions

3.4 Training loss function

Besides the previously mentioned attention loss, our loss
function includes three other parts: consistency loss, depth
loss, and segmentation loss.

Consistency Loss: Inspired by [9], we design a consistency
loss to make semantic and depth branches guide each
other mutually. Specifically, the features that are distinct or
similar in semantic feature map should maintain the same
characteristics as in the depth representations. For example,
the semantic features of the sky and tree are extremely
different because they belong to different classes, whereas

the corresponding two depth features are also discrepant
because the distances between the sky and tree are large.
Therefore, we employ this characteristic to supervise the
consistency loss of task-specific features, the form of which
is defined as

Lcon =∑
l

∑
i,j

ψ(si,j , si,j (l))|D(fdi,j , l)−D(fsi,j , l)|,
D(fdi,j , l) = exp[− 1

2 (fdi,j −fdi,j (l))
T �−1

fd
(fdi,j −fdi,j (l))],

(7)

where sij denotes the semantic label of ground truth. fdi,j (l)

is the depth feature, which has an offset of l along the x

or y direction, and fsi,j (l) is the semantic feature. We use
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the exponential form of Mahalanobis Distance to measure
the discrepancies between features, where the covariance
matrix �fd is set as a diagonal matrix σ 2IC . Here, σ is a
learned parameter from each feature map. Considering that
the depth features at the inner edges vary widely, whereas
the semantic representations are similar, we weight Lcon by
the function ψ(•) which returns 1 when the corresponding
labels are different and 0 otherwise. Because it is not
realistic to consider all the feature relationships, we select l
from the set {1, 2} so that each feature would be compared
8 times, an approach that has adequately good performance
in our experiments.

Depth Loss: The depth loss comprises three items Lberhu,
Lpair and Lnorm. The Lberhu represents the BerHu Loss
providing a good balance of the L1 norm and L2 norm,
which is effective in the occasion errors following a heavy-
tailed distribution [17]. The Lberhu is defined by

Lberhu =
∑

i,j

{|di,j − d̃i,j | if|di,j − d̃i,j | ≤ c,

(di,j −d̃i,j )2+c2

2c if|di,j − d̃i,j | > c
, (8)

where di,j and d̃i,j are respectively the true and estimated
depth values. c is a threshold, and we set it to be c =
1
5maxk(|dk − d̃k|); that is, 0.2 times of the max error in a
batch.

We also introduce the loss term Lpair to ensure smooth-
ness in the homogeneous regions and the relative distance
of different areas. The formulation of Lpair is

Lpair =
∑

p,q∈�,p �=q

|(dp − dq) − (d̃p − d̃q)|, (9)

in which � = {(i1, j1), (i2, j2), . . . , (in, jn)} denotes the
set of pixel indices, which are selected randomly. We argue
that Lpair not only maintains the advantages of the gradient
loss [33], which penalizes the adjacent pixels of smooth
areas and discontinued borders but also provides similarity
of pixels that are far apart, guaranteeing relative distances
of different objects.

Another loss term is Lnorm, which is employed to
emphasize small-size structures and high-frequency details:

Lnorm =
∑

i,j

1 − ni,j • ñi,j

|ni,j | • |ñi,j | , (10)

where ni,j is the surface normal calculated by ni,j =
(−∇xdi,j , −∇ydi,j , 1)T , in which ∇x and ∇y represent the
gradient values along the x and y-axes separately. The depth
loss is then calculated by the weighted summation of these
three terms:

Ldepth = Lberhu + λLpair + μLnorm, (11)

where λ, μ are weights to balance the depth loss terms.

Segmentation Loss: To ensure the accuracy of semantic
segmentation and avoid unfavorable depth estimation along
object boundaries, we introduce the weighted cross-entropy
loss as segmentation loss Lseg:

Lseg = −
∑

i,j

∑

c

ωcψ(si,j , c)log(p(s̃i,j , c)), (12)

where ωc = Ntotal−Nc

Ntotal
weights the segmentation loss to miti-

gate the category imbalance problem. p(s̃i,j , c) is the pre-
dicted probability value of class c. Then, our total loss is

L = Latt + αLdepth + βLcon + γLseg, (13)

where α, β, γ denote the weight coefficients for each loss.

4 Experiments

In this section, we first introduce the training datasets and
evaluation metrics. We then illustrate the implementation
details of training our model. Next, an ablation study is
performed to show the benefits of our proposed methods.
We also investigate the effectiveness of our proposed
network and compare it with other methods.

4.1 Dataset andmetrics

Dataset: Because both semantic and depth labels are required
to train our proposed network, we use three datasets, NYU-
Depth-v2 [37], SUN-RGBD [38], and Cityscapes [39] to
evaluate our presented model. The popular NYU-Depth-
v2 dataset includes approximately 120K RGB-D images
of 464 indoor scenes, 1449 images of which have both
semantic and depth annotations. We follow the methods
adopted in [13, 30] to use the standard 795 training pairs
and 654 testing pairs. SUN-RGBD is another commonly
used dataset for which images are captured from the
indoor scenes containing about 10K images (5285 images
for training and 5050 images for testing). Because the
dataset has both semantic and depth labels, the entire
training set is utilized to train our model and the test
set to evaluate our semantic predictions. The outdoor
dataset, Cityscapes, focuses on scene understanding of
urban street scenes. Collected from over 50 different cities,
this dataset has 2975, 500, and 1525 images for training,
validation, and test sets respectively. Inverse depth images,
instance and semantic segmentation labels are provided for
training and testing the network. We transform the inverse
depth images into depth maps using the provided camera
intrinsic. All of these datasets are employed for ablation and
comparison experiments to demonstrate the effectiveness of
our proposed method.
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Metrics: Similar to the previous works [40], we assess our
predicted depth maps using the following metrics:

Accuracy with threshold (δp): % of di,j s.t. max

(
d̃i,j

di,j
,

di,j

d̃i,j
) = δp < 1.25p(p = 1, 2, 3)

RMSE (rms):
√

1
N

∑
i,j (di,j − d̃i,j )2

RMSE in log space (rms log):
√

1
N

∑
i,j (ln di,j −ln d̃i,j )2

Mean absolute relative error (abs rel): 1
N

∑
i,j

|di,j −d̃i,j |
di,j

Mean relative square error (sq rel): 1
N

∑
i,j

(di,j −d̃i,j )2

d2i,j

The signal N represents the number of valid pixels.
To evaluate the predictions of semantic segmentation, we

refer to the recent works [15] and introduce pixel accuracy
(pAcc) and mean intersection over union (mIoU) as metrics.

4.2 Implementation details

We implement the model using the open source machine
learning framework Pytorch on a single Nvidia GTX1080Ti
GPU. As for the encoder of CI-Net, we choose the ResNet-
101 as the candidates, and both of them are pretrained on
the ImageNet classification task. The learning rates of the
pretrained layers are set to be 10 times smaller than the
other layers. To avoid the overfitting problem, we adopt
data augmentation strategies, including random rotation,
random scaling, random crop, random horizontal flip, and
random color jitter. The optimization algorithm we used
is stochastic gradient descent (SGD) [41], where we set
the momentum as 0.9 and the weight decay as 5e−4. To
guarantee computational efficiency and fully optimizing the
network, we choose the number of set � as 500 to compute
the pair loss Lpair . The weight coefficients (α, β, γ, λ, μ)

are set to (1, 5, 0.3, 1, 5), respectively. The training process
is divided into three stages. At first, we replace the SUM
module with the ground truth attention maps, and the model
is trained using only Ldepth and Lseg (epochs and learning
rates are (300, 6e−4) for NYU-Depth-v2, (60, 6e−4) for
SUN-RGBD and (50, 4e−4) for Cityscapes). During the
second stage, the SUM is added to the model, and Latt

participates in the training process (epochs and learning
rates are (200, 2e−4) for NYU-Depth-v2, (40, 3e−4) for
SUN-RGBD and (30, 2e−4) for Cityscapes). In the last
stage, we employ all the loss costs to train the entire model
(we use the polynomical decay strategy with decayed power
of 0.9, epochs and initial learning rates are (200, 2e−4) for
NYU-Depth-v2, (40, 3e−4) for SUN-RGBD and (30, 2e−4)

for Cityscapes).

4.3 Ablation study

In this subsection, we conduct exhaustive ablative experi-
ments to analyze the effectiveness of our settings for the

model. The experiments are extensively evaluated on NYU-
Depth-v2, SUN-RGBD, and CityScapes datasets. To show
the improvement of SUM and FSM, we set a baseline model
comprising one encoder followed by two task-specific
decoders, respectively, for depth estimation and seman-
tic segmentation, each of which contains three upsam-
pling blocks (i.e., baseline network: the version of CI-Net
removed SUM and FSM). The training loss is a linear
combination of task-specific loss (i.e., Ldepth and Lseg).
According to our proposed methods, we trained improved
versions of the baseline network, including: i) baseline with
SUM; ii) baseline with FSM; iii) baseline with SUM and
FSM ; iv) CI-Net (introduce Lcon to train the version iii)).
Followed by [14], we use dilated ResNet-101 as the encoder
to perform the ablation study.

4.3.1 Scene-understaning module

We first evaluate the contribution of the scene-understanding
module (SUM). To better display the improvement, we
select some ablative visual results on NYU-Depth-v2, SUN-
RGBD, and Cityscapes datasets, which are shown in (d)
and (e) of Figs. 5 and 6. It can be observed that without
context prior, both depth estimation and segmentation
results of the baseline with FSM suffer from noticeable
errors particularly in the white dashed line boxes. We
also observe that the SUM can significantly reduce the
adverse effect of uneven illumination. For example, in
the second scene, there is a lamp shedding intense light,
which impairs the baseline prediction of the surrounding
region. In this case, SUM provides the understanding of the
scene, which helps accurately predict depth and semantic
information. In the outdoor scenes of Cityscapes dataset
(Fig. 6), the introduction of the SUM also cleary improves
the performance of both semantic segmentation and depth
estimation. To take the second scene as an example, when
adding the SUM, the predicted depth values of the bus are
more accurate and smoothed, whereas without the SUM,
the depths of the bus are not sufficiently clear, verifying
that the contextual information benefits the network to make
high-quality predictions.

Meanwhile, we also perform a quantitative ablative
experiment, which can be seen in Table 1. It can be
clearly seen that the designed SUM could improve the
performance significantly, which verifies the effectiveness
of this module. For the NYU-Depth-v2 dataset, the original
baseline network could obtain a prominent gain on both
tasks, particularly in rms and mIoU (8.0% reduced and
10.7% increased, respectively). The improvement on the
SUN-RGBD dataset also agrees well with that on NYU-
Depth-v2. It can be observed that the SUM improves the
metrics of δ1, δ2, δ3, rms, rms log, abs rel, and sq rel
by 0.014, 0.006, 0.005, 0.039, 0.014, 0.015, and 0.006
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Fig. 5 Ablative visual comparisons on NYU-Depth-v2 and SUN-RGBD datasets. a input image; b ground truth; c results of baseline; d results of
baseline with FSM; e results of our method

respectively. For outdoor scenes of the Cityscapes dataset,
the version of baseline with SUM also outperforms the
baseline model both on depth estimation (0.781 vs. 0.752 for
δ1, 0.901 vs. 0.882 for δ2, 0.943 vs. 0.928 for δ3, 7.021 vs.
7.490 for rms, 0.412 vs. 0.441 for rms log, 0.238 vs. 0.251
for abs rel, and 3.966 vs. 4.159 for sq rel) and semantic
segmentation (91.5 vs. 88.0 for pAcc and 67.9 vs. 63.6 for
mIoU).

In addition, to see the importance of attention loss
towards the SUM, we visualize the attention maps with
and without the supervision of attention loss, respectively.
Figure 7 shows that with the guidance of attention loss,
the model does capture the correlated contextual areas and
adapts to different scenes well. The attention map with
supervision could be regarded as a structural extractor
because it extracts intact object shapes, revealing the layout
of a scene. In contrast, as for the attention maps that are
not properly guided, the resulting arbitrary concerned region
can be harmful.

4.3.2 Feature-sharing module

Next, we verify the effectiveness of the FSM in boosting
the performance of depth estimation and semantic segmen-
tation. To take the forth scene of Fig. 5c and d as an

example, the baseline fails to predict the wall behind fridge,
whereas the FSM helps to perceive the existence of these
two objects and make boundaries in the depth map clearer.
These improvements are facilitated by deeply fusing the
task-specific features, providing more robust information
for prediction. The quantitative results are shown in Table 1;
it is clear that the version of baseline with FSM achieves
better performance than the baseline model. For the NYU-
Depth-v2 dataset, compared with the baseline model, base-
line with FSM improves all the metrics of depth estimation
and semantic segmentation. δ1, δ2, δ3, rms, rms log, abs rel,
and sq rel are improved respectively by 0.016, 0.008, 0.006,
0.025, 0.007, 0.007, and 0.003. Both the results of SUN-
RGBD and Cityscapes datasets agree well with that on the
NYU-Depth-v2 dataset, hence verifying the effectiveness of
the FSM.

In addition, to demonstrate the novelty of the FSM, we
also compare the performance of the FSM and LSU [13],
the results of which can be seen in Table 2. It is noticed
that although the LSU does improve the performance,
the improvements are not as clear as those by adding
the FSM, which illustrates the effectiveness of sampling
operations. To make a deep analysis of the difference, we
visualize the allocated features FLSUd , FLSUs , FFSMd ,
and FFSMs(summed long the channel dimension and
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Fig. 6 Ablative visual comparisons on Cityscapes dataset. a input image; b ground truth; c results of baseline; d results of baseline with FSM; e
results of our method

normalized to 0 − 1 range) of the LSU and FSM, which are
respectively formulated as:

FLSUd = C1×1
fd1 (fdt ) + C1×1

fs2 (fst )
FLSUs = C1×1

fd2 (fdt ) + C1×1
fs1 (fst )

FFSMd = C1×1
fd (C(concat (fdt , fst )))

FFSMs = C1×1
fs (C(concat (fdt , fst )))

(14)

In Fig. 8, we can easily observe that the features learned by
the LSU almost pay attention to the entire region, which is
not a reasonable approach in depth estimation and semantic
segmentation because if all the features of different objects
are emphasized, the classification and depth estimation of
objects would be confused for using highlighted features
from others. In contrast, with larger receptive fields and
a deeper structure, our proposed module could learn more
useful information, such as objects, which are important in
both tasks. In addition, it could be observed that FSM learns
clear black boundaries between different objects; when the

features are used for lateral convolution, such contours of
zero values would inhibit the convoluted operation from
using the features of other objects, avoiding the generation
of confused features.

4.3.3 CI-Net

When both the SUM and FSM are introduced into the
baseline network, the accuracy of both depth estimation
and semantic segmentation is drastically improved. For
the NYU-Depth-v2 dataset, the most improved metrics
are rms and mIoU (9.1% reduced and 14.2% improved,
respectively). A similar improvement is also achieved on
the SUN-RGBD and Cityscapes datasets, demonstrating
that our proposed CI-Net could make accurate predictions
in indoor and outdoor scenes. Moreover, we also found
that when the additional supervision of consistency loss is
added, the performance is slightly enhanced.
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Fig. 7 Comparisons of the
learned attention map. a input
images; b ideal attention maps;
c and d represent the attention
maps produced by our model
without and with supervision of
the Latt , respectively. For each
scene, we show two different
attention maps pertaining to the
locations where the red plus
signs mark

4.4 Comparisons of results

In this subsection, we compare the experimental results
of our model with other algorithms according to different
datasets.

4.4.1 Results on NYU-Depth-v2

Depth Estimation: We compare the depth estimation results
of our approach with some results of representative methods
in Table 3. We divide the compared methods into three
categories according to the scale of training data, and the
signal � means multi-task learning methods. Among the
methods using 795 training pairs, our approach outperforms
them on most of the metrics. [42, 44, 45] exploited a single
network to predict depth maps. Our method was found to
achieve achieves excellent performance. To take the newest
published work [45] as a comparison example, although this
method obtains excellent values on metrics rms and rms log,

our method outperforms it on δ1, δ2, and δ3. Hence, our
designed network, which exploits contextual information
and deep task interaction is powerful. Multi-task learning
methods [28–30, 43] are also compared; our algorithm is
more effective in contrast to other joint learning methods.
In addition, we also make comparisons with methods using
more data for training. The results show that CI-Net could
be on a par with them and even outperforms on somemetrics
such as rms,verifying the effectiveness of our method.
Moreover, we also display some qualitative results in Fig. 9.
It can be seen that although the predictions of the method by
Laina [17] are smoothed as a whole, they lose some details,
bringing in the blurred object boundaries, particularly in the
desk, washing machine, and sofa. Besides, the precision of
depth maps is weak; the depths of some regions deviate
from the ground truth severely. Although [4] has impressive
values in evaluation metrics, as seen in Table 3, the contours
in predicted depth maps of their models are not sharp, hence,
the depth maps are not sufficiently clear. Compared to them,

Table 2 Comparisons between FSM and LSU

δ1 δ2 δ3 rms abs rel pAcc mIoU

Baseline 0.769 0.942 0.982 0.563 0.159 67.1 37.2

baseline + LSU 0.778 0.948 0.986 0.547 0.152 68.3 38.5

baseline + FSM 0.785 0.950 0.988 0.538 0.152 69.5 39.0
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Fig. 8 Visual results of allocated features (summed along the channel
dimension and normalized to 0 − 1 range). a input images; b features
added to semantic branch learned by LSU; c features added to depth

branch learned by LSU; d features added to semantic branch learned
by FSM e features added to depth branch learned by FSM

Table 3 Comparisons with the depth estimation methods on NYU-Depth-V2 dataset; � denotes multi-task learning method

Methods Scale higher is better lower is better

δ1 δ2 δ3 rms rms log abs rel sq rel

Roy et al. [42] 795 / / / 0.744 / 0.187 /

PAD-Net [29]� 795 0.817 0.954 0.987 0.582 / 0.120 /

C-DCNN [28]� 795 0.736 0.929 0.977 0.628 0.226 0.154 0.136

HybridNet A2 [43]� 795 0.613 0.892 0.974 0.682 0.25 0.202 0.186

Cao et al. [44] 795 0.781 0.954 0.989 0.604 / 0.157 /

SOSD-Net [30]� 795 0.797 0.957 0.991 0.514 / 0.145 /

DP-Net [45] 795 0.784 0.948 0.986 0.474 0.081 / /

FCRN [17] 12k 0.811 0.953 0.988 0.573 0.195 0.127 /

Li et al. [46] 12k 0.820 0.960 0.989 0.545 / 0.139 /

GeoNet [47] 16k 0.834 0.960 0.990 0.569 / 0.128 /

ACAN [14] 12k 0.815 0.960 0.989 0.518 / 0.144 /

CRFs [4] 95k 0.811 0.954 0.987 0.586 / 0.121 /

DORN [12] 120k 0.828 0.965 0.992 0.509 / 0.115 /

Hu et al. [48] 120k 0.866 0.975 0.993 0.530 / 0.115 /

B-DeNet [49] 95k / / / 0.540 0.183 0.127 /

S2DNet [50] 120k 0.773 0.959 0.989 0.543 / 0.160 /

Cao et al. [44] 120k 0.831 0.962 0.988 0.538 / 0.132 /

CI-Net 795 0.812 0.957 0.990 0.504 0.181 0.129 0.112
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Fig. 9 Visual comparison with some approaches on NYU-depth-v2 dataset. a input images; b ground truth; c predictions of [17]; d predictions of
[4]; e predictions of our model

our results match the structures of scenes and have sharper
object boundaries benefiting from prior information of inter
and intra-classes.

Semantic Segmentation: Semantic results comparisons are
reported in Table 4. According to the types of input
images, we classify algorithms into methods using RGB
and RGBD images (i.e., using the ground truth depth maps
as extra input). It could be noticed that our CI-Net is on
a par with all the listed methods in both pixel-acc and
mIoU and even performs those multi-task learning methods,
demonstrating that the context prior can also benefit the
semantic segmentation, and the deep feature interaction
does help this task leverage more useful information.

4.4.2 Results on SUN-RGBD

Depth Estimation: As for the SUN-RGBD dataset, we
compare our depth estimation results with other methods in
Table 5. From the reported values, it can be seen that our
method achieves impressive performance on most metrics.
Even compared to recent work [50] that uses sparse ground

truth depth image as input, our model shows competition
on metrics of δ3 (0.07 improved) and rms (0.208 reduced).
The visual results displayed in Fig. 10e further verify that
our proposed model is effective in the depth estimation of
indoor scenes.

Semantic Segmentation: Quantitative and qualitative results
are displayed in Table 4 and Fig. 10, respectively. It could be
observed that our method even outperforms those using
RGBD images as input, indicating the validity of our pro-
posed FSM and SUM. As for the comparisons with methods
using RGB images, although RefineNet-101 achieves best
performance in the mIoU metric (45.7), our method is on
a par with it on the pixel-acc metric (80.7 vs. 80.4). Some
selected visual results are also shown in Fig. 10c; we found
that our predictions are of high quality and even give the
correct labels of the invalid regions in ground truth.

4.4.3 Results on cityscapes

Depth Estimation: To further evaluate the effectiveness of
our algorithm in outdoor scenes, we performed comparison
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Table 4 Comparisons with the semantic segmentation methods on NYU-Depth-v2, SUN-RGBD, and Cityscapes datasets for simplicity

Methods Input NYU-Depth-v2 SUN-RGBD Cityscapes

pAcc mIoU pAcc mIoU pAcc mIoU

FCN [8] RGB 60.0 29.2 / / / 60.0

Context [51] RGB 70.0 40.6 78.4 42.3 / /

PSPNet(101) [52] RGB 72.8 45.2 78.6 44.6 / 79.7

RefineNet-101 [53] RGB / 44.7 80.4 45.7 / /

RefineNet-LW-101 [54] RGB / 43.6 / / / /

AdaptNet++ [55] RGB / / / 38.4 / 81.2

C-DCNN [28]� RGB 69.0 39.8 77.3 39.0 / /

SOSD-Net [30]� RGB 72.2 43.3 / / / 68.2

HybridNet A2 [43]� RGB 71.6 34.3 / / 93.3 66.6

Ozan et al. [56]� RGB / / / / / 66.6

Cipolla et al. [57]� RGB / / / / / 63.4

SSMA [55] RGBD / / 80.2 43.9 / /

CMoDE [58] RGBD / / 79.8 41.9 / /

LFC [59] RGBD / / 79.4 41.8 / /

FuseNet [23] RGBD / / 76.3 37.3 / /

D-CNN [60] RGBD / 41.0 / 42.0 / /

CI-Net RGB 72.7 42.6 80.7 44.3 92.9 70.1

� denotes multi-task learning method. We use NYU, SUN, and CS to represent NYU-Depth-v2, SUN-RGBD, and Cityscapes

experiments on the Cityscapes dataset. As observed in Table 5,
compared with the methods [11, 29, 43], the presented CI-
Net achieves a significant improvement, indicating that our
method is more powerful than the listed joint-task learning
methods in outdoor scenes. Furthermore, our model is
competitive with the recently proposed work SDC-Depth
[61] and even obtains better values on the metrics of rms and
rms log. We also display some predicted depth maps of our

method in Fig. 11e. From the results, we could find that the
depth maps predicted by our method have sharp boundaries
around objects, and the depth values of objects such as cars,
ground, and buildings are accurately predicted.

Semantic Segmentation: Meanwhile, we also compare the
semantic results of our network on the Cityscapes dataset with
semantic segmentation methods. In contrast to joint-task

Table 5 Comparisons with the depth estimation methods on SUN-RGBD and Cityscapes dataset

Methods Data higher is better lower is better

δ1 δ2 δ3 rms rms log abs rel sq rel

Cao et al. [5] SUN 0.563 0.727 0.882 0.839 / 0.256 /

C-DCNN [28]� 0.792 0.948 0.985 0.538 0.215 0.159 0.108

Zhang et al. [11]� / / / 0.468 / 0.140 /

S2DNet [50]� 0.881 0.951 0.972 0.683 / 0.122 /

CI-Net SUN 0.766 0.943 0.979 0.475 0.198 0.147 0.125

FCRN [17] CS 0.765 0.893 0.940 7.273 0.448 0.257 4.238

PAD-Net [29]� 0.786 0.905 0.945 7.117 0.428 0.246 4.060

HybridNet A2 [43]� 0.748 0.822 0.929 12.09 0.434 0.240 4.27

Zhang et al. [11]� 0.776 0.903 0.945 7.104 0.416 0.234 3.776

SDC-Depth [61] 0.801 0.913 0.950 6.917 0.414 0.227 3.800

CI-Net CS 0.798 0.907 0.951 6.880 0.405 0.227 3.865

Note that SUN denotes images from SUN-RGBD, and CS indicates the dataset of Cityscapes. The signal � denotes multi-task learning method,
and � represents that this method uses sparse depth maps as extra input
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Fig. 10 Visualized depth and semantic segmentation maps on SUN-RGBD dataset. a input images; b ground truth of semantic segmentation; c
semantic segmentation predictions of our method; d ground truth of depth maps; e depth estimation of our method

learning methods [30, 43, 56, 57], our approach achieves
best results on pixel-acc and mIoU, and it could be noticed
that our method outperforms them on the mIoU metric
(2.7% improved compared with newly proposed method

SOSD-Net). Some visual results are also displayed in
Fig. 11c, where it can be observed that buildings, cars, sky,
and trees are correctly predicted, demonstrating that our
method is suitable for outdoor scenes too.

Fig. 11 Visualized depth and semantic segmentation maps on Cityscapes dataset. a input images; b ground truth of semantic segmentation; c
semantic segmentation predictions of our method; d ground truth of depth maps; e depth estimation of our method
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5 Conclusion

In this paper, a network for joint-task learning was pro-
posed. By employing the scene-understanding module, the
presented network was able to capture the contextual infor-
mation of inter and intra-classes, which is crucial for the net-
work to understand which useful context can be exploited to
make predictions. To fuse the task-specific features deeply,
we designed an FSM that enlarged the receptive fields and
augmented the presentation ability through upsampling and
downsampling operations. In addition, a consistency loss
was proposed to make the task-specific features mutually
guided, which kept consistent relationships with the respec-
tive adjacent features. The performance of ablation study
and the comparative results with other methods on NYU-
Depth-v2, SUN-RGBD, and Cityscapes datasets demon-
strated the effectiveness of our method. In the future, we
plan to explore the contextual information in the attention
map and incorporate other pixel-level tasks, such as surface
normal prediction and edge detection, into this work. We
are also interested in combining the depth prediction with
semantic SLAM to obtain more accurate results.
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